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Abstract

In this paper we present an application of random regression models
(RRM) to obtain restricted maximum likelihood estimates of covariance
functions and predictions of breeding values for longitudinal records of rib
eye area measured by ultrasound (REA) in a Colombian multibreed cattle
population. The dataset contained 708 records from 340 calves progeny of 37
sires from nine breeds mated to Gray Brahman Cows. The mixed model was
a RRM that used Legendre polynomials (LP) of order 1 to 3. Fixed effects
were age of animal, dam parity, contemporary group (herd*year*season*sex),
breed additive genetic and heterosis, whereas direct and maternal additive
genetic and maternal permanent environment were random effects. Residual
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variances were modeled either as constant or changing across the growth tra-
jectory. Models were compared with two Information Criteria, the corrected
Akaike’s and the Schwartz’s Bayesian. According to these criteria the best
model was the one with first order LP and constant residual variance. Given
that with this model estimated maternal additive genetic and permanent
environment covariance functions showed that these effects were not accu-
rately disentangled, a parsimonious model without maternal additive genetic
effects was used to obtain genetic parameters and breeding values. Direct
additive genetic variance decreased until 150 days and then increased. Mater-
nal permanent environment variance increased with age. Direct heritability
estimates for REA at 4 months, weaning, 12 and 15 months (considered as
target ages), were 0.003, 0.007, 0.034 and 0.058, respectively. Direct addi-
tive correlations ranged from −0.7 to 1. Maternal permanent environmental
correlations were close to unity across the entire range of ages. Estimates
of (co)variance components showed the need to validate results with larger
multigenerational multibreed populations before implement RRM in regional
or national genetic evaluation procedures in Colombia.

Key words: Animal population, Covariance functions, Mixed model.

Resumen

En este trabajo presentamos una aplicación de modelos de regresión
aleatoria (RRM) para obtener estimadores de máxima verosimilitud restrin-
gida de funciones de covarianza y predicciones del valor genético para datos
longitudinales de área de ojo del lomo medidos por ultrasonido (REA) en una
población bovina multirracial en Colombia. El conjunto de datos contenía
708 registros de 340 animales descendientes de 37 toros de 9 razas apareados
con hembras Brahman Gris. Los modelos mixtos empleados fueron RRM que
usaron polinomios de Legendre (LP) de orden 1 a 3. Los efectos fijos fueron
edad del animal, número de partos de la madre, grupo contemporáneo (ha-
cienda*año*época*sexo), efectos genéticos aditivos de raza y heterosis, mien-
tras que los efectos genéticos aditivos directos y maternos y de ambiente per-
manente materno fueron aleatorios. Las varianzas residuales se modelaron
como constantes o cambiantes a través de la trayectoria de crecimiento. Los
modelos fueron comparados mediante el criterio de información de Akaike
corregido y el de información bayesiana de Schwartz. Según esos criterios,
el mejor modelo fue aquel con LP de orden 1 y varianza residual constante.
Dado que con este modelo las estimaciones de las funciones de covarianza
genética aditiva materna y de ambiente permanente materno indicaron que
estos dos efectos no se separaron adecuadamente, un modelo más parsimo-
nioso sin los efectos genéticos aditivos maternos fue empleado para obtener
parámetros y valores genéticos. La varianza genética aditiva directa decre-
ció hasta 150 días y luego aumentó. La varianza de ambiente permanente
materno aumentó con la edad. Las estimaciones de heredabilidad directa
para REA a los 4 meses, destete, 12 y 15 meses (consideradas como edades de
referencia) fueron 0.003, 0.007, 0.034 y 0.058, respectivamente. Las correla-
ciones aditivas directas variaron de −0.7 a 1. Las correlaciones de ambiente
permanente materno fueron cercanas a la unidad a través de todo el rango
de edades. Las estimaciones de componentes de (co)varianza mostraron la
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necesidad de validar los resultados con poblaciones multirraciales multigen-
eracionales mayores antes de implementar RRM en procedimientos de eval-
uación genética regionales o nacionales en Colombia.

Palabras clave: modelo mixto, funciones de covarianza, población animal.

1. Introduction

Modeling of longitudinal records with Legendre polynomials (LP) was proposed
by Kirkpatrick, Lofsvold & Bulmer (1990) to describe direct additive genetic co-
variances among records at any pair of ages in a continuous form. The LP are
solutions to the Legendre’s differential equation and they are orthogonal. This
property allows describing patterns of genetic variation through a growth tra-
jectory. Continuous functions representing covariances among records are called
covariance functions (Kirkpatrick et al. 1990). Meyer (1998) suggested that coef-
ficients of covariance functions could be estimated as covariances among random
regression coefficients by fitting linear mixed models. Advantages of random re-
gression over multiple trait models (MTM) involve the inclusion of all available
data without pre-adjustment to particular ages, no lose of records taken outside
certain age ranges, and reduction in the number of parameters to be estimated by
fitting parsimonious models (Kirkpatrick et al. 1990, Meyer & Hill 1997). Until
today, these models have not been implemented for genetic analysis in Colombia.
Carcass quality is important in the current beef market. Thus, there exists great
interest in carcass traits measured by ultrasound like the rib eye area (REA), be-
cause they are closely related to the true carcass values and meat yields (Hougton
& Turlington 1992). Genetic evaluation of carcass traits has been implemented in
animal breeding programs in different countries and species (Wilson 1992, Hassen,
Wilson & Rouse 2003, Fischer, van der Werf, Banks, Ball & Gilmour 2006, Choy,
Lee, Kim, Choi, Choi & Hwang 2008). However, few genetic studies have con-
sidered ultrasound carcass traits in a longitudinal manner either in purebred or
crossbred cattle (Fischer et al. 2006, Speidel, Enns, Brigham & Keeman 2007, Mer-
cadante, El Faro, Pinheiro, Cyrillo, Bonilha & Branco 2010). Jiménez, Manrique
& Martínez (2010) conducted the only study in Colombia on ultrasound carcass
traits in cattle under pasture conditions using purebred Brahman. In low trop-
ical areas of Colombia, there are limiting environmental conditions for livestock
production. Consequently, crossbreeding between native Creole or European (Bos
taurus) with Zebu (Bos indicus) breeds is frequently used as a strategy to in-
crease beef production while maintaining adaptability (FEDEGAN 2006). This
mating strategy has created a need to establish genetic evaluation programs in-
volving animals from temperate and tropically adapted breeds for carcass traits.
These programs must take into consideration that 72% of the Colombia’s cattle
population is Zebu (mainly Brahman) (FEDEGAN 2006). Thus, the objective of
this research was to show how to apply the RRM to obtain restricted maximum
likelihood estimates of covariance functions and predictions of breeding values for
longitudinal records of rib eye area measured by ultrasound (REA) in a Colombian
multibreed cattle population.
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2. Materials and Methods

All of the practices involving manipulation of animals that were performed to
obtain records in this research were approved by the Animal Bio-ethics Committee
of the National University of Colombia (Approval letter number: CBE-FMVZ-012,
July, 2010).

2.1. Breeds, Matings and Animal’s Management

To construct the multibreed population, 37 bulls from 9 breeds were mated
to third-parity Gray Brahman (GB) cows and heifers. Sire breeds were Gray
Brahman (GB; n = 12), Red Brahman (RB; n = 4), Guzerat (GUZ; n = 3),
Romosinuano (ROM; n = 3), Blanco Orejinegro (BON; n = 3), Simmental (SIM;
n = 3), Braunvieh (BVH; n = 3), Normand (NOR; n = 3) and Limousin (LIM;
n = 3). These Bos taurus breeds (Creole and temperate) were chosen because
they are frequently used for crossbreeding programs with zebu cattle in Colombia’s
low tropical beef production systems. Brahman was included because it has the
largest cattle population in the country (Jiménez et al. 2010), and GUZ is a Bos
indicus breed with increasingly higher representation in Colombia that has not
been studied as a single breed or in crosses with Brahman. Females were chosen
on the basis of a normal reproductive cycle and a healthy reproductive system.
Subsequently, cows and heifers were randomly allocated to males, and artificially
inseminated using a fixed-time protocol. Firstly, females received a progesterone
implant (CIDR, Pfizer, NY, USA) and 2 mg of estradiol benzoate. Eight days later,
the CIDR implants were removed, and 1 cm3 of F2 α prostaglandin (Estrumate,
Schering Plough S.A., Kenilworth, NJ, USA) was applied, followed by an injection
of 1 mg of estradiol benzoate 24 hours later. Females were artificially inseminated
54 hours after progesterone implant removal. Calves were born in 2008 and 2009.
Table 1 shows the number of sires per breed and the number of calves per breed
group by year and total.

Table 1: Number of sires per breed and number of calves per breed group by year of
birth.
Sire breed Number of sires Calf breed group Number of calves

2008 2009 Total
BON 3 BON X GB 21 12 33
BVH 3 BVH X GB 13 8 21
GB 12 BG X GB 63 34 97
GUZ 3 GUZ X GB 18 9 27
LIM 3 LIM X GB 20 13 33
NOR 3 NOR X GB 22 14 36
RB 4 BR X GB 26 8 34
ROM 3 ROM X GB 18 10 28
SIM 3 SIM X GB 21 10 31
Total 37 222 118 340
BON = Blanco Orejinegro; BVH = Braunvieh; GB = Gray Brahman;
GUZ = Guzerat; LIM = Limousin; NOR = Normand;
RB = Red Brahman; ROM = Romosinuano; SIM = Simmental.

Revista Colombiana de Estadística 35 (2012) 309–330



Random regression models for genetic longitudinal data 313

Animals were kept in two herds located in Southern Cesar, municipality of
Aguachica, Colombia. The ecosystem in this micro region is a very dry tropical
forest. This region has a mean annual temperature of 28 ℃, a height above sea level
of 50 m, a relative humidity of 80% and sandy-loam soils. Because of its environ-
mental conditions, Southern Cesar is considered to be better suited for beef cattle
production than other regions in Colombia. The feeding system was based on pas-
tures. Grass species were Brachipará (Brachiaria plantaginea), Guinea (Panicum
máximum) and Angleton (Dichantium aristatum). Pastures were not fertilized.
Animals were provided with an 8% phosphorus mineral supplement (GANASAL®,
Colombia). Mineral supplement consumption was ad libitum. The grazing system
was rotational with a rotation period of 60 days. All calves were weaned between
7 and 8 months of age and males were castrated at 12 months of age.

2.2. Records

The REA records were taken by a certified technician of the Colombian Zebu
Cattle Breeders Association (ASOCEBU, Bogotá D.C., Colombia) using an Aquila
Esaote model device (Pie Medical Equipment B.V., Maastricht, Limburg, The
Netherlands). Once ultrasound images were collected, they were analyzed to check
quality and to obtain the REA values (cm2) using the Echo Image Viewer software
of Pie Medical (Pie Medical Equipment B.V., Maastricht, Limburg, The Nether-
lands). The total number of REA records was 708. Age of animals ranged from
70 to 492 days. Records were intended to be taken approximately at four, eight
(weaning), twelve and fifteen months. Mean ages at each of these data collection
points were: 120, 233, 332 and 445 days. At 4 months of age, calves are more
dependent on the cow’s milk production that at weaning. This is due to the fact
that at this stage the calf has not finished its transition from pre-ruminant to ru-
minant (Van Soest 1994). Thus, REA measurements taken at this age are useful
to evaluate maternal effects (both genetic and non genetic).

2.3. Genetic Analysis

Mixed models procedures were carried out to obtain restricted maximum likeli-
hood (REML) estimates of covariance components and best linear unbiased predic-
tors (BLUP) of animal breeding values (BV). The following effects were assumed
to be fixed in the mixed model: Contemporary group (herd*year*season*sex sub-
class), breed group additive effects, non additive effects (individual heterosis), dam
parity (heifer or third parity cow) and age of the animal (linear and quadratic
effects). In a first approach, the random effects were: Direct additive genetic, ma-
ternal additive genetic, maternal permanent environment, and residual. Seasons
within years were defined as rainy or dry. The first season was a rainy season from
mid April to mid August of 2009, the second was a dry season from mid August to
mid December of 2009, the third was a dry season from mid December of 2009 to
mid April of 2010, and the fourth was a rainy season from mid April to mid August
of 2010. The GB and RB bulls were grouped as a single breed (BR). Thus, there
were 8 breed groups for calves: BR x GB, BON X GB, BVH X GB, GUZ X GB,
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LIM X GB, NOR X GB, ROM X GB and SIM X GB. Breed group effects were
modeled as a continuous function of breeds over time. This function was a linear
LP. Additive genetic breed group effects were modeled in such a way because indi-
vidual random deviations and breed group solutions are required to obtain BV at
a particular age in a multibreed population (Elzo & Wakeman 1998). In addition,
because of the orthogonality of LP, the block of the mixed model equations corre-
sponding to breed group effects was an identity matrix, thus, multicollinearity and
confounding problems that are commonly present among genetic fixed effects in
multibreed populations (Elzo & Famula 1985) could be alleviated at least partially.
To estimate covariance functions (CF) for the following effects: Direct additive
genetic (DAGCF), maternal additive genetic (MAGCF) and maternal permanent
environment (MPECF) and to compute BV, the regression variables used were
normalized LP (LP with norm 1), evaluated at age of animal when records were
collected. Orders of LP ranged from 1 to 3. The following combinations of LP to
describe direct additive, maternal additive and maternal permanent environment
CF were used: one (LP1), 2(LP2) and 3(LP3) for the 3 covariance components,
and 3 for direct additive genetic covariances and 2 for maternal additive genetic
and permanent environment covariances (LP32). The orders of LP were defined
taking into account data set size and literature reports (Fischer et al. 2006, Mer-
cadante et al. 2010). The residual variance was modeled in two ways. The first one
assumed that the residual variance was the same along the entire growth trajec-
tory (LP1HOM, LP2HOM, LP3HOM, LP32HOM), and the second one assumed
a step function (LP1HET, LP2HET, LP3HET, LP32HET) across 3 age intervals
(70 ≤ age ≤ 230 days, 230 < age ≤ 365 days, and 365 < age ≤ 492 days). Resid-
uals were assumed to be independent and normally distributed. Thus, there were
a total of 8 random regression models to compare: LP1HET, LP2HET, LP3HET,
LP32HET, LP1HOM, LP2HOM, LP3HOM, and LP32HOM. Models comparison
was made through the Schwartz’s Bayesian Information Criterion (BIC) and the
Corrected Akaike’s Information Criterion (AICC):

BIC = −2 logL+K log(N − r)

AICC = AIC +
(2(K + 1)(K + 2))

(N −K − 2)

Where AIC is the Akaike’s information criterion, K is the number of param-
eters, N is the number of records, logL is the natural logarithm of the likelihood
function and r is the rank of the fixed part of the model, that is, the rank of the
incidence matrix for all fixed effects in the model. The AICC was preferred over
the AIC in our study because of the small data set size, which is suggested by
Littell, Milliken, Stroup, Wolfinger & Schabenberger (2006). However, estimated
covariance functions showed a strong negative correlation among maternal addi-
tive genetic and maternal environmental effects, which indicated that these effects
were not accurately separated. Thus, a parsimonious version of the model selected
in the first approach (LP1HOM) considering only maternal permanent environ-
mental effects and denoted as LP1HOMS was used to compute variance-covariance
components, genetic parameters and BV. The number of variance-covariance pa-
rameters ranged from 7 for the most parsimonious model (LP1HOMS) to 33 for
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model LP4HET (Table 2). In matrix notation the RRM used was as follows:

y = Xβ +Qgaga +Qhh+ Φaa+ Φpp+ e

V ar

ap
e

 =

A⊗Ka

I ⊗Kp

R


E[y] = Xβ +Qgaga +Qhh

V ar(y) = Φa(A⊗Ka)Φ′a + Φp(I ⊗Kp)Φ
′
p +R

Table 2: Akaike’s corrected information criterion (AICC), Schwartz’s Bayesian infor-
mation criterion (BIC), residual analysis and number of parameters for each
model.

Model AICC BIC Number of variance covariance parameters Log L1

LP1HET 3394.74 3448.66 12 −1685.15
LP2HET 3412.64 3506.42 21 −1684.65
LP3HET 3435.54 3581.68 33 −1683.10
LP32HET 3426.62 3555.42 29 −1683.03
LP1HOM 3392.82 3437.8 10 −1686.25
LP2HOM 3410.66 3495.62 19 −1685.78
LP3HOM 3508.34 3645.82 31 −1721.70
LP32HOM 3426.66 3546.72 27 −1685.22
LP1HOMS 3386.66 3418.21 7 −1686.25
1Natural logarithm of the restricted likelihood function.

Where y = vector containing the REA records, β = vector of unknown fixed
effects of contemporary group, dam parity and age of animal, ga = vector of
fixed additive genetic group effects (modeled as a continuous function of time)
which correspond to the mean effects of genes from a given breed (Elzo 2010),
h = vector of fixed non additive genetic effects (individual heterosis) these are
the effects due to the presence of alleles from different breeds in one locus (Elzo
2010), a = vector of random regression coefficients for direct additive genetic
effects, which are the sum of effects of individual genes affecting REA (Kempthorne
1957, Lynch & Walsh 1998), p = vector containing random regression coefficients
for maternal permanent environmental effects, which correspond to those effects
explained by the environment proportioned to the calf by its dam, maternal effects
are genetic to the dam and environmental to the calf, e = random vector of
residuals, X, Qga, Qh, Φa, Φp were known incidence matrices respectively relating
vectors β, ga, h, a, p to REA records and super index “ ′” denotes transposition.
Columns in X relating records to fixed effects of age contained second order LP
evaluated at each age; columns for the other fixed effects contained zeroes and ones.
Matrix Qga contained linear LP evaluated at the expected fraction of each breed
in an animal times the age of the animal, and matrix Qh contained probabilities of
alleles of different breeds occurring at one locus in an animal (Elzo & Famula 1985)
and it was calculated as: HI = 1 −

∑b
i=1(Rp × Rm)i, where Rp and Rm are the

expected fractions of each breed in sire and dam of the animal and b is the number
of breeds, matrices Φa, Φm and Φp contained LP evaluated at the ages of the
animals when records were taken (Meyer 1998); matrices Ka and Kp contained the
coefficients for additive genetic, and maternal permanent environmental covariance

Revista Colombiana de Estadística 35 (2012) 309–330



316 Carlos Alberto Martínez, et al.

functions, A was the additive relationship matrix, ⊗ represents the Kronecker
product, and R was the residual covariance matrix which had the form R = Iσ2

e .
The mixed models analyses were performed with software WOMBAT (Meyer 2007)
using an average information (AI) algorithm. Different starting values were used
to ensure that estimates corresponded to global maximums. Convergence was
declared when change of value of the natural logarithm of the restricted likelihood
function in two consecutive iterations was lower than 5×10−4. Model effects were
estimated by solving the mixed model equations:


X′R−1X X′R−1Qga X′R−1Qn X′R−1Φa X′R−1Φp

Q′gaR
−1Qga Q

′
gaR
−1Qn Q′gaR

−1Φa Q′gaR
−1Φp

Q′nR
−1Qn Q′nR

−1Φa Q′nR
−1Φp

Φ′aR
−1Φa + A−1 ⊗K−1

a Φ′aR
−1Φp

Symmetric Φ′pR
−1Φp + I ⊗K−1

p



β

ga
h

a

p

 =


X′R−1y

Q′gaR
−1y

Q′nR
−1y

Φ′aR
−1y

Φ′pR
−1y



The eigenfunctions (EF) of a CF are continuous smooth functions representing
a possible deformation in the mean growth trajectory (Kirkpatrick et al. 1990).
Thus, the EF were calculated to study variation patterns throughout the REA
growth curve. Each EF has a correspondent eigenvalue. Only EF whose eigen-
values together explained at least 80% of the respective variance component were
computed. The EF were computed for direct additive genetic CF from eigenvectors
of Ka matrix as:

ψi(t) =< cψi , φt∗ >

where cψi is the ith eigenvector of the matrix Ka and φt∗ is a vector with LP
evaluated at t∗ (age t standardized to the real interval [−1, 1]) and the operator
< ·, · > represents the internal or dot product between vectors. The age t was stan-
dardized to the real interval [−1, 1] by using the following expression (Kirkpatrick
et al. 1990):

t∗ =
2(t− tmin)

tmax − tmin
− 1

where tmin and tmax are the minimum and maximum ages at which records were
taken. Matrices of covariance components for additive direct genetic effects and
maternal permanent environmental effects as well as BV for REA at 4 target ages
were obtained using the REML estimates of covariance matrices among random
regression coefficients obtained at convergence which are equal to the coefficient
matrices of corresponding CF (Meyer 1998). Target ages were 120, 230, 365 and
450 days, and the corresponding REA values were denoted as REA4, REAW,
REAY and REAF.

Covariance matrices for REA at target ages were computed using the CF which
were obtained as the product of a matrix containing LP evaluated at those ages
(Φ), the correspondent coefficients matrix (Ka for direct additive covariance, and
Kp for maternal permanent environmental covariance) and the transpose of matrix
Φ (Kirkpatrick et al. 1990, Meyer 1998):

covj = ΦKjΦ
′
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where, Covj is the covariance matrix for the jth covariance component (additive
genetic or maternal permanent environment). The matrix Φ was obtained as the
product of two matrices. The first is matrix M = (mij)dxk = t∗j−1i , where t∗i
is the ith age standardized to the real interval [−1, 1], d is the number of ages
considered (4 in this case) and k − 1 is the order of the LP. The second matrix
was Λk×k, which contained the coefficients of the LP. Thus, Φ = MΛ (Kirkpatrick
et al. 1990). Consequently,

Covj = ΦKjΦ
′ = MΛKjΛ

′M ′ = MCjM
′, where Cj = ΛKjΛ

′

By using matrix Cj instead of matrix Kj for representing the jth CF, covj is
calculated directly as a function of the age standardized to the interval [−1, 1] (i.e.,
t∗). This equivalent form was used to compute critical points of CF. The extremes
of the CF were also assessed in order to detect the global maximum and minimum
values of each CF.

The BV were computed for REA4, REAW, REAY and REAF for all individuals
in the population (sires, dams, and offspring). The additive breeding value for
animal i at age t (BVit) was computed by adding two terms. The first term was a
weighted sum of probabilities of alleles of breed b in animal i times the generalized
least squares estimate of breed b (deviated from BR) at time t, b = 1, 2, . . . , 7. The
second term was the BLUP of the random solution for each individual. This value
was computed as the internal (or dot) product between a vector containing LP
evaluated at age t and a vector whose entries were the BLUP for random regression
coefficients of animal i. Thus, BVit was computed as:

BVit =< φbt, ĝa > + < φt, âi >

where φbt is a vector of LP evaluated at the product of the fraction of breed b
(b = 1, 2, . . . , 7) in animal i times calf age t standardized to real interval [−1, 1], ĝa
is the generalized least squares solution of the fixed coefficient for breed additive
genetic effects, φt is a vector of LP evaluated at calf age t standardized at real
interval [−1, 1], and âi is the BLUP vector of the random coefficients for animal i.

3. Results

3.1. Model Selection

As stated before, estimated covariance functions, covariance components, ge-
netic parameters and breeding values were computed using model LP1HOMS.
Although this model was selected given the evidence of correlation among mater-
nal additive genetic and environmental effects, according to AICC and BIC values,
this was the best model since it had the smallest AICC and BIC values (Table 2).
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3.2. REML Estimates of Covariance Functions
and Covariance Components

Direct additive genetic (DAGC) and maternal permanent environment (MPEC)
covariances between pairs of ages t1 and t2 such that 70 ≤ t1, t2 ≤ 492, were de-
scribed by the following CF (DAGCF, and MPECF, respectively) obtained with
model LP1HOMS using covj = ΦKjΦ

′:

DAGC(t1, t2) =
[
φ0(t∗1) φ1(t∗1)

] [1.5900 1.2435

1.2435 1.1589

] [
φ0(t∗2)

φ1(t∗2)

]
MPEC(t1, t2) =

[
φ0(t∗1) φ1(t∗1)

] [53.482 4.5003

4.5003 0.3787

] [
φ0(t∗2)

φ1(t∗2)

]
where t∗i is the ith age standardized in the real interval [−1, 1], and φj(t∗i ), j = 0, 1,
is the jth LP evaluated at ith age. The equivalent forms of these 2 CF, using
covj = MCjM

′, were as follows:

DAGC(t1, t2) =
[
1 t∗1

] [0.7950 1.0769

1.0769 1.7382

] [
1

t∗2

]
MPEC(t1, t2) =

[
1 t∗1

] [26.7405 3.8972

3.8972 0.5680

] [
1

t∗2

]
These functions are defined (domain) for the following set: D = [70, 492] ×

[70, 492]. The partial derivatives were:

∂CFj
∂t∗1

= c12 + c22t
∗
2;

∂CFj
∂t∗2

= c12 + c22t
∗
1

where cij is the (i − j)th entry of the matrix C and CFj is the jth CF (j =
DAGCF or MPECF), and t∗i are standardized calf ages at [−1, 1]. By equating
these expressions to zero yielded that the critical arguments of the CF were −c12

c22

for both t∗1 and t∗2 (because the 2 CF were symmetric).
To determine if the critical points obtained from the last expression were

maximums, minimums or saddle points the determinant of the Hessian matrix
was computed. Because these functions are polynomials, the Clairaut’s theorem
(Stewart 2008) applies making the Hessian matrix to be symmetric. This matrix
was:

H =

 ∂2CFj
∂t∗21

∂2CFj
∂t∗1∂t

∗
2

∂2CFj
∂t∗2∂t

∗
1

∂2CFj
∂t∗22

 =

[
0 c22
c22 0

]

Thus: |H| = −(c222), and the critical point is a saddle point. Variance functions
(VF) are special cases of CF when t∗1 = t∗2. Because there is a single age, VF are
univariate. Critical points computed for CF and VF could be outside the range of
calf ages (i.e., outside their domain). If this happens, these critical points should
be ignored because in regression analysis values outside the domain (range of calf
ages) would have no valid interpretation (Draper & Smith 1981).
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The DAGCF had a saddle point located at 150 days. Thus, covariances before
150 days tended to decrease with age. After 150 days, the pattern was more
complex. Covariances among ages lower than 150 days and ages greater than 150
days tended to decrease as distance among them increased (Figure 1). On the
other hand, covariances among ages greater than 150 days tended to increase as
the animals grew older. The MPECF was positive throughout the entire domain
(Figure 1). The minimum value of MPECF (19.51 cm4) was located at coordinates
(in days): (70, 70) while the maximum (35.10 cm4) was located at (492, 492). The
analysis of derivatives showed that MPECF had a critical point outside the range of
calf ages in this study. As indicated before, VF are special cases of CF, because by
definition they are the covariance of a random variable with itself. Consequently,
the diagonals of the CF correspond to VF. According to the analysis of first and
second derivatives of the direct additive genetic variance function, direct additive
genetic variance (DAGV) had a global minimum located at 150 days (0.13 cm4).
The largest value of DAGV was 4.69 cm4 at 492 days. As shown in Table 3 for
the target ages, DAV was 0.16 for REA4, 0.38 for REAW, 1.93 for REAY and
3.64 cm4 for REAF. The DAGC were negative for REA4-REAY (−0.13 cm4) and
REA4-REAF (−0.23 cm4) and the biggest covariance value was among REAY and
REAF (2.64 cm4). For the target ages, maternal permanent environment variance
(MPEV) ranged from 21.12 (REA4) to 33.35 cm4 (REAF). MPEC had its lowest
value (22.93 cm4) among REA4 and REAW and the largest (31.60 cm4) for REAY-
REAF (Table 3). Considering the entire range of ages, MPEV had its maximum
value at 492 days (35.10 cm4) and the minimum (19.51 cm4) at 70 days.

Figure 1: Plots of direct additive genetic (DAGC (cm4); left), and maternal permanent
environment (MPEC (cm4); right) covariances.

REML estimate of residual variance was 25.55 cm4. Because phenotypic vari-
ance (PhV) is the sum of genetic and environmental variance components, it also
increased as animals grew older. Its minimum value was 45.45 cm4 at 70 days and
its maximum was 65.35 cm4 at 492 days. Plots of DAGV and MPEV are shown
in Figure 2.

Revista Colombiana de Estadística 35 (2012) 309–330



320 Carlos Alberto Martínez, et al.

100 300

0
1

2
3

4
5

Age (days)

D
AG

V
(K

g^
2)

100 300

0
10

20
30

40

Age(days)

M
P

E
V

(K
g^

2)

100 300

0
1

2
3

4
5

Age(days)

D
AG

V
(K

g^
2)

100 300

0
10

20
30

40

Age (days)

M
P

E
V

(K
g^

2)

Figure 2: Direct additive (DAGV; left), and maternal permanent environmental
(MPEV; right) variances.

Table 3: Estimates of covariance components, (cm4), genetic parameters, and variance
ratios for five target ages.

Pair of traits DAGC MPEC DAGR/Dh1 MPER/MPr2 PhR
REA4,REA4 0.164 21.124 0.003 0.451 1
REA4,REAW 0.033 22.930 0.133 1 0.471
REA4,REAY −0.126 25.146 −0.224 1 0.483
REA4,REAF −0.227 26.542 −0.294 1 0.486
REAW,REAW 0.376 24.890 0.007 0.490 1
REAW,REAY 0.796 27.296 0.935 1 0.520
REAW,REAF 1.061 28.811 0.908 1 0.530
REAY,REAY 1.928 29.934 0.034 0.521 1
REAY,REAF 2.641 31.595 0.998 1 0.571
REAF,REAF 3.635 33.349 0.058 0.533 1
REA4 = rib eye area at 4 months; REAW = rib eye area at weaning (230 days);
REAY = rib eye area at year; REAF = rib eye area at 15 months;
DAGC = direct additive genetic covariance;
MPEC = maternal permanent environmental covariance;
DAGR = direct additive genetic correlation; Dh = direct heritability;
MPER = maternal permanent environmental correlation;
MPr = ratio of maternal permanent environmental variance to phenotypic variance;
PhR = phenotypic correlation.
1When both ages are the same, the value is heritability; when ages are different is a correlation.
2When both ages are the same, the value is the corresponding variances ratio; when ages are
different is a correlation.

3.3. Heritability and Ratio of MPEV to PhV

The direct heritability (the ratio of DAGV to PhV) estimates (Dh), were low
at the entire trajectory. The Dh reached a global minimum at 150 days (0.003)
and its maximum at 492 days (0.072). The estimate of Dh at 70 days was 0.008.
The Dh estimates at the 4 target age points were 0.003 (REA4), 0.007 (REAW),
0.034 (REAY) and 0.058 (REAF) (Table 3). The trend of Dh across the range of
calf ages is shown in Figure 3. The ratio of MPEV to phenotypic variance (MPr)
ranged from 0.43 at 70 days to 0.54 at 492 days. The MPr had an upward trend
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trough the REA trajectory (Figure 3). The MPr estimates for the target ages were
0.45 for REA4, 0.49 for REAW, 0.52 for REAY and 0.53 for REAF (Table 3).
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Figure 3: Graphics of continuous functions describing direct heritability (left), and ra-

tio of maternal permanent environmental variance (MPEV) to phenotypic
variance (PhV) (right).

3.4. Correlations

The estimates of direct additive genetic (DAGR), maternal permanent environ-
ment (MPER) and Phenotypic (PhR) correlations at the 4 target ages are shown
in Table 3. Estimates of DAGR formed a plateau close to unity approximately
after 240 days. The DAGR between REA at 70 days and REA at other ages were
negative after 193 days and had its lowest value at 492 days (−0.71). For target
ages, DAGR estimates ranged from -0.29 among REA4 and REAF to 0.99 among
REAY and REAF (Table 3). The MPER estimates were close to unity throughout
the entire range of ages considered. The PhR estimates were always positive and
ranged from moderate to high. For the 4 selected age points, PhR values ranged
from 0.47 (REA4-REAW) to 0.57 (REAY-REAF).

3.5. Eigenfunctions

The first eigenvalue for DAGCF was 2.64 and it accounted for 95.9% of total
DAGV. Thus, for DAGCF only the first EF (DAGEF1) was computed. The first
eigenvector of the coefficient matrix associated with DAGCF was

(
0.7651 0.6439

)′
,

and the DAGEF1 was:

DAGEF1 = 0.5358 + 0.7991t∗

Figure 4 shows a graph of this function across the entire range of calf ages. The
DAGEF1 was an increasing function, but it was not positive at the entire range
trajectory. The point where this function crossed the age axis was 136 days. The
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behavior of the EF was a consequence of the estimates obtained here for DAGR.
As described previously, there were negative DAGR between early and late calf
ages.
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Figure 4: First eigenfunction of the direct additive genetic (DAGEF1) covariance func-
tion.

3.6. Breeding values

Descriptive statistics for BLUP of BV in general and discriminated by sire breed
are shown in Table 4. Values for sire breeds were obtained using information from
the bulls and the overall values were obtained from BV of all animals. Overall
mean BV were 0.41 for REA4, 0.72 for REAW, 1.26 for REAY and 1.55 cm2 for
REAF. Values presented in Table 4 indicate that on average LIM bulls had the
highest BV for REA. Sires of BVH and NOR breeds had the smallest BV at the
4 target age points. In the Creole cattle group, ROM sires had greater mean BV
than BON sires. Finally, for the Bos indicus breeds, GUZ bulls had the greatest
mean BV.

4. Discussion

4.1. Model Selection

Selection of the most parsimonious model (LP1HOMS) as the best model by
BIC and AICC implies that the larger log likelihood values obtained with other
models was insufficient to counterbalance BIC and AICC penalties due to the
higher number of required parameters. Consequently, the BIC and AICC values
of those other models were larger than the values for model LP1HOMS (Table 2).
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Table 4: Descriptive statistics for breeding values at the selected age points according
to the breed of sire and in general.

Sire breed1 Statistic2 REA4 REAW REAY REAF
BON Min 0.17 0.35 0.53 0.63

Max 0.27 0.56 1.14 1.47
Mean 0.22 0.42 0.76 0.95

BR Min −0.07 −0.17 −0.40 −0.54
Max 0.02 0.22 0.53 0.73
Mean −0.02 0.05 0.13 0.19

BVH Min −0.34 −0.83 −1.61 −2.06
Max −0.30 −0.57 −0.99 −1.21
Mean −0.32 −0.69 −1.26 −1.59

GUZ Min 1.22 2.18 3.73 4.58
Max 1.29 2.37 4.24 5.29
Mean 1.25 2.29 4.03 4.99

LIM Min 4.49 7.32 12.36 15.06
Max 4.56 7.57 12.97 15.91
Mean 4.52 7.48 12.76 15.62

NOR Min −0.09 −0.11 −0.20 −0.30
Max 0.06 −0.03 0.03 0.07
Mean −0.04 −0.07 −0.11 −0.14

ROM Min 1.15 1.86 3.04 3.65
Max 1.25 2.16 3.83 4.76
Mean 1.22 1.98 3.35 4.09

SIM Min 1.17 1.95 3.25 3.95
Max 1.25 2.43 4.42 5.55
Mean 1.20 2.21 3.89 4.83
Min −0.34 −0.83 −1.60 −2.06

Overall Max 4.56 7.57 13.00 15.91
Mean 0.41 0.72 1.26 1.55

BON = Blanco Orejinegro; BR = Brahman (gray and red);
BVH = Braunvieh; GUZ = Guzerat; LIM = Limousin;
NOR = Normand; ROM = Romosinuano; SIM = Simmental;
Min = minimum predicted value; Max = maximum predicted value;
REA4= rib eye area at 4 months; REAW = rib eye area at weaning (230 days);
REAY= rib eye area at year; REAF = rib eye area at 15 months.
1 Descriptive statistics by breed were computed using sires breeding values;
overall: descriptive statistics were constructed using all animals’ breeding values
2 All units in cm2.

The use of heterogeneous error structures was reported for Nellore cattle in
tropical conditions (Mercadante et al. 2010), for crossbred Australian cattle under
pasture and feedlot conditions (Mirzaei, Verbyla & Pitchford 2011), and for lambs
(Fischer et al. 2006). However, heterogeneous error structure models in these
studies were not compared with models fitting a homogeneous residual variance
structure. For Colombian Buffaloes, it was found that a model fitting within ani-
mal homogeneous variance structure described better REA data (Bolívar, Cerón-
Muñoz, Elzo, Ramírez & Agudelo 2011). Meyer (2000), suggested that seasonal
variations could be responsible for the heterogeneity in the measurement error.
Given that the heterogeneous error variance approach did not show a better fit
here, it indicates that environmental factors such as weaning and castration of
bulls were not important sources of environmental variation in this multibreed
population.

The order of LP used to estimate DAGCF was in agreement with the results
found by Mercadante et al. (2010) who compared orders 1, 2 and 3 using AIC
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and BIC as model selection criteria. However, they did not consider LP of order
1 to model random non genetic effects. In that study, orders of LP to model
those effects were either 2 or 3. Mercadante et al. (2010) found that the model
considering the lower orders of fit for both direct additive genetic and permanent
environmental effects was the best 1. The LP of order one were also reported to
be sufficient to explain direct additive genetic effects for weight data in crossbred
cattle cows (Arango, Cundiff & Van Vleck 2004).

Considering the small size of the dataset in this study and that a model with
only 7 parameters that permitted the use of all records was selected, RRM seem
to be a good option to model longitudinal ultrasound data. If a four-trait model
assuming zero covariance between direct and maternal additive effects had been
fitted here, the number of parameters needed would have been 4×(4×(4+1)/2) =
40, which is more than 4 times greater than the number of parameters estimated
with the LP1HOMS model. Even if two-trait models had been utilized, a total of 6
two-trait analysis would have had to be performed to estimate the full covariance
matrix for REA at the 4 target ages. In addition, because each analysis would
be performed separately, there would have been no certainty for the estimated
six-trait covariance matrix to be positive definite.

4.2. REML Estimates of Covariance Functions and
Covariance Components

The direct additive genetic variance function corresponding to the DAGCF
when t1 = t2 (Figure 2) was concave up with a global minimum at 150 days of age.
Thus, the increase in the magnitude of the variance after the minimum point was
always positive and greater as the animals grew older. Among the few literature
reports using RRM to model ultrasound longitudinal data, a smoother pattern for
DAGV (in the age interval 60 to 360 days) was reported for eye muscle depth (a
ultrasonic measure at the same point where REA is taken, but measuring depth
not area) in lambs (Fischer et al. 2006). Although they found that additive genetic
variance did not have great changes, it had a concave up shape. A Nellore cattle
study under pasture and feedlot conditions in a tropical region was conducted by
Mercadante et al. (2010) in Brazil. However they did not discuss the covariance
tendencies. The very low values of DAGV around 150 days here may have been
due to computing artifacts rather than biology. Numerical problems have been
reported for RRM using LP as base functions (Nobre, Misztal, Tsuruta, Bertrand,
Silva & Lopes 2003, Bohmanova, Misztal & Bertrand 2005, Bertrand, Misztal,
Robins, Bohmanova & Tsuruta 2006).

The DAGV did not decrease after weaning but it increased with the calf’s age.
Maternal effects have been found to be important for REA and other ultrasound
traits (Speidel et al. 2007). These results suggested that maternal effects would
need to be considered in models for genetic analysis of postweaning growth traits.
No other literature reports were found for longitudinal REA data considering ma-
ternal effects in cattle.
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4.3. Heritability and Ratio of MPEV to PhV

The Dh values followed the same trajectory as DAGV. Low values of Dh (partic-
ularly at 150 days) could be due to numerical problems related to the population
structure and small size of dataset. The only literature report found for Dh of
REA in cattle using RRM showed higher values than those reported in the current
study. That study considered a range of ages from 323 to 773 days in a Brazilian
Nellore cattle population and Dh estimates ranged from 0.31 to 0.42 (Mercadante
et al. 2010). The Dh for REA at slaughter for Australian crossbred cattle in pas-
ture conditions until 18 months of age and then placed in feedlot conditions was
estimated to be 0.40 (Mirzaei et al. 2011). In a Colombian purebred Brahman
population under similar management conditions (pastures and mineral supple-
mentation) to those in this study, Dh for REAF was 0.37 (Jiménez et al. 2010).
For Red Angus animals of ages between 300 and 480 days and with a single ultra-
sonic REA measurement, Speidel et al. (2007) found a Dh estimate of 0.35. Crews
& Kemp (1999) suggested that maternal effects were unimportant for the genetic
evaluation of carcass traits (including REA) in a multibreed population. However,
they did not use RRM because they considered REA data only at slaughter. Thus,
differences in the data structure (longitudinal vs. simple), the model used, and
the fact that presumably maternal effects have a small effect on traits measured
at slaughter could explain the different results. In agreement with results here, for
Red Angus cattle, Speidel et al. (2007) concluded (based on a likelihood ratio test)
that inclusion of maternal effects improved the ability of genetic models to account
for variability on carcass traits. The MPr estimates increased smoothly with age.
The MPr had medium to high values across all ages and had a total (maximum
value - minimum value) change of 10.8 percentage units. For live weight, under
similar conditions and for a Bos indicus (Nellore) beef cattle population, Albu-
querque & Meyer (2001) found a similar pattern for MPr. No research including
maternal permanent environmental effects for REA data in cattle was found in
the literature. The MPr values did not decrease after weaning, thus, the perma-
nent maternal environmental effects were important for post weaning development
phases. This suggests that remnants of pre-weaning permanent environmental cow
effects continued to influence calf REA until 492 days of age. Maternal effects are
mainly explained for cow’s milk production (genetic to the dam and environmental
to the calf). Considering the values of MPr (0.43 to 0.54), it seems that a key
point to obtain animals with greater REA, which are expected to have a greater
meat production, would be to implement an adequate selection program that in-
cludes both direct growth and maternal milk production. It has to be taken into
account that although maternal additive genetic effects were not included in the
model due to estimation problems, they are still present. On the other hand, the
unique maternal effect term in the model is possibly accounting for both: Additive
genetic and permanent environment maternal effects.
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4.4. Correlations

As the DAGR formed a plateau after approximately 240 days, for genetic eval-
uation purposes, when considering REA data with ages greater than 240 days (for
example, from weaning to greater ages), it will be possible to use a repeatability
model. The simplicity of this model will make it desirable, especially for small
data sets as present one. For live weight records, a similar conclusion was found
by Arango et al. (2004) for crossbred beef cows in a temperate region.

The negative DAGR between ages at the beginning of the trajectory and final
ages indicated that those genes controlling REA at ages near to 70 days are antag-
onist to genes controlling this trait at ages near to 492 days. Taking into account
that what matters is REA at ages near slaughter, animals could be selected for
REA at ages after 240 days (because of the plateau formed by DAGR occurred
after that point). Because MPER values were medium to high across calf ages, it
appears that maternal permanent environmental effects exerted a positive effect
on REA preweaning, and this effect persisted until 492 days of age. As a gen-
eral observation taking into account, MPr and MPER values for this population,
maternal effects appeared to be important to obtain greater REA.

4.5. Eigenfunctions

The proportion of DAGV explained by the first eigenvalue (95.9%) was in the
range of proportions found by Mercadante et al. (2010). Such range was 84% to
99% depending on the model used. A similar proportion (90%) was described
for Longissimus muscle depth at the same point where REA was taken in lambs
(Fischer et al. 2006). As the DAGEF1 crossed the age axis at 136 days, this
is a critical age because selection for greater REA values before this trajectory
point will tend to negatively deform the mean population REA growth curve for
later ages. Considering only ages after that point, selection for direct additive
genetic effects will increase REA mean population growth curve. Thus, selection
for REA could be performed after 136 days, i.e., roughly 4 months of age under
field conditions. However, considering the high DAGR between 136 days and 240
days of age, a practical age to perform selection for REA would be at weaning.

4.6. Breeding Values

Given the small number of sires considered in the current study (especially for
Bos taurus breeds) results should be viewed with caution. As expected, all genetic
additive direct breed effects were estimable. Thus, the use of orthogonal functions
to describe fixed genetic effects when modeling longitudinal data could be useful in
order to prevent estimability problems. No research that considered breed effects
as a continuous function of age of calf was found in the literature.

Range of BV for REAF of BR sires (Table 4) was smaller than the range
reported by Jiménez et al. (2010) for purebred Brahman cattle under pasture con-
ditions in Colombia. They reported EPD values ranging from −2.84 to 3.47 cm2,
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thus, the BV (twice the EPD) ranged from −5.68 to 6.94 cm2. As in the current
study, BV were deviated from BR. The range of BV for purebred BR animals
(non parents; −0.82 to 1.12 cm2) was smaller than those reported by Jiménez
et al. (2010) suggesting that the amount of genetic variability in the dataset here
was smaller than in the Brahman population analyzed by these authors.

The BLUP of BV suggested that among the tested sires and under the con-
ditions of the study LIM bulls had the greatest mean genetic merit for REA at
all target ages (Table 4). When all of the sires were ranked according to individ-
ual BV, LIM sires were always those with the greatest values. Consequently, the
LIM breed would have to be considered for crossbreeding programs with Brahman
cows under pasture conditions in the Southern Cesar region of Colombia. The
LIM breed had been reported to have greater additive genetic effects for REA at
different ages when compared to Bos indicus and Bos taurus breeds in temperate
areas under feedlot or high supplement conditions (Ríos-Utrera, Cundiff, Gregory,
Koch, Dikeman, Koohmaraie & Van Vleck 2006, Williams, Aguilar, Rekaya &
Bertrand 2010). According to the results of this research, in tropical regions and
under pasture conditions, LIM animals also showed a good performance for this
trait.

5. Final Remarks

It should be mentioned that genetic parameters and breeding values were es-
timated with limited accuracy due to the structure and small size of the available
multibreed population. Estimates of (co)variance components showed that it is
necessary to validate the results of this research with substantially larger multi-
generational populations before implement RRM in regional or national genetic
evaluation procedures. Thus, there is a need to continue obtaining longitudinal
ultrasound information from different beef cattle herds where the breeds studied
here are represented. Results suggested that maternal effects were important, both
preweaning and postweaning. Thus, maternal effects (genetic and non-genetic) ap-
peared to be relevant effects to be included in models for genetic evaluation of REA
pre and postweaning under pasture conditions in Colombia.
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