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Abstract

Segregation and matching are techniques to estimate variance compo-
nents in mixed models. A question arising is whether segregation can be
applied in situations where matching does not apply. Our motivation for
this research relies on the fact that we want an answer to that question and
to explore this important class of models that can contribute to the devel-
opment of mixed models. That is possible using the algebraic structure of
mixed models. We present two examples showing that segregation can be
applied in situations where matching does not apply.

Key words: Commutative Jordan algebra, Mixed model, Variance compo-
nents.

aProfessor. E-mail: sandraf@ubi.pt
bProfessor. E-mail: dario@ubi.pt
cProfessor. E-mail: celian@ubi.pt
dProfessor. E-mail: jtm@fct.unl.pt

259



260 Sandra S. Ferreira, Dário Ferreira, Célia Nunes & João T. Mexia

Resumen

La segregación y el emparejamiento son técnicas para estimar las compo-
nentes de varianza en modelos mixtos. Una pregunta que ha surgido es si la
segregación puede ser aplicada en situaciones en las que el emparejamiento
no es aplicable. Nuestra motivación para esta investigación se basa en el
hecho de que se quiere una respuesta a esta pregunta y se quiere explorar
esta importante clase de modelos con el fin de contribuir al desarrollo de los
modelos mixtos. Esto es posible utilizando la estructura algebraica de los
modelos mixtos con estructura de bloques ortogonal conmutativa. Se pre-
sentan dos ejemplos que muestran que la segregación puede ser aplicada en
situaciones donde el emparejamiento no es aplicable.

Palabras clave: álgebra conmutativa Jordan, componentes de varianza,
modelo mixto.

1. Introduction

Mixed models have orthogonal block structure, OBS, when their variance co-
variance matrices are orthogonal all the linear combinations of known pairwise
projection matrices, POOPM, add up to In with non negative coefficients. These
models play an important role in design of experiments (Houtman & Speed 1983,
Mejza 1992) and were introduced by Nelder (1965a, 1965b), continuing to play
an important part in the theory of randomized block designs (see Caliński &
Kageyama 2000, Caliński & Kageyama 2003).

A direct generalization of this class of models is that of models whose vari-
ance covariance matrices are linear combinations of known POOPM, we say these
models to have generalized orthogonal block structure, GOBS. Moreover if the
orthogonal projection matrix T on the space spanned by the mean vectors com-
mutes with these POOPM the model, (see Fonseca, Mexia & Zmyślony 2008) will
have commutative orthogonal block structure, COBS. Then, (see Zmyślony 1978),
its least square estimators, LSE, for estimable vectors will be best linear unbiased
estimators, BLUE, whatever the variance components.

In what follows, we will present techniques for the estimation of variance com-
ponents in COBS. These techniques will be based on the algebraic structure of
the models then being quite distinct from other techniques that require normal-
ity. Moreover it has interesting developments, namely these related to model
segregation.

The next Section presents the algebraic structure of the models considering
commutative Jordan algebras. Then we discuss, in section 3, the techniques for
the estimation of variance components: Matching and segregation. Segregation
displays the possibility of using the algebraic structure in estimation. Thus, in
subsections 3.1 and 3.2, we present two models in which this technique has to
be used to complete the structure based on estimation of variance components.
Lastly, we present some final remarks.
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2. Algebras and Models

Commutative Jordan Algebras, CJA, (of symmetric matrices) are linear spaces
constituted by symmetric matrices that commute and containing the square of
this matrices. Each CJA A has a principal unique basis (see, Seely 1971), pb(A),
constituted by pairwise orthogonal projection matrices. Any orthogonal projection
matrix belonging to A will be the sum of matrices in pb(A).

Moreover, given a family W of symmetric matrices that commute, there is a
minimal CJA A(W ) containing W (see, Fonseca et al. 2008).

Consider the model

Y =

w∑
i=0

Xiβi (1)

where β0 is fixed and the β1, . . . ,βw are independent, with null mean vectors and
variance covariance matrices

{
µ = X0β0

V(θ) =
∑w
i=1 θiMi

(2)

with Mi = XiX
′

i, i = 1, . . . , w. When the matrices in {T ,M , . . . ,Mw} commute
we have the CJA A(W ) with principal basis

Q = {Q1, . . . ,Qm}.

We can order the matrices in Q to have T =
∑z
j=1 Qj . Moreover

Mi =

m∑
j=1

bi,jQj , i = 1, . . . , w,

so that

V(θ) =

w∑
i=1

θiMi =

m∑
j=1

γjQj = V (γ)

with γj =
∑w
i=1 bi,jθi, j = 1, . . . ,m, thus the model will have COBS since its vari-

ance covariance matrices are linear combinations of known POOPM that commute
with the Q1, . . . ,Qm, belonging jointly to A(W ).

3. Segregation and Matching

Since R(Qj) ⊆ R(T ), j = 1, . . . , z we can estimate directly the γz+1, . . . , γm,
for which we have the unbiased estimators

γ̃j =
‖QjY‖2

r(Qj)
, j = z + 1, . . . ,m. (3)
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Partitioning matrix B = [bi,j ] as [B1 B2], where B1 has z columns, and
taking γ1= (γ1, . . . , γz)

′, γ2= (γz+1, . . . , γm)′, and σ2 = (σ2
1 , . . . , σ

2
w)′, with w ≤

m− z, we have
γl = B′lσ

2, l = 1, 2. (4)

When the column vectors of B
′

2 are linearly independent we have

σ2 = (B′2)+γ2, (5)

as well as
γ1 = B′1(B′2)+γ2, (6)

allowing the estimation of σ2 and γ1, through γ2. It may be noted that if the
matrices Q1, . . . ,Qm can be ordered in such a way that the transition matrix is

B =

[
B1,1 0

B2,1 B2,2

]
,

with B1,1 a z× z matrix, the model is said to be segregated, see Ferreira, Ferreira
& Mexia (2007) and Ferreira, Ferreira, Nunes & Mexia (2010). It can be pointed
out that, in that case, sub-matrices B1,1 and B2,2 are regular.

When B1 is a sub-matrix of B2, B
′
1 will be a sub-matrix of B′2 and so γ1 will

be a sub-vector of γ2, see Mexia, Vaquinhas, Fonseca & Zmyslony (2010). In this
case the match have between the components of γ1 and some components of γ2.
When this happens we say that the model has matching. Thus γ1 and

γ =
[
γ′
1 γ′

2

]′
,

can be directly estimated from γ2. If the row vectors ofB are linearly independent,
we have

σ2 = (B′)+γ, (7)

and we can also estimate σ2. Requiring the row vectors of B to be linearly in-
dependent is less restrictive than requiring the row vectors of B2 to be linearly
independent.

Below we introduce two examples which show that segregation can be applied
in situations where matching does not apply.

3.1. Segregation without Matching: Stair Nesting

We choose to present an example with stair nesting instead of the usual nesting
because stair nesting designs are unbalanced and use fewer observations than the
balanced case, and in addition, the degrees of freedom for all factors are more
evenly distributed, as was shown by Fernandes, Mexia, Ramos & Carvalho (2011).
Cox & Solomon (2003) suggested that having u factors, we will have u steps where
each step corresponds to one factor of the model.
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In order to describe the branching in such models, we can consider u+ 1 steps.
The first step, with index 0, has a0 = c0 = u branches, one per factor. In the
second step, with index 1, we have c1 = a(1) +u− 1 branches, a(1) the number of
“active” levels for the first factor and u−1 the number of the remaining factors. We
point out that the branch for the first factors concerns its “active” levels. For the
third step, with index 2, we have c(2) = a(1) + a(2) +u− 2, where a(1) represents
the number of “active” levels for the first two factors resulting from the branching
for the first factor; a(2) is the number levels for the second factor and u − 2, the
number of the remaining factors. In this way, for the (i + 1)-th step, with index
i, we have c(i) =

∑i
h=1 a(h) + u − i, i = 3, . . . , u branches. a(1), . . . , a(i) are the

number of “active” levels for the first i factors and u− i the number of remaining
factors. These designs are also studied in Fernandes, Ramos & Mexia (2010) and
some results of nesting may be seen, for example, in Bailey (2004).

The model for stair nesting designs is given by

Y =

u∑
i=0

Xiβi, (8)

with 

X0 = D(1a(1), . . . ,1a(i),1a(i+1), . . . ,1a(u))
...
Xi = D(Ia(1), . . . , Ia(i),1a(i+1), . . . ,1a(u)), i = 1, . . . , u− 1
...
Xu = D(Ia(1), . . . , Ia(i), Ia(i+1), . . . , Ia(u))

(9)

whereD(A1, . . . ,Au) is the block diagonal matrix with principal blocksA1, . . . ,Au

and 1a(s) is the vector with all a(s) components equal to 1.
In this approach we will assume that β0 = 1uµ, where µ is the general mean

value and the vectors βi, i = 1, . . . , u, are independent normal with null mean
vectors and variance-covariance matrix σ2

i Ic(i), i = 1, . . . , u, and

c(i) =

i∑
h=1

a(h) + u− i, i = 1, . . . , u

Hence Y is normal distributed with mean vector µ = 1nµ, and variance-
covariance matrix V =

∑u
i=1 σ

2
iMi, where Mi = XiX

′

i, i = 1, . . . , u, we have

M0 = D(Ja(1), . . . ,Ja(i))
...

M i = D(Ia(1), . . . , Ia(i),Ja(i+1), . . . ,Ja(u)), i = 1, . . . , u− 1
...

Mu = D(Ia(1), . . . , Ia(i), Ia(i+1), . . . , Ia(u))

(10)
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with Js = 1s1
′
s. Now, the orthogonal projection matrix on r(X0), will be T given

by

T = D

(
1

a(1)
Ja(1), . . . ,

1

a(i)
Ja(i),

1

a(i+ 1)
Ja(i+1), . . . ,

1

a(u)
Ja(u)

)
(11)

Moreover, with Ka(i) = Ia(i) − 1
a(i)Ja(i) and 0a(i) the null a(i)× a(i) matrix,

i = 1, . . . , u, taking{
Qi = D(0a(1), . . . ,

1
a(i)Ja(i), . . . ,0a(u)), i = 1, . . . , u

Qi+u = D(0a(1), . . . ,Ka(i), . . . ,0a(u)), i = 1, . . . , u
(12)

we will have

T =

u∑
j=1

Qj

Mi =

i∑
j=1

(Qj +Qj+u) +

u∑
j=i+1

a(j)Qj , i = 1, . . . , u− 1.

Mu =

u∑
j=1

(Qj +Qj+u)

(13)

So we have
B =

[
B1 B2

]
,

with

B1 =


1 a(2) ... a(u)

1 1 ... a(u)
...

...
...

...
1 1 ... a(u)

1 1 ... 1

 , B2 =


1 0 ... 0

1 1 ... 0
...

...
...

...
1 1 ... 0

1 1 ... 1

 ,

so we have segregation but we do not have matching.
Let us consider an example where u = 3, a(1) = 3, a(2) = 2 and a(3) = 3

“active” levels and the number of observations in the design is n = 3 + 2 + 3 = 8.
So, we have g(1) = 2, g(2) = 1 and g(3) = 2 degrees of freedom for the first,
second, and third factors, respectively. The design is shown in Figure 1.

The random effects model for stair nesting can be summarized as

Y =

3∑
i=0

Xiβi (14)

where a(1) = 3, a(2) = 2 and a(3) = 3 are the levels for the 3 factors that nest.
We make the same assumptions on the random effects as we did in the section 3.1,
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Figure 1: Stair nested design.

where 

X0 = D(13,12,13)

X1 = D(I3,12,13)

X2 = D(I3, I2,13)

X3 = D(I3, I2, I3)

(15)

From formula (13) we obtain

M1 = D(I3,J2,J3)

M2 = D(I3, I2,J3)

M3 = D(I3, I2, I3)

(16)

Considering m = 6, z = 3, we have the pairwise orthogonal projection matrices

Q1 = { 13J3,02,03}

Q2 = {03,
1
2J2,03}

Q3 = {03,02,
1
3J3}

Q4 = {K3,02,03}

Q5 = {03,K2,03}

Q6 = {03,02,K3}
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and the matrices

M1 = Q1 + a(2)Q2 + a(3)Q3 + Q4

M2 = Q1 + Q2 + a(3)Q3 + Q4 + Q5

M3 = Q1 + Q2 + Q3 + Q4 + Q5 + Q6

It follows readily that

B =

 1 a(2) a(3) 1 0 0

1 1 a(3) 1 1 0

1 1 1 1 1 1


considering

B =
[
B1 B2

]
where

B1 =

 1 a(2) a(3)

1 1 a(3)

1 1 1


and

B2 =

 1 0 0

1 1 0

1 1 1


3.2. Segregation without Matching: Crossing

Let there be a first factor that crosses with a second that nests a third. The
factors will have a, b and c levels, respectively. The first and the third factors have
random effects and the second has fixed effects.

The mean vector will then be

µ = (1a ⊗ 1b ⊗ 1c)µ+ (1a ⊗ Ib ⊗ 1c)β (2)

where β (2) is the fixed vector of the effects for the second factor and ⊗ represent
the Kronecker matrix product.

The random effects part of the model will be

(Ia ⊗ 1b ⊗ 1c)β (1) + (Ia ⊗ Ib ⊗ 1c)β (1, 2) + (1a ⊗ Ib ⊗ Ic)β (3) +

+ (Ia ⊗ Ib ⊗ Ic)β (1, 3) ,

where β (1), β (1, 2), β (3) and β (1, 3) correspond to the effects of the first factor,
to the interactions of the first and second factors, to the effects of the third factor
and to the interactions between the first and the third factors. As usual, we assume
these vectors to be independent, homoscedastic and represent the corresponding

Revista Colombiana de Estadística 36 (2013) 259–269



Variance Components in Linear Mixed Models 267

variance components by σ2 (1), σ2 (1, 2), σ2 (3) and σ2 (1, 3). So the variance-
covariance matrix will be given by

V = σ2 (1) Ia⊗Jb⊗Jc+σ2 (1, 2) Ia⊗Ib⊗Jc+σ2 (3)Ja⊗Ib⊗Ic+σ2 (1, 3) Ia⊗Ib⊗Ic.

In this case the matrices in the principal basis will be

Q1 = 1
aJa ⊗

1
bJb ⊗

1
cJc

Q2 = Ka ⊗ 1
bJb ⊗

1
cJc

Q3 = 1
aJa ⊗Kb ⊗ 1

cJc
Q4 = Ka ⊗Kb ⊗ 1

cJc
Q5 = 1

aJa ⊗
1
bJb ⊗Kc

Q6 = Ka ⊗ 1
bJb ⊗Kc

Moreover the orthogonal projection matrix on Ω will be

T =
1

a
Ja ⊗ Ib ⊗

1

c
Jc = Q1 + Q3.

We will also have
Ia ⊗ Jb ⊗ Jc = bcQ1 + bcQ2

Ia ⊗ Ib ⊗ Jc = cQ1 + cQ2 + cQ3 + cQ4

Ja ⊗ Ib ⊗ Ic = aQ1 + aQ3 + aQ5

Ia ⊗ Ib ⊗ Ic = Q1 + Q2 + Q3 + Q4 + Q5 + Q6

Therefore

V =

6∑
j=1

γjQj ,

with 

γ1 = bcσ2 (1) + cσ2 (1, 2) + aσ2 (3) + σ2 (1, 3)

γ2 = bcσ2 (1) + cσ2 (1, 2) + σ2 (1, 3)

γ3 = cσ2 (1, 2) + aσ2 (3) + σ2 (1, 3)

γ4 = cσ2 (1, 2) + σ2 (1, 3)

γ5 = aσ2 (3) + σ2 (1, 3)

γ6 = σ2 (1, 3)

Now γ1 and γ3 are different from all other canonical variance components so
there is no matching. Despite this we have

σ2 (1, 3) = γ6
σ2 (3) = γ5−γ6

a

σ2 (1, 2) = γ4−γ6
c

σ2 (1) = γ2−cσ2(1,2)−σ2(1,3)
bc = γ2−γ4

bc

so all variance components either usual or canonic can be estimated.
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4. Final Remarks

COBS models consider important cases. In the second example in Section 3
we presented an example of a balanced crossing which, (see Fonseca, Mexia &
Zmyślony 2003, Fonseca, Mexia & Zmyślony 2007) can be extended to apply to all
models with balanced cross nesting, thus including a wide variety of well behaved
models.

The first example in section 3, that of stair nesting, displays a different model
also with COBS. Besides the algebraic structure enables us to obtain unbiased
estimators without normality. The LSE for estimable vectors are BLUE, whatever
the variance components.
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