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Abstract
A discussion on the entropy of the Spanish language by means of a practi-

cal method for calculating the entropy of a text by direct computer processing
is presented. As an example of application, thirty samples of Spanish text
are analyzed, totaling 22.8 million characters. Symbol lengths from n = 1 to
500 were considered for both words and characters. Both direct computer
processing and the probability law of large numbers were employed for cal-
culating the probability distribution of the symbols. An empirical relation
on entropy involving the length of the text (in characters) and the number of
different words in the text is presented. Statistical properties of the Spanish
language when viewed as produced by a stochastic source, (such as origin
shift invariance, ergodicity and asymptotic equipartition property) are also
analyzed.

Key words: Law of large numbers, Shannon entropy, Stochastic process,
Zipf’s law.

Resumen
Se presenta una discusión sobre la entropía de la lengua española por

medio de un método práctico para el cálculo de la entropía de un texto me-
diante procesamiento informático directo. Como un ejemplo de aplicación,
se analizan treinta muestras de texto español, sumando un total de 22,8 mil-
lones de caracteres. Longitudes de símbolos desde n = 1 hasta 500 fueron
consideradas tanto para palabras como caracteres. Para el cálculo de la
distribución de probabilidad de los símbolos se emplearon procesamiento di-
recto por computador y la ley de probabilidad de los grandes números. Se
presenta una relación empírica de la entropía con la longitud del texto (en
caracteres) y el número de palabras diferentes en el texto. Se analizan tam-
bién propiedades estadísticas de la lengua española cuando se considera como
producida por una fuente estocástica, tales como la invarianza al desplaza-
miento del origen, ergodicidad y la propiedad de equipartición asintótica.

Palabras clave: entropía de Shannon, ley de grandes números, ley de Zipf,
procesos estocásticos.
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1. Introduction

Spanish is a language which is used by more than four hundred million people
in more than twenty countries, and it has been making its presence increasingly
felt on the Internet (Marchesi 2007). Yet this language has not been as extensively
researched at entropy level. The very few calculations which have been reported
have been obtained, as for most languages, by indirect methods, due in part to the
complexity of the problem. Having accurate entropy calculations for the Spanish
language can thus be considered a pending task. Knowing the value of H, in
general for any language, is useful for source coding, cryptography, language space
dimension analysis, plagiarism detection, and so on. Entropy calculation is at the
lowest level of language analysis because it only takes into account source symbol
statistics and their statistical dependence, without any further consideration of
more intelligent aspects of language such as grammar, semantics, punctuation
marks (which can considerably change the meaning of a sentence), word clustering,
and so on.

Several approaches have been devised for several decades for finding the entropy
of a language. Shannon (1948) initially showed that one possible way to calculate
the entropy of a language, H, would be through the limit H = limn→∞− 1

nH(Bi),
where Bi is a sequence of n symbols. Finding H using methods such as the one
suggested by this approach is difficult since it assumes that the probability of
the sequences, p(Bi), is an asymptotically increasing function of n, as n tends
to infinity. Another difficulty posed by this approach is that an extremely large
sample of text would be required, one that considered all possible uses of the lan-
guage. Another suggested way to calculate H is by taking H = limn→∞ Fn, where
Fn = H(j|Bi) = H(Bij) −H(Bi). Bi is a block of n-1 symbols, j is the symbol
next to Bi, H(j|Bi) is the conditional entropy of symbol j given block Bi. In this
approach, the series of approximations F1, F2, . . . provides progressive values of
conditional entropy. Fn, in bits/symbol, measures the amount of information in a
symbol considering the previous n−1 consecutive symbols, due to the statistics of
the language. The difficulty of using these previous methods in practice was put
under evidence when in his pioneering work Shannon (1951) used instead a hu-
man prediction approach for estimating the entropy of English, getting 0.6 and 1.3
bits/letter as bounds for printed English, considering 100-letter sequences. Gam-
bling estimations have also been used, providing an entropy estimation of 1.25 bits
per character for English (Cover & King 1978). The entropy rate of a language
could also be estimated using ideal source coders since, by definition, this kind of
coder should compress to the entropy limit. A value of 1.46 bits per character has
been reported for the entropy of English by means of data compression (Teahan &
Cleary 1996). The entropy of the fruit fly genetic code has been estimated using
universal data compression algorithms (Wyner, Jacob & Wyner 1998). As for the
Spanish language, values of 4.70, 4.015, and 1.97 bits/letter for F0, F1, and FW

respectively were reported (Barnard III 1955) using an extrapolation technique
on frequency data obtained from a sample of 6,513 different words. FW is the
entropy, in bits/letter, based on single-word frequency.
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Another venue for finding H has been based on a purely mathematical frame-
work derived from stochastic theory, such as the one proposed by Crutchfield &
Feldman (2003). Unfortunately, as the same authors recognize it, it has lead, in
practice, to very limited results for finding the entropy of a language. In general,
as all these results suggest, finding the entropy of a language by classic methods
has proved to be a challenging task. Despite some remarkable findings in the past
decades, the search for a unified mathematical model continues to be an open
problem (Debowski 2011).

In the past it was implicitly believed that attempting to find the average un-
certainty content of a language by direct analysis of sufficiently long samples could
be a very difficult task to accomplish. Fortunately, computer processing capacity
available at present has made feasible tackling some computing intensive problems
such as the search in large geometric spaces employed in this work. Michel, Shen,
Aiden, Veres, Gray, Team, Pickett, Hoiberg, Clancy, Norvig, Orwant, Pinker,
Nowak & Aiden (2011) discuss, as an example of this trend, the use of huge com-
putational resources to research the relationship between linguistics and cultural
phenomena. This paper is organized as follows: In Section 2 the methodology
used to obtain all the values reported is discussed; in Section 3 the results of the
observations are presented; Section 4 presents a discussion and analysis of the
most relevant results and, finally, in Section 5 the main conclusions of this work
are summarized. All the samples and support material used in this work are pub-
licly available at http://sistel-uv.univalle.edu.co/EWS.html. Aspects such as the
analysis of grammar, semantics, and compression theory are beyond the scope of
this paper.

2. Methodology

Thirty samples of literature available in Spanish were chosen for this study.
Tables 1 and 2 show the details of the samples and its basic statistics. The works
used in this paper as samples of written Spanish were obtained from public li-
braries available on the Internet such as librodot 1 and the virtual library Miguel
de Cervantes 2. The selection of the samples was done without any particular con-
sideration of publication period, author’s country of origin, and suchlike. A file of
news provided to the author by the Spanish press agency EFE was also included
in the samples for analysis. The selected material was processed using a T3500
Dell workstation with 4 GB RAM. The software used to do the all the calculations
presented in this work was written in Mathematica R© 8.0. For simplicity, a slight
preprocessing was done on each sample, leaving only printable characters. Strings
of several spaces were reduced to one character and the line feed control character
(carry return) was replaced by a space character, allowing for fairer comparisons
between samples. The samples were character encoded using the ISO 8859-1 stan-
dard (8-bit single-byte coded graphic character sets - Part 1: Latin alphabet No.
1) which has 191 characters from the Latin script, providing a full set of charac-

1http://www.librodot.com
2http://www.cervantesvirtual.com
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ters for the Spanish language. For instance, the ñ letter corresponds to 0xf1, etc.
The total amount of characters of the thirty samples in table 1 is 22,882,449 and
the total amount of words is 4,024,911. The rounded average for the number of
different one-character symbols (uppercase, lowercase, and punctuation marks) for
the thirty samples was 93. The reason we consider the distinction between upper-
case and lowercase symbols is that when characterizing an information source at
entropy level, lowercase and uppercase symbols produce different message vectors
from the transmission point of view (e.g. the word HELLO produces a completely
different message vector than the word hello).

Table 1: Set of Text Samples
Sample Name Author
1 La Biblia Several authors
2 efe-B2 EFE Press agency
3 Amalia José Mármol
4 Crimen y Castigo Fyodor Dostoevsky
5 Rayuela Julio Cortázar
6 Doña Urraca de Castilla F. Navarro Villoslada
7 El Corán Prophet Muhammad
8 Cien Años de Soledad Gabriel García Márquez
9 La Araucana Alonso de Ercilla
10 El Papa Verde Miguel Angel Asturias
11 América Franz Kafka
12 La Altísima Felipe Trigo
13 Al Primer Vuelo José María de Pereda
14 Harry Potter y la Cámara Secreta J.K. Rowling
15 María Jorge Isaacs
16 Adiós a las Armas Ernest Hemingway
17 Colmillo Blanco Jack London
18 El Alférez Real Eustaquio Palacios
19 Cañas y Barro Vicente Blasco Ibáñez
20 Aurora Roja Pío Baroja
21 El Comendador Mendoza Juan C. Valera
22 El Archipiélago en Llamas Jules Verne
23 Doña Luz Juan Valera
24 El Cisne de Vilamorta Emilia Pardo Bazán
25 Cuarto Menguante Enrique Cerdán Tato
26 Las Cerezas del Cementerio Gabriel Miró
27 Tristana Benito Pérez Galdós
28 Historia de la Vida del Buscón Francisco de Quevedo
29 El Caudillo Armando José del Valle
30 Creció Espesa la Yerba Carmen Conde

In Table 2 the parameter α is the average word length, given by
∑
Lipi, where

Li and pi are the length in characters and the probability of the i-th word respec-
tively. The weighted average of α for the whole set of samples is 4.491 letters per
word. The word dispersion ratio, WDR, is the percentage of different words over
the total number of words.

The values of entropy were calculated using the entropy formula
∑
pi log2 pi.

The frequency of the different symbols (n-character or n-word symbols) and the law
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of large numbers were used to find the symbol probabilities as pi ≈ ni/ntotal. First,
we started considering word symbols, since words are the constituent elements of
the language. However, a more refined analysis based on characters was also
carried out. Entropy values for both n-character and n-word symbols from n=1
to 500 were calculated. Considering symbols up to a length of five hundred was a
suitable number for practical proposes, this will be discussed in the next section.

Table 2: Sample Details

Sample Number of
Characters

Alphabet
Size (AS)

Number of
Words

Different
Words

WDR(%) α

1 5722041 100 1049511 40806 3.89 4.27
2 1669584 110 279917 27780 9.92 4.80
3 1327689 88 231860 18871 8.14 4.51
4 1215215 91 207444 17687 8.53 4.63
5 984129 117 172754 22412 12.97 4.50
6 939952 84 161828 17487 10.81 4.58
7 884841 93 160583 12236 7.62 4.32
8 805614 84 137783 15970 11.59 4.73
9 751698 82 129888 15128 11.65 4.63

10 676121 93 118343 16731 14.14 4.45
11 594392 88 101904 11219 11.01 4.66
12 573399 89 98577 14645 14.86 4.53
13 563060 82 100797 13163 13.06 4.35
14 528706 89 91384 10884 11.91 4.60
15 499131 87 88376 12680 14.35 4.45
16 471391 91 81803 10069 12.31 4.49
17 465032 91 81223 10027 12.35 4.58
18 462326 89 82552 10699 12.96 4.43
19 436444 79 75008 10741 14.32 4.66
20 393920 90 68729 10598 15.42 4.47
21 387617 86 69549 10289 14.79 4.38
22 363171 88 61384 8472 13.80 4.73
23 331921 83 59486 9779 16.44 4.41
24 312174 77 53035 11857 22.36 4.65
25 304837 87 49835 12945 25.98 4.95
26 302100 75 51544 10210 19.81 4.64
27 299951 82 52571 10580 20.13 4.48
28 232236 74 42956 7660 17.83 4.23
29 224382 83 36474 7470 20.48 5.00
30 159375 81 27813 6087 21.89 4.48

One worthwhile question at this point is “does entropy change when changing
the origin point in the sample?”. For this purpose, we calculated entropy values
considering symbols for different shifts from the origin for non overlapping symbols,
as illustrated by figure 1, for the case of trigrams.

It can easily be seen that, for symbols of length n, symbols start repeating (i.e.,
symbols are the same as for shift=0, except for the first one) after n shifts. As
a result, the number of individual entropy calculations when analyzing symbols
from length n = 1 up to k was k(k+1)

2 . For the k = 500 case used in this work,
this gives 125,250 individual entropy calculations for every sample analyzed. The
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Figure 1: Origin invariance analysis.

individual shift entropies so obtained were then averaged for every n. Values of n
for which the maximum value of entropy was produced were identified, as well as
values of n from which all symbols present in the text become equiprobable with
reasonable certainty, i.e., none of them repeat more than once in the sample.

3. Results

3.1. Entropy Values Considering Words

Figure 2 shows the values of average entropy for n-word symbols. For ease of
display, only data for samples 1, 2, 12 and 30 and n = 1 to 20 are shown. The rest
of the literary works exhibited the same curve shapes with values in between. All
the analyzed samples exhibited invariance to origin shift. For example, for sample
8 (Cien Años de Soledad) the values for n = 4 were: 15.024492 (shift = 0),
15.028578 (shift = 1), 15.025693 (shift = 2), 15.027212 (shift = 3). This means
that P (w1, ..wL) = P (w1+s, ..wL+s) for any integer s, where {w1, ..wL} is a L-word
sequence. This is a very useful property to quickly find the entropy of a text it
because it makes necessary to compute values for just one shift thus reducing the
process to a few seconds for practical purposes.

Also since the weighted value for 1-word entropy for the set analyzed was
10.0064 bits/character, the weighted value of FW is therefore 2.23 bits/character.

3.2. Entropy Values Considering n-Character Symbols

Figure 3 shows the averaged entropy values for n-character symbols. Again for
ease of display, only data for samples 1, 2, 12 and 30 and n = 1 to 100 are shown.
All samples also exhibited the origin shift invariance property. For example, for
sample 8 (Cien Años de Soledad), the values of entropy for n = 4 characters were:
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Figure 2: Entropy for n-word symbols for samples 1, 2, 12 and 30.

12.267881 (shift = 0), 12.264343 (shift = 1), 12.268751 (shift = 2), 12.269691
(shift = 3). Therefore, P (c1, .., cL) = P (c1+s, .., cL+s) for any integer s. As in
the case of words, the rest of literary works exhibited the same curve shapes with
values in between.
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Figure 3: Log Plot of entropy for n-character symbols for samples 1, 2, 12 and 30.

3.3. Processing Time

Figure 4 shows the processing time of every sample for both words and charac-
ters for all shifts of n (1 ≤ n ≤ 500), that is, 125,250 entropy calculations for each
sample. Due to the origin shift invariance property, only calculations for one shift
(for instance shift = 0) are strictly required thus reducing the time substantially.
For example, the processing time of sample 1 for only one shift was 433 seconds
while the processing time for sample 30 was just nine seconds. Analysis for all
shifts of n were done in this work in order to see if entropy varied when changing
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the point of origin in the text. A carefully designed algorithm based on Math-
ematica’s sorting functions was employed to obtain the probability of symbols,
however, a discussion on the optimality of this processing is beyond the scope of
this paper.
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Figure 4: Processing time considering all shifts of n (125,250 entropy calculations)

3.4. Reverse Entropy

If we take the text in reverse order, for instance “yportne eht no” instead of “on
the entropy”, it is possible to evaluate the reverse conditional entropy, that is, the
effect of knowing how much information can be gained about a previous character
when later characters are known. It was observed that entropy of the reverse text
carried out for the same set of samples produced exactly the same values as for
the forward entropy case. This was first observed by Shannon for the case of the
English language in his classical work (Shannon 1951) on English prediction.

4. Discussion

4.1. Frequency of Symbols and Entropy

Figure 5 shows a plot of the fundamental measure function of information,
pi log2 pi, which is at the core of the entropy formula. This function has its max-
imum, 0.530738, at pi = 0.36788. Therefore, infrequent symbols, as well as very
frequent symbols, add very little to the total entropy. This should not be con-
fused with the value of pi = 1

n that produces the maximum amount of entropy for
a probability space with n possible outcomes. The entropy model certainly has
some limitations because entropy calculation is based solely on probability distri-
bution. In fact, two different texts with very different location of words can have
the same entropy, yet one of them can lead to a very much more efficient source
encoding than the other.
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Figure 5: Fundamental function of information.

4.2. Log-log Plots and the Spanish Language Constant

The fact that the basic statistical properties of entropy are essentially the same
for short length symbols regardless of the sample (and the entropy is similar for
any shift of the origin) means it is possible to use a sufficiently long sample, for
instance sample 2, to study the Spanish language constant. Figure 6 shows the
log-log plot for sample 2 which contained 82,656 different 3-word symbols, 79,704
different 2-word symbols, and 27,780 different 1-word symbols. Log-log plots for
the rest of samples were found to be similar to those of figure 6, at least for 2-word
and 1-word symbols.

Figure 6: Symbol rank versus n-word probability in Sample 2.
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Smoothing the 1-word curve in figure 6, the probability of the r-th most fre-
quent 1-word symbol is close to 0.08/r, assuming r is not too large. This behavior
corresponds to the celebrated Zipf law first presented in 1939 (Zipf 1965) which
nowadays some authors also call the Zipf-Mandelbrot law (Debowski 2011). Fig-
ure 7 shows the log-log plot for for sample 2 which contained 14,693 different
trigrams, 2,512 different digrams, and 110 different characters; all values consid-
ered for shift = 0. Log-log plots for the rest of the samples were found to be similar
to those of figure 7. Even when a distinction between upper case and lower case
symbols is made in this work, no significant difference was found with the constant
obtained when analyzing the database of the 81,323 most frequent words (which
makes no distinction between upper case and lower case symbols). This database
was compiled by Alameda & Cuetos (1995) from a corpus of 1,950,375 words of
written Spanish.

Figure 7: Symbol rank versus n-character probability for Sample 2.

4.3. Conditional Entropy

We now evaluate the uncertainty content of a character given some previous
text. Initially F0, in bits per character, is given by log2(AS), where AS is the
alphabet size. F1 takes into account single-character frequencies and it is given by
F1 =

∑
i

pi log2 pi. F2 considers the uncertainty content of a character given the

previous one:

F2 = −
∑
i,j

p(i, j) log2 p(j|i) = −
∑
i,j

p(i, j) log2 p(i, j) +
∑
i

pi log2 pi (1)
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Similarly, F3 gives the entropy of a character given the previous two characters
(digram):

F3 = −
∑
i,j,k

p(i, j, k) log2 p(k|ij) = −
∑
i,j,k

p(i, j, k) log2 p(i, j, k) +
∑
i,j

pi,j log2 pi,j

(2)
and so on. Table 3 shows, for simplicity, values for Fn from F1 to F15 only,

rounded to two significant digits.

Table 3: Conditional Entropy Fn
n

Si 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 4.51 3.43 2.76 2.18 1.72 1.33 0.98 0.68 0.43 0.26 0.14 0.06 0.01 -0.02 -0.04
2 4.52 3.46 2.82 2.13 1.52 1.05 0.69 0.42 0.22 0.09 0.01 -0.03 -0.06 -0.06 -0.07
3 4.39 3.34 2.73 2.11 1.57 1.11 0.72 0.42 0.21 0.08 -0.01 -0.05 -0.07 -0.08 -0.08
4 4.43 3.39 2.74 2.09 1.54 1.07 0.67 0.37 0.18 0.06 -0.01 -0.05 -0.06 -0.07 -0.08
5 4.40 3.41 2.81 2.16 1.55 1.02 0.59 0.30 0.12 0.01 -0.05 -0.08 -0.08 -0.09 -0.09
6 4.39 3.35 2.74 2.13 1.56 1.05 0.62 0.32 0.13 0.02 -0.04 -0.07 -0.08 -0.09 -0.09
7 4.46 3.31 2.57 1.93 1.40 0.96 0.61 0.36 0.20 0.09 0.03 -0.02 -0.04 -0.06 -0.06
8 4.27 3.27 2.67 2.06 1.50 1.02 0.63 0.34 0.16 0.05 -0.02 -0.06 -0.07 -0.08 -0.08
9 4.32 3.28 2.70 2.11 1.58 1.06 0.61 0.29 0.10 -0.01 -0.06 -0.09 -0.10 -0.10 -0.09

10 4.40 3.36 2.78 2.16 1.51 0.95 0.51 0.22 0.05 -0.04 -0.08 -0.09 -0.10 -0.10 -0.09
11 4.33 3.32 2.66 2.00 1.43 0.93 0.54 0.28 0.11 0.01 -0.04 -0.07 -0.08 -0.09 -0.09
12 4.44 3.38 2.74 2.11 1.46 0.90 0.47 0.20 0.03 -0.05 -0.09 -0.10 -0.10 -0.10 -0.10
13 4.36 3.31 2.71 2.07 1.47 0.93 0.52 0.23 0.07 -0.03 -0.07 -0.09 -0.09 -0.10 -0.09
14 4.44 3.40 2.69 1.98 1.35 0.84 0.47 0.22 0.08 -0.01 -0.05 -0.07 -0.08 -0.09 -0.09
15 4.38 3.33 2.72 2.07 1.43 0.87 0.46 0.20 0.05 -0.04 -0.08 -0.09 -0.10 -0.10 -0.09
16 4.46 3.35 2.69 2.00 1.37 0.83 0.44 0.19 0.05 -0.03 -0.07 -0.08 -0.09 -0.09 -0.09
17 4.32 3.30 2.63 1.98 1.39 0.89 0.50 0.24 0.07 -0.01 -0.06 -0.08 -0.09 -0.09 -0.09
18 4.35 3.33 2.71 2.05 1.41 0.86 0.45 0.19 0.04 -0.04 -0.08 -0.09 -0.10 -0.09 -0.09
19 4.29 3.29 2.64 1.98 1.37 0.87 0.49 0.23 0.08 -0.01 -0.06 -0.08 -0.09 -0.09 -0.09
20 4.44 3.37 2.73 2.03 1.34 0.78 0.37 0.14 0.01 -0.06 -0.08 -0.10 -0.10 -0.10 -0.09
21 4.37 3.33 2.71 2.04 1.37 0.79 0.39 0.13 0.00 -0.05 -0.09 -0.09 -0.11 -0.06 -0.12
22 4.38 3.34 2.65 1.91 1.26 0.75 0.40 0.17 0.05 -0.03 -0.05 -0.08 -0.08 -0.08 -0.08
23 4.34 3.30 2.67 2.00 1.35 0.78 0.38 0.13 0.01 -0.06 -0.09 -0.10 -0.10 -0.10 -0.09
24 4.38 3.36 2.78 2.08 1.34 0.71 0.30 0.06 -0.05 -0.09 -0.11 -0.11 -0.11 -0.10 -0.10
25 4.32 3.37 2.80 2.09 1.32 0.69 0.29 0.06 -0.05 -0.09 -0.10 -0.11 -0.11 -0.10 -0.10
26 4.42 3.35 2.71 2.01 1.28 0.71 0.32 0.10 -0.03 -0.07 -0.10 -0.11 -0.10 -0.10 -0.10
27 4.37 3.34 2.74 2.06 1.33 0.72 0.31 0.08 -0.04 -0.09 -0.11 -0.11 -0.11 -0.10 -0.10
28 4.33 3.25 2.63 1.94 1.26 0.71 0.32 0.10 -0.03 -0.09 -0.10 -0.11 -0.11 -0.10 -0.10
29 4.28 3.28 2.62 1.89 1.21 0.68 0.32 0.11 0.00 -0.07 -0.09 -0.10 -0.10 -0.09 -0.09
30 4.40 3.35 2.66 1.89 1.11 0.52 0.17 0.01 -0.08 -0.11 -0.12 -0.11 -0.11 -0.11 -0.10

We observe in table 3 that, at some point, conditional entropies become nega-
tive. Although H(X,Y ) should always be greater or equal to H(Y ), the estimation
on conditional entropy in this study becomes negative because the length of the
text is not sufficiently long, in contrast to the required condition of the theo-
retical model n → ∞. This behavior has also been observed in the context of
bioinformatics and linguistics (Kaltchenko & Laurier 2004). The following ex-
ample should help to clarify the explanation. Let’s consider first the following
text in Spanish which has 1000 characters: 〈〈Yo, señora, soy de Segovia. Mi
padre se llamó Clemente Pablo, natural del mismo pueblo; Dios le tenga en el
cielo. Fue, tal como todos dicen, de oficio barbero, aunque eran tan altos sus pen-
samientos que se corría de que le llamasen así, diciendo que él era tundidor de
mejillas y sastre de barbas. Dicen que era de muy buena cepa, y según él bebía
es cosa para creer. Estuvo casado con Aldonza de San Pedro, hija de Diego de
San Juan y nieta de Andrés de San Cristóbal. Sospechábase en el pueblo que no
era cristiana vieja, aun viéndola con canas y rota, aunque ella, por los nombres
y sobrenombres de sus pasados, quiso esforzar que era descendiente de la gloria.
Tuvo muy buen parecer para letrado; mujer de amigas y cuadrilla, y de pocos en-
emigos, porque hasta los tres del alma no los tuvo por tales; persona de valor y
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conocida por quien era. Padeció grandes trabajos recién casada, y aun después,
porque malas lenguas daban en decir que mi padre metía el dos de bastos para sacar
el as de oros〉〉. This text has 250 four-character symbols (e.g. {Yo, },{seño},{ra,
}) with 227 of them being different. Factorizing common probability terms we find:
H4−char = 209( 1

250 log2
1

250 )+14( 1
125 log2

1
125 )+3( 3

250 log2
3

250 )+
2

125 log2
2

125 = 7.76
bits/symbol. This text has 200 five-character symbols (e.g.{Yo, s},{eñora},{, soy})
with 192 being different five-character symbols. Factorizing common probability
terms we find: H5−char = 184( 1

200 log2
1

200 ) + 8( 1
100 log2

1
100 ) = 7.56 bits/symbol.

Thus the entropy of a character given the previous four characters are know and
would be H(X|Y ) = H5−char − H4−char = −0.20 bits/character. For sample
1 (which has 5,722,040 characters) a similar behavior is observed: The greatest
number of different symbols (418,993) occurs for n=10 (572,204 total 10-character
symbols) for whichH=18.26 bits/symbol. The highest entropy, 18.47 bits/symbol,
is produced by 13-character symbols (there are 440,156 total 13-character symbols,
and 395,104 different 13-character symbols). For 14-character symbols (408,717
total; 378,750 different) the entropy is 18.45 bits/symbol. Then the entropy
of a character given the previous thirteen characters are know, in this case, is
18.45− 18.47 = −0.02 bits/character. With increasing n, the probability distribu-
tion tends to become uniform and H starts decreasing monotonically with n, as
shown in figure 3 of the paper. When the symbols in the sample become equiproba-
ble the value of H is given by log2b total number of characters

n c. Again, these seemingly
paradoxical values are explained by the differences between mathematical models
and real world, as well as the assumptions on which they are based3.

4.4. Entropy Rate and Redundancy

To estimate the entropy rate, a polynomial interpolation of third degree is first
applied to the values of Fn. As an example, figure 8 shows the interpolated curves
for samples one and thirty.

Figure 8 shows that Fn becomes negative after crossing by zero, and from this
point asymptotically approaches zero as n→∞. Therefore,

lim
n→∞

Fn = lim
n→NZ

Fn (3)

In equation 3, NZ is the root of the interpolated function Fn. The n-character
entropy values of figure 3 are also interpolated to find HNZ , the entropy value
corresponding to NZ . The redundancy is given by R = HL

Hmax
, where HL is the

source’s entropy rate, and Hmax = log2(AS). Finally, the value of HL is calculated
as HL ≈ HNZ

NZ
. Table 4 summarizes the values of NZ , HNZ , HL, and R. It should

be clear that the previous interpolation process is used to get a finer approximation
to the value of entropy. Just as in thermodynamics a system in equilibrium state
produces maximum entropy, equation 3 captures the symbol distribution that
produces the highest level of entropy (or amount of information) in the text.

3An insightful dissertation on real world and models is presented in Slepian (1976).
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Figure 8: Interpolated curves of conditional entropy (bits/character) for samples 1 and
30.

In Table 4, the weighted average of HL is 1.54 bits/character. Since the
weighted average of the alphabet size in Table 1 is 92.98 characters the average re-
dundancy, R, for the analyzed sample set, comprising nearly 23 million characters,
is:

R = 1− 1.54

log2 92.98
≈ 76.486%

Taking H(X) equal to 1.54 bits/character, for a text of Spanish of 140 charac-
ters, there would exist 2nH(X) ≈ 7.98× 1064 typical sequences. Because the roots
of Fn occur at small values of n and, as it has been observed this method permits
to find the value of entropy in a very short time (analysis for only one shift, for
instance shift=0, is required). As it can be observed in Table 4, in general, a
sample with lower WDR has more redundancy, the opposite also being true. In
general, and as a consequence of Zipf’s, law the greater the size of a sample, the
smaller its WDR. An interesting empirical relation found in this work involving
HL, the length of the text (in characters) L, and the number of different words
(V ) in the text is:

HL ≈
2.192

logV L
(4)

Equation 4 indicates that texts with small word dictionaries (compared to
the length of the text in characters) have smaller HL because there is higher
redundancy. This corroborates the well known fact that larger documents are more
compressible than smaller ones. The compression factor4 using bzip compression
for samples 1 and 30 is 0.25 and 0.33 respectively, which is in total agreement with
sample 1 having more redundancy than sample 30. Equation 4 is a reasonable
approximation considering that in this work L takes into consideration punctuation

4The compression factor is defined in this work as the size after compression over the size
before compression.
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Table 4: Entropy Rate and Redundancy
Sample NZ HNZ HL R(%)

1 13.23 18.47 1.40 78.99
2 11.23 16.91 1.51 77.80
3 10.92 16.67 1.53 76.38
4 10.82 16.53 1.53 76.54
5 10.10 16.36 1.62 76.43
6 10.22 16.28 1.59 75.08
7 11.54 15.91 1.38 78.92
8 10.60 15.95 1.50 76.46
9 9.90 16.05 1.62 74.49
10 9.48 15.93 1.68 74.31
11 10.14 15.61 1.54 76.16
12 9.31 15.73 1.69 73.92
13 9.64 15.64 1.62 74.47
14 9.92 15.46 1.56 75.94
15 9.49 15.50 1.63 74.64
16 9.55 15.36 1.61 75.28
17 9.79 15.30 1.56 75.98
18 9.44 15.37 1.63 74.86
19 9.81 15.23 1.55 75.36
20 9.11 15.19 1.67 74.32
21 9.01 15.14 1.68 73.85
22 9.60 14.90 1.55 75.98
23 9.06 14.96 1.65 74.12
24 8.47 14.99 1.77 71.77
25 8.48 14.94 1.76 72.66
26 8.72 14.89 1.71 72.58
27 8.58 14.93 1.74 72.61
28 8.71 14.53 1.67 73.14
29 9.01 14.40 1.60 74.93
30 8.05 14.10 1.75 72.38

marks. Figure 9 is intended to illustrate that as a sample has a higher WDR, there
is a tendency to the equipartition of the sample space, increasing thus HL.

Figure 9: Illustration of Word Dispersion Ratio over word space: a) Lower WDR. b)
Higher WDR.

The twenty-second version of the Dictionary of the Royal Academy of the
Spanish Language (DRAS) has 88,431 lemmas (entries) with 161,962 definitions
(i.e., meanings for the words according to the context in which they appear). If
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compared to the total number of lemmas of the DRAS, the works analyzed in this
work use a relatively small number of words. For instance, literature’s Nobel Prize
winner Gabriel García Márquez in his masterpiece, Cien Años de Soledad, used
around sixteen thousand different words. Because the vocabulary at the end is
finite, the WDR for larger texts has to be, in general, smaller.

Finally, when concatenating the whole set of thirty samples to form one larger
sample (22.9 million characters) the results were: α = 4.491 letter/word, HL =
1.496 bits/character, and R = 78.92%. The computing time (shift = 0) was thirty
four minutes.

Many other samples of Spanish can be analyzed (for instance, science, sports,
etc.) but Table 4 should give a good indication of what to expect in terms of the
entropy for ordinary samples of written Spanish. However, as Table 4 also shows,
finding an exact value for the entropy of Spanish is an elusive goal. We can only
make estimations of entropy for particular text samples. The usefulness of the
method presented here lies on its ability to provide a direct entropy estimation of
a particular text sample.

4.5. Character Equiprobability Distance

We define the character equiprobability distance of a text sample, naep, as the
value of n such that for any n ≥ naep, all n-length symbols in the sample become
equiprobable for all shifts of n. This means,

H = log2

⌊
(Total number of characters)− shift

n

⌋
for all n ≥ naep. This definition demands symbol equiprobability for all shifts for
every n ≥ naep, in other words, every substring of length n ≥ naep only appears
once, not matter its position in the text.

Table 5 shows the values of naep evaluated from n = 1 to 500 characters and
2naepHL , the number of typical sequences of length naep characters. Plagiarism
detection tools should take into account the value of naep, because for sequences
shorter than naep characters, it is more likely to find similar substrings of text
due to the natural restriction imposed by the statistical structure of the language.
Large values of naep in Table 5 were found to be related to some text reuse such
as, for instance, sample 2 where some partial news are repeated as part of a larger
updated news report. As it is observed, the number of typical sequences is of
considerable size despite the apparently small number of characters involved.

5. Conclusions

The evidence analyzed in this work shows that the joint probability distribution
of Spanish does not change with position in time (origin shift invariance). Due to
this property the method for finding the entropy of a sample of Spanish presented
in this work is simple and computing time efficient. Both, a redundancy of 76.5%
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Table 5: Equiprobable Distance (1 ≤ n ≤ 500)
Sample naep 2naepHL

1 412 4.31E+173
2 452 2.88E+205
3 93 6.82E+042
4 53 2.57E+024
5 356 4.07E+173
6 124 2.24E+059
7 101 9.07E+041
8 76 2.08E+034
9 36 3.60E+017

10 116 4.62E+058
11 39 1.20E+018
12 255 5.36E+129
13 189 1.48E+092
14 84 2.80E+039
15 50 3.42E+024
16 61 3.67E+029
17 118 2.59E+055
18 208 1.15E+102
19 37 1.84E+017
20 43 4.14E+021
21 453 1.25E+229
22 69 1.57E+032
23 43 2.28E+021
24 29 2.83E+015
25 55 1.38E+029
26 38 3.64E+019
27 27 1.39E+014
28 32 1.22E+016
29 50 1.21E+024
30 43 4.49E+022

and a rate entropy of 1.54 bits/character were found for the sample set analyzed.
A value of 2.23 bits/character was found for FW . In general, lower values of
WDR were observed for longer samples leading to higher values of redundancy,
just in accordance with Zipf’s law. Evidence also shows that, for every day texts
of the Spanish language, p(Bi) is not an asymptotically increasing function of n
and the highest moment of uncertainty in a sample occurs for a relatively small
value of n. Considering n-word symbols, Hmax was found at a value of four or
less words. When considering n-character symbols, H max was found at a value
of fourteen or less characters. An averaged value of naep close to 125 characters
can be a good indication of how constrained we are by the statistical structure
of the language. The probability of the r-th most frequent word in Spanish is
approximately 0.08/r. If compared to the constant of English, 0.1/r, it can be
concluded that the total probability of words in Spanish is spread among more
words than in English. There is a clear indication of the relation between a text’s
dictionary size (number of different words) and HL. In general, a text with a
larger dictionary size causes HL to increase. Texts with small word dictionaries
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compared to the length of the text in characters have smaller HL and thus should
be more compressible. Since reverse entropy analysis produced exactly the same
values as forward entropy, for prediction purposes the amount of uncertainty when
predicting a text backwards is, despite being apparently more difficult, the same
as predicting the text forwards. Finally, despite the fact that the basic statistical
properties are similar regardless of the text sample analyzed, since entropy depends
solely on probability distribution, every text of Spanish will exhibit its own value
of entropy, thus making it difficult to talk about the entropy of Spanish.

Acknowledgment

The author would like to thank Ms. Ana Mengotti, edition board director of
the EFE press agency in Bogota (Colombia), for the news archive provided for this
research. Also thanks to the anonymous reviewers for their helpful comments.[

Recibido: noviembre de 2011 — Aceptado: septiembre de 2012
]

References

Alameda, J. & Cuetos, F. (1995), ‘Diccionario de las unidades lingüísticas del
castellano, Volumen II: Orden por frecuencias’.
*http://www.uhu.es/jose.alameda

Barnard III, G. (1955), ‘Statistical calculation of word entropies for four Western
languages’, IEEE Transactions on Information Theory 1, 49–53.

Cover, T. & King, R. (1978), ‘A convergent gambling estimate of the entropy of
English’, IEEE Transactions on Information Theory IT-24(6), 413–421.

Crutchfield, J. & Feldman, D. (2003), ‘Regularities unseen, randomness observed:
Levels of entropy convergence’, Chaos 13(6), 25–54.

Debowski, L. (2011), ‘Excess entropy in natural language: Present state and per-
spectives’, Chaos 21(3).

Kaltchenko, A. & Laurier, W. (2004), ‘Algorithms for estimating information dis-
tance with applications to bioinformatics and linguistics’, Canadian Confer-
ence Electrical and Computer Engineering .

Marchesi, A. (2007), ‘Spanish language, science and diplomacy (In Spanish)’. In-
ternational Congress of the Spanish Language, Cartagena.
*http://corpus.canterbury.ac.nz

Michel, J., Shen, Y. K., Aiden, A., Veres, A., Gray, M., Team, T. G. B., Pickett,
J., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M. &
Aiden, E. (2011), ‘Quantitative analysis of culture using millions of digitized
books’, Science 331, 176–182.

Revista Colombiana de Estadística 35 (2012) 425–442



442 Fabio G. Guerrero

Shannon, C. E. (1948), ‘A mathematical theory of communication’, Bell System
Technical Journal 27, 379–423.

Shannon, C. E. (1951), ‘Prediction and entropy of printed English’, Bell System
Technical Journal 30, 47–51.

Slepian, D. (1976), ‘On bandwidth’, Proceedings of the IEEE 34(3).

Teahan, W. & Cleary, J. (1996), ‘The entropy of English using PPM-based models’,
Data Compression Conference pp. 53–62.

Wyner, A., Jacob, Z. & Wyner, A. (1998), ‘On the role of pattern matching in
information theory’, IEEE Transactions on Information Theory 44(6), 2045–
2056.

Zipf, G. K. (1965), The Psycho-Biology of Language: An Introduction to Dynamic
Philology, Second Edition, The MIT Press.

Revista Colombiana de Estadística 35 (2012) 425–442


	Introduction
	Methodology
	Results
	Entropy Values Considering Words
	Entropy Values Considering n-Character Symbols
	Processing Time
	Reverse Entropy

	Discussion
	Frequency of Symbols and Entropy
	Log-log Plots and the Spanish Language Constant
	Conditional Entropy
	Entropy Rate and Redundancy
	Character Equiprobability Distance

	Conclusions

