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Abstract

We present a new set of distributions for positive data based on a skew-
normal alpha-power (PSN) model including a new parameter which in turn
makes the log-skew-normal alpha-power (LPSN) model more flexible than
both the log-normal (LN) model and log-skew-normal (LSN) model. The
LPSN model contains the LN model and LSN model as special cases. Fur-
thermore, it models positive data with asymmetry and kurtosis larger than
the one permitted by the LN distribution. Precipitation data illustrates the
usefulness of the LPSN model being less influenced by outliers.

Key words: Asymmetry, Fisher information matrix, Kurtosis, Likelihood
ratio test, Maximum likelihood estimator.

Resumen

Presentamos una nueva familia de distribuciones para datos positivos
basada en el modelo skew-normal alpha-power (PSN), incluyendo un nuevo
parámetro el cual hace el modelo log-skew-normal alpha-power (LPSN) más
flexible que los modelos log-normal (LN) y log-skew-normal (LSN). El
modelo LPSN contiene el modelo LN y el modelo LSN como casos par-
ticulares. Además, modela datos positivos con asimetría y curtosis más allá
de lo permitido por la distribución LN. Datos de precipitación ilustran la
utilidad del modelo LPSN siendo menos influenciado por outliers.
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1. Introduction

The log-normal (LN) distribution obtained as a transformation of the normal
distribution has been widely used to model different types of information including
income in economics and material lifetimes. In of different fields of knowledge,
asymmetry and kurtosis of the data are outside of the range allowed by the LN
distribution so it is necessary to use another distribution that can take into account
these issues. In the same way that Azzalini (1985), we introduce the skew-normal
(SN) distribution to conform data with a range of asymmetry and kurtosis outside
the range allowed by the normal distribution, Lin & Stoyanov (2009) present the
log-skew-normal (LSN) distribution which is an extension for positive data of the
LN distribution in order to conform data with asymmetry and kurtosis outside
the range allowed by the LN distribution. The probability density function of this
model is given by

ϕLSN (y; ξ, η, λ) =
2

ηy
φ

(
log(y)− ξ

η

){
Φ

(
λ

log(y)− ξ
η

)}
=

1

y
φSN (log(y); ξ, η, λ) , y ∈ R+

(1)

where
φSN (x; ξ, η, λ) =

2

η
φ

(
x− ξ
η

){
Φ

(
λ
x− ξ
η

)}
denotes the density function of the SN distribution with parameters of location (ξ),
scale (η), and shape (λ). The LSN model [Y ∼ LSN(ξ, η, λ)] given by (1) contains
the parameters of location (ξ), scale (η), and shape (λ) that control the asymmetry
of the data. φ(.) and Φ(.) denote the density and cumulative distribution function
of standard normal distribution, N(0,1). Based on the SN of Azzalini (1985) and
generalized Gaussian (PN) of Durrans (1992), Martínez-Flórez (2011) introduce
and studies the main features of the asymmetric distribution called skew-normal
alpha-power (PSN) distribution with probability density function given by

φPSN (z;λ, α) = αφSN (z;λ) {ΦSN (z;λ)}α−1 (2)

where z, λ ∈ R, α ∈ R+, φSN (z;λ) = φSN (z; 0, 1, λ) as defined in (1) and ΦSN (z;λ)
in (3). The PSN model [X ∼ PSN(λ, α)] given by (2) considers parameters of
shape λ and α with

ΦSN (z;λ) =

∫ z

−∞
φSN (t;λ)dt = Φ(z)− 2T (z, λ) (3)

being the cumulative distribution function of skew-normal distribution, Azzalini
(1985), and T (., λ) the Owen’s (1956) function.

In (2), λ = 0 and α = 1 corresponds to the standard normal case, i.e.,
φSN (.; 0, 1, 0) = φPSN (z; 0, 1) = φSN (.; 0) = φ(.) and ΦSN (.; 0) = Φ(.). The
model is an extension of the PN model, Durrans (1992) and the Gupta & Gupta
(2008) exponential model
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ϕα(z;α) = αφ(z){Φ(z)}α−1, z ∈ R (4)

replacing the normal density by the skew-normal density.
Martínez-Flórez (2011) demonstrate that the expected information matrix of

the PSN model is nonsingular in the neighborhood of the skewness parameters
λ = 0 and α = 1 contrary to the case of Azzalini (1985) whose expected information
matrix is singular in the neighborhood of λ = 0. Table 1 shows the intervals
of asymmetry and kurtosis coefficients for the PSN, SN, and PN models. The
PSN model has greater asymmetry and the distribution is more platikurtic or
leptokurtic than the Azzalini (1985) and Durrans (1992) models. This shown an
advantage of the model (2) over the φSN (z;λ) and ϕα(z;α) models.

Table 1: Intervals of asymmetry (
√
β1) and kurtosis (β2) coefficients, defined in (7), for

the PSN, SN, and PN models given by Martínez-Flórez, G. (2011).
Model

√
β1 β2

Skew-normal alpha-power (PSN) model [-1.4676 ; 0.9953) [1.4672 ; 5.4386]
Skew-normal (SN) model (-0.9953 ; 0.9953) [3 ; 3.8692)
Generalized gaussian (PN) model [-0.6115 ; 0.9007] [1.7170 ; 4.3556]

Figures 1(a) show corresponding and 1(b), the parameters λ and α of asym-
metry and kurtosis of the PSN distribution a more flexible model than Azzalini
(1985) and Durrans (1992) yielding.
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Figure 1: Probability density function of the skew-normal alpha-power distribution.

Other work on this type of distribution was studied by Arnold & Beaver (2002)
and Gupta & Gupta (2004). We present a new set of distributions based on the
PSN distribution that corresponds to the log-skew-normal alpha-power (LPSN)
distribution.
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In Section 2, we describe the LPSN distribution, its observed information ma-
trix and the expected information matrix. We also perform an application of the
proposed model to data by IDEAM (2006) in which the coefficients of skewness
and kurtosis of the model justify the use of the LPSN model. We conclude with a
brief discussion in Section 3.

2. Log-Skew-Normal Alpha-Power (LPSN) Model

The LPSN distribution is a new alternative for family distribution of positive
data with a range of asymmetry and/or kurtosis outside of the range permitted
by the LN and LSN distributions.

Definition 1. The positive random variable Y in the R+ has a univariate log-
skew-normal alpha-power distribution with parameters λ and α if the transformed
variable Z = log(Y ) has a PSN distribution with parameters λ and α. This
is denoted by Y ∼ LPSN(λ, α). The probability density function of a random
variable Y with distribution LPSN(λ, α) is given by

ϕLPSN (y;λ, α) =
α

y
φSN (log(y);λ) {ΦSN (log(y);λ)}α−1

, y, α ∈ R+ and λ ∈ R

The cumulative distribution function of the LPSN model is given by

FY (y;λ, α) = {ΦSN (log(y);λ)}α, y ∈ R+ (5)

According to equation (5), the inversion method can be used to generate a
random variable with distribution LPSN(λ, α). Thus, if U is a uniform random
variable in (0,1) the random variable Y = exp{ΦISN (U1/α;λ)} has LPSN distri-
bution of the parameters λ and α where ΦISN represents the inverse function of
the SN distribution, ΦSN (.;λ), whose values can be obtained in many statistical
packages (R Development Core Team 2011).

When α = 1, the LPSN distribution is identical to the LSN distribution
[ϕLPSN (y;λ, 1) = ϕLSN (y; 0, 1, λ)] and when λ = 0 and α = 1, the LPSN dis-
tribution is identical to the log-normal (LN) distribution. So LPSN distribution is
more flexible than LN and LSN distributions (see, for example, Figures 2(a) and
2(b)).

2.1. Moments of the Distribution

The r-th moment of the random variable Y with LPSN distribution can be
written as,

µr = E(Y r) = α

∫ 1

0

{exp [rΦISN (y;λ)]} yα−1dy (6)

Let µ′r = E(Y − E(Y ))r, r = 2, 3, 4,

µ′2 = µ2 − µ2
1, µ′3 = µ3 − 3µ2µ1 + 2µ3

1 and µ′4 = µ4 − 4µ3µ1 + 6µ2µ
2
1 − 3µ4

1
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Figure 2: Probability density function of the log-skew-normal alpha-power distribution.

The variance, coefficient of variation, skewness and kurtosis are given by:

σ2
Y = V ar(Y ) = µ′2, CV =

√
σ2
Y

µ1
,
√
β1 =

µ′3
[µ′2]3/2

and β2 =
µ′4

[µ′2]2
(7)

2.2. Scale-Location

Let PSN(ξ, η, λ, α) denotes a location-scale transformation of PSN(λ, α) where
ξ ∈ R, η ∈ R+ and Y = ξ + ηZ.

Definition 2. If X has a distribution of localization-scale parameters PSN(ξ, η,
λ, α) then the extension of scale-location to the LPSN distribution follows the
transformation X = log(Y ), where ξ ∈ R and η ∈ R+. Then, the density of Y is
given by

ϕLPSN (y; ξ, η, λ, α) = αϕLSN (y; ξ, η, λ)

{
ΦSN

(
log(y)− ξ

η
;λ

)}α−1

(8)

y, α ∈ R+, and λ ∈ R

where ϕLSN (y; ξ, η, λ) is defined in (1) and ΦSN (.;λ), in (3)

We use the notation Y ∼ LPSN(ξ, η, λ, α). So LPSN(λ, α) = LPSN(0, 1, λ, α).

A special case in the model (8) is when λ = 0, obtaining the density,

ϕLPSN (y; ξ, η, 0, α) =
α

ηy
φ

(
log(y)− ξ

η

){
Φ

(
log(y)− ξ

η

)}α−1

, y ∈ R+
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This is denoted Y ∼ LPSNλ=0(ξ, η, α). Like the model LSN model, this distri-
bution is also a generalization of the LN model which we will call the generalized
LN distribution.

The following result is an extension of the LN and LSN distributions.

Theorem 1. For any λ ∈ R and α ∈ R+, the random variable Y ∼ LPSN(ξ, η, λ, α)
does not have a moment generating function (MGF).

Proof . As λ = 0 and α = 1 in the LPSN model, we have the case of the LN
distribution, which does not have a moment generating function. Since MGF
satisfies the property,

MaY+b(t) = exp(bt)MY (at)

then it is sufficient to consider the standard case LPSN(λ, α).

For fixed values α = α0 > 0 and λ = λ0, the MGF of Y can be written as

MY (t) = E(ety)

=

∫ ∞
0

etyϕLPSN (y;λ0, α0)dy

=

∫ ∞
0

α0

y
etyφSN (log(y);λ0) {ΦSN (log(y);λ0)}α0−1

dy

=

∫ ∞
0

h(y, t, λ0, α0)g(y, λ0, α0)dy, y ∈ R+

with
h(y, t, λ0, α0) =

2α0

y
etyφ(log(y)){Φ(λ0 log(y))} > 0

and
g(y, λ0, α0) = {ΦSN (log(y);λ0)}α0−1

to all y > 0.
When t > 0 is fixed, we prove that

J(λ0,α0) =

∫ ∞
0

h(y, t, λ0, α0)g(y, λ0, α0)dy =∞

for all λ0 ∈ R and α0 ∈ R+.

If λ0 > 0 according to Lin & Stoyanov (2009)

lim inf
y→∞

{Φ(λ0 log(y))} ≥ 1

2

therefore h(y, t, λ0, α0) → ∞ when y → ∞. Now, g(y, λ0, α0) → 1 when y → ∞,
then we conclude that J(λ0,α0) →∞ when y →∞.

According to Lin & Stoyanov (2009), if λ0 < 0 then

lim
y→∞

− log (Φ(−y))

y2
=

1

2
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Therefore, when y →∞, we have the asymptotic approximation,

log (Φ(λ0 log(y))) ≈ 1

2
(λ0 log(y))

2

Then, we assume that log(α0) <∞, where y →∞ must be

log (h(y, t, λ0, α0))−log(α0) ≈ 1

2
log

(
2

π

)
− log(y) + ty − 1

2
(λ2

0 + 1)(log(y))2 →∞

Now, since g(y, λ0, α0) → 1, when y → ∞, then we conclude that J(λ0,α0) → ∞
when y →∞.

2.3. Inference

The maximum likelihood estimation and observed and expected matrix infor-
mation for the parameters of the LPSN(ξ, η, λ, α) model are studied. For a ran-
dom sample of size n, Y1, Y2, . . . , Yn, with Yi ∼ LPSN(ξ, η, λ, α), the log-likelihood
function of θ = (ξ, η, λ, α)′ given Y , can be expressed by

`(θ,Y) = n (log(α)− log(η))−
n∑
i=1

log(yi)−
1

2

n∑
i=1

z2
i

+

n∑
i=1

log {Φ(λzi)}+ (α− 1)

n∑
i=1

log {ΦSN (zi;λ)}

where zi = log(yi)−ξ
η . The elements of the score function are given by

U(ξ) =
1

η

n∑
i=1

zi −
λ

η

n∑
i=1

wi −
α− 1

η

n∑
i=1

w1i

U(η) = −n
η

+
1

η

n∑
i=1

z2
i −

λ

η

n∑
i=1

ziwi −
α− 1

η

n∑
i=1

w1izi

U(λ) =

n∑
i=1

ziwi −
√

2

π

(α− 1)

1 + λ2

n∑
i=1

wi(λ)

and

U(α) =
n

α
+

n∑
i=1

log {ΦSN (zi;λ)}

where w = φ(λz)
Φ(λz) , w1 = φSN (z)

ΦSN (z;λ) and w(λ) =
φ(
√

1+λ2z)
ΦSN (z;λ) . The score equations are

obtained by equating these partial derivatives to zero. The maximum likelihood
estimators (MLEs) are the solutions to the score equations. These solutions are
usually obtained by iterative numerical methods.
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2.3.1. Observed Information Matrix

The elements of the observed information matrix are defined without the second
derivative of the log-likelihood function with respect to parameter denoted by
jξξ, jηξ, . . . , jαα which can be written as

jξξ =
n

η2
+
λ2

η2

n∑
i=1

λziwi +
λ2

η2

n∑
i=1

w2
i

+
α− 1

η2

n∑
i=1

w1i(zi + w1i)−
√

2

π

λ(α− 1)

η2

n∑
i=1

wi(λ)

jηξ =
2

η2

n∑
i=1

zi +
λ3

η2

n∑
i=1

z2
iwi +

λ2

η2

n∑
i=1

ziw
2
i −

λ

η2

n∑
i=1

wi

−
√

2

π

λ(α− 1)

η2

n∑
i=1

ziwi(λ) +
α− 1

η2

n∑
i=1

w1i(−1 + z2
i + ziw1i)

jλξ =
1

η

n∑
i=1

[
wi − λ2z2

iwi − λziw2
i

]
+

√
2

π

α− 1

η

n∑
i=1

wi(λ)

[
zi +

1

1 + λ2
w1i

]
, jαξ =

1

η

n∑
i=1

w1i

jηη = − n

η2
+

3

η2

n∑
i=1

z2
i −

2λ

η2

n∑
i=1

ziwi +
λ3

η2

n∑
i=1

z3
iwi +

λ2

η2

n∑
i=1

z2
iw

2
i

−
√

2

π

λ(α− 1)

η2

n∑
i=1

z2
iwi(λ) +

α− 1

η2

n∑
i=1

ziw1i

[
−2 + z2

i + ziw1i

]

jλη =
1

η

n∑
i=1

ziwi −
λ2

η

n∑
i=1

z3
iwi −

λ

η

n∑
i=1

z2
iw

2
i

+

√
2

π

α− 1

η

n∑
i=1

ziwi(λ)

[
zi +

1

1 + λ2
w1i

]

jλλ =

n∑
i=1

z2
i (λziwi + w2

i )−
√

2

π

2λ(α− 1)

(1 + λ2)2

n∑
i=1

wi(λ)

+ 2(α− 1)

n∑
i=1

[
−
√

1

2π

λ

1 + λ2
z2
iwi(λ) +

1

π

1

(1 + λ2)2
w2
i (λ)

]
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and

jαη =
1

η

n∑
i=1

ziw1i, jαλ =

√
2

π

1

1 + λ2

n∑
i=1

wi(λ), jαα =
n

α2

2.3.2. Expected Information Matrix

The elements of the expected information matrix are the expected values of the
elements of the observed information matrix; let iξξ, iηξ, . . . , iαα be the elements
of the observed information matrix multiplied by n−1, calling ajk = E(zjwk),
a1jk = E(zjwk1 ) and ajk(λ) = E(zjwk(λ)). The elements of the expected informa-
tion matrix can be written as

iξξ =
1

η2
+
λ3

η2
a11 +

λ2

η2
a02 −

√
2

π

λ(α− 1)

η2
a01(λ) +

α− 1

η2
(a111 + a102)

iηξ =
2

η2
a10 +

λ3

η2
a21 +

λ2

η2
a12 −

λ

η2
a10 −

√
2

π

λ(α− 1)

η2
a11(λ)

+
α− 1

η2
(−a101 + a121 + a112)

iλξ =
1

η

[
a01 − λ2a21 − λa12

]
+

√
2

π

α− 1

η

[
a11(λ)

+
1

1 + λ2
E(w1w(λ))

]
, iαξ =

1

η
a101

iηη = − 1

η2
+

3

η
a20 −

2λ

η2
a11 +

λ3

η
a31 +

λ2

η2
a22 −

√
2

π

λ(α− 1)

η2
a21(λ)

+
α− 1

η2
(−2a111 + a131 + a122)

iλη =
1

η

[
a11 − λ2a31 − λa22

]
+

√
2

π

α− 1

η

[
a21(λ)+

1

1 + λ2
E(zw1w(λ))

]
, iαη =

1

η
a111
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iλλ = λa31 + a22 −
√

2

π

2λ(α− 1)

(1 + λ2)2
a01(λ) +

√
2

π
(α− 1)

[
− λ

1 + λ2
a21(λ)

+

√
2

π

1

(1 + λ2)2
a02(λ)

]

iαλ =

√
2

π

1

1 + λ2
a01(λ), iαα =

1

α2

For λ = 0 and α = 1 use the approximation

1

π

φ(z)√
Φ(z)[1− Φ(z)]

≈ 1√
2π(π/2)

exp

(
− z2

2(π2/4)

)
given in Chaibub-Neto & Branco (2003). The expected information matrix is

IF (θ) =



1
η2

0
√

2
π

1
η

√
π
2

1
η

0 2
η2

0 1
4η

π2√
8+π2√

2
π

1
η

0 2
π

√
1
2

√
π
2

1
η

1
4η

π2√
8+π2

√
1
2

1

 (9)

whose determinant |IF (θ)| = 0.

Therefore, we conclude that the expected information matrix of the model is
singular for the special case of a LN distribution. The upper 3 × 3 submatrix is
the expected information matrix from the log-skew-normal distribution.

As in (9) the third column (respectively, row) is equal to first column (respec-

tively, row) multiply by η
√

2
π , IF (θ) is singular. Using results from Rotnitzky,

Cox, Bottai & Robins (2000) we find the asymptotic distribution of the maxi-
mum likelihood estimator of θ. DiCiccio & Monti (2004) explains: “(Rotnitzky
et al. 2000) derived the asymptotic distribution of the MLE θ̂ = (θ̂1, θ̂2, . . . , θ̂q)
under two conditions: a single component of the score function, say Sθ1 , vanishes
at some point θ = θ∗, and some higher-order derivatives of Sθ1 taken with respect
to θ1 are possibly 0 at that point but the first nonzero derivative is not a linear
combination of the other score function components Sθ2 , . . . , Sθq ”.

Using an iterative process suggested by Rotnitzky et al. (2000), we find a new
parameterization to PSN model that fulfill the two conditions in the same way
that Chiogna (1998) and DiCiccio & Monti (2004) for the skew-normal distribution
and the skew exponential power distribution, respectively. Let θ∗ = (ξ∗, η∗, 0, 1)
denote the vector parameter of interest. For θ = θ∗, let Sθ(θ∗, Y ) = ∂`/∂θ∗ =
(S∗ξ , S

∗
η , S

∗
λ, S

∗
α) denote the score vector, so

Sθ(θ∗, Y ) =

(
Z∗

η∗
,
Z∗2 − 1

η∗
,

√
2

π
Z∗, 1 + log(Φ(Z∗))

)
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whit Z∗ = Y−ξ∗
η∗ . After some calculations we take the new parameterization

θ̃ = θ̃(θ) = (ξ̃, η̃, λ, α) with ξ̃ = ξ +
√

2
πη
∗λ and η̃ = η − η∗ λ

2

π .

Making use of Theorem 3 in Rotnitzky et al. (2000) with the new parameteri-
zation we can conclude that:

1. The MLE of θ is unique with probability tending to 1, and it is consistent.

2. The likelihood ratio statistic for testing the simple null hypothesis
H0 : θ = θ∗ converges in distribution to the χ2 distribution with four degrees
of freedom.

3. The random vector(
n1/2(ξ̃ − ξ +

√
2
πη
∗λ), n1/2(η̃ − η − η∗ λ

2

π ), n1/6λ̂, n1/2(α̂− 1)
)

converges to (Y1, Y2, Y
1/3
3 , Y4), where (Y1, Y2, Y3, Y4) is a normal random vec-

tor with mean zero and covariance matrix equals to the inverse of the co-
variance matrix


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2π3
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2
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0 2
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1
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1
4η

π2√
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√
1
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

−1

2.4. Illustration

Precipitation data (measured in inches) were collected from the Colombian
Institute of Hydrology, Meteorology and Environmental Studies in Córdoba, Colom-
bia (IDEAM 2006). Descriptive statistics for the variable under study are provided

in Table 2. The quantities
√
β̂1 =

√
b1 and β̂2 = b2, where β1 and β2 defined in

(7), indicate the asymmetry and kurtosis coefficients respectively.

Table 2: Descriptive statistics of the precipitation variable
Variables n Mean Variance

√
b1 b2

Y 273 4.8360 9.7871 0.4632 2.6035
log(Y ) 273 1.2219 1.1155 -1.5608 5.5276

The asymmetry and kurtosis coefficients are different from the corresponding
values expected for LN model and normal model. Precipitation data are fitted
using the LPSN model.

The LPSN model is compared to the LN model as well as the LSN model to the
LPSNλ=0 model. The maximum likelihood method for estimating the parameters
is used and the Akaike information criterion (AIC), (Akaike 1974), is applied for
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contrast. Firstly, the LN model is compared to the LPSN model by the hypothesis
tests

H0 : (λ, α) = (0, 1) versus H1 : (λ, α) 6= (0, 1)

Using the likelihood ratio statistic,

Λ =
`LN (θ̂)

`LPSN (θ̂)

we obtain
−2 log(Λ) = −2(−735.4023 + 670.2293) = 130.346

which is greater than the value of the χ2
2,95% = 5.99. Then the LPSN model is

a good alternative for fitting the precipitation data. The LPSN model is also
compared to the LPSNλ=0 model and the LSN models by the hypothesis tests

H01 : λ = 0 versus H11 : λ 6= 0, and H02 : α = 1 versus H12 : α 6= 1

respectively, using the likelihood ratio statistics

Λ1 =
`LPSNλ=0(θ)

`LPSN (θ)
and Λ2 =

`LSN (θ)

`LPSN (θ)

After numerical evaluations, we obtain

−2 log(Λ1) = 61.5960 and − 2 log(Λ2) = 15.5056

which is greater than the value of the χ2
1,95% = 3.84. The best fit, with respect to

the other models, is shown by the LPSN model. Table 3 presents the MLEs and the
estimated standard errors (in parentheses) for LN, LSN, LPSN and models. Figure
3 shows the histogram of precipitacion data and fitted curves for the proposed
models in which the LPSN model presents the better fit of asymmetry and kurtosis
with respect to the other models.

Table 3: Parameters and estimated standard errors of the log-normal (LN), log-skew-
normal (LSN), log-skew-normal alpha-power λ = 0 (LPSNλ=0), and the log-
skew-normal alpha-power (LPSN) distributions.

Parameter Log-normal LSN LPSNλ=0 LPSN
Loglik -735.4023 -677.9821 -701.0273 -670.2292
AIC 1474.8050 1361.964 1408.0550 1348.5490
ξ 1.2219(0.0638) 2.4217(0.0392) 2.8280(0.0817) 2.2647(0.0529)
η 1.0542(0.0451) 1.5971(0.0763) 0.1668(0.0507) 4.8760(0.3363)
λ – -10.0515(2.2917) – -19.2702(2.4450)
α – – 0.0144(0.0008) 4.8579(0.5925)

The Figure 4 shows the qqplots for LN, LSN and LPSN models. The LPSN
model shows better fit with respect to the LN and LSN models.
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Figure 3: Histogram of the precipitation data. Densities are estimated by maximum
likelihood.
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Figure 4: Q-Qplot: (a) log-normal model, (b) log-skew-normal model, and (c) log-skew-
normal alpha-power model.
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3. Conclusion

In this paper we propose a more flexible model than LN and LSN models
fit data with greater asymmetry and more platikurtic or leptokurtic than Azzalini
(1985) and Durrans (1992) models. General expressions for the moments are found,
maximum likelihood estimators are studied, observed and expected information
matrix are found, and also an asymptotic distribution of a MLEs vector is found.
Finally, an illustration is presented (see Figure 4). We contrast the LN, LSN,
and LPSN models through some precipitation data. According to AIC selection
criterion, the LPSN model makes the better fit with respect to the other models
considered. [
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