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Abstract

In this article, we consider the semiparametric regression model and ex-
amine influential observations which have undue effects on the estimators for
this model. One of the approaches to measure the influence of an individual
observation is to delete the observation from the data. The most common
measure based on this approach is Cook’s distance. Recently, Daniel Peña
introduced a new measure based on this approach. Pena’s measure is able
to detect high leverage outliers, which could be undetected by Cook’s dis-
tance, in large data sets in linear regression model. The Cook’s distances
for parameter vector, unknown smooth function and response variable in
semiparametric regression model are expressed by authors as functions of
the residuals and leverages. Following the study of them we derive a type
of Pena’s measure as functions of the residuals and leverages for the same
model. We compare the performance of these measures as to detection of
influential observations using real data, artificial data and simulation. The
results show that the performance of Pena’s measure is better than Cook’s
distance to detect high leverage outliers in large data sets in the semipara-
metric regression model such as in the linear regression model.

Key words: Cook’s distance, High leverage outliers, Pena’s measure, Semi-
parametric regression.

Resumen

En este artículo, se consideran modelos de regresión semiparamétrica y
se examinan observaciones influenciales que pueden tener efectos sobre los
estimadores para este modelo. Una de las formas de medir la influencia
de una observación individual es borrando la observación en el conjunto de

aDoctor. E-mail: sturkan@hacettepe.edu.tr
bEmeritus professor. E-mail: oniz@hacettepe.edu.tr

271



272 Semra Türkan & Öniz Toktamis

datos. La medida más común bajo esta idea es la distancia de Cook. Re-
cientemente, Daniel Peña introdujo una nueva medida basada en estas ideas.
Las distancias de Cook para el vector de parámetros, la función de suaviza-
miento y la variable respuesta en modelos de regresión semiparamétrica han
sido expresadas por otros autores como funciones de los residuales y los pun-
tos de apalancamiento. Se deriva en este artículo, una medida del tipo de la
de Peña como función de los residuales y puntos de apalancamiento para el
mismo modelo. Se compara el desempeño de estas medidas para la detección
de observaciones influenciales usando datos reales y bajo simulación. Los re-
sultados muestran que la medida de Peña es mejor que la distancia de Cook
para detectar outliers y puntos de apalancamiento en conjuntos de datos
grandes en los modelos de regresión semiparamétrica tales como el modelo
de regresión lineal.

Palabras clave: distancia de Cook, outliers, puntos de apalancamiento,
medida de Peña, regresión semiparamétrica.

1. Introduction

One or few observations could have serious effects on estimators. When an
observation is omitted from the analysis, the fitted equation may change hardly at
all. In this situation, the observation is considered as an influential observation.
Hence, the detection of these observations has received a great deal of attention
in the last decades. Numerous influence measures have been developed to detect
these observations. Firstly, Cook (1977) introduced Cook’s distance, which is
based on deleting the observations one after another and measuring their effects in
linear regression. Following the study of Cook (1977), most of ideas of detecting
influential observations based on the deleting approach have developed. In recent
years, Pena’s measure is one of these ideas.

The study of influential observations has been extended to other statistical
models using similar ideas such as in linear regression. However, most of the
influence measures are concerned with parametric regression models. In recent
years, the detection of influential observations in the nonparametric regression and
semiparametric regression have been studied (see Thomas 1991, Kim 1996, Kim &
Kim 1998, Kim, Park & Kim 2001, Zhu &Wei 2001, Kim, Park & Kim 2002, Zhang,
Mei & Zhang 2007).

In this article, we consider the influence of individual cases on estimators in the
semiparametric regression model and adjust the Pena’s measure (Pena 2005) for
this model. We compare the Pena’s measure and some types of Cook’s distances
suggested by Kim et al. (2002) as to the success of detection of high leverages
outliers in the semiparametric regression model.

The study is organized as follows. In Section 2, the semiparametric regression
model is introduced. In Section 3, the formulas of Cook’s distances for semi-
parametric regression model are given. In Section 4, Pena’s measure formula for
semiparametric regression is derived. In Section 5, the success of these measures
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to detect influential observations, particularly high leverages outliers in large data,
is analyzed via real data, artificial data and simulation.

2. Semiparametric Regression

Consider a semiparametric regression model with k explanatory variables

yi = zi
Tβββ +m(xi) + εi, (1 ≤ i ≤ n)

where yi’s are outcomes, zi is a k × 1 vector related to parametric component, xi
is a scalar, βββ is the k × 1 vector of unknown parameters and m is a smooth un-
known function. There are many approaches to estimate βββ andmmm. The Speckman
approach is one of them. Here, we follow the Speckman approach.

Let eZ = (I − S)Z and ey = (I − S)y where S is a smoother matrix. The
local polynomial and the spline estimators are two classes of smoothers in semi-
parametric regression. Here, we use a local polynomial estimator. Hence, the
(1 × n) jth row vector of S could be defined as Sxj = tT (XT

xWxXx)
−1

XT
xWx

where Xx is the n × (p + 1) matrix with its ijth element equal to (xi − x)j−1,
Wx = Diag(Kh(xi − x)) is the weight matrix with Kh(.) = K(. |h )/h being a
kernel function and h bandwidth controlling the size of the local neighborhood
and tT = tTx (x) = (1, x− x, . . . , (x− x)

p
) is a vector. Here, it is assumed that K

is a symmetric probability density function. The estimators of βββ and m suggested
in Speckman (1988) are given by

bβββ =
�eZT eZ�−1 eZT ey (1)

Òm(x) = S
�
y − Zbβββ� = S(I− ôH)y = H∗y (2)

where ôH = (I− S)
−1eZ �eZT eZ�−1 eZT (I − S) and H∗ = S

�
I− ôH�. The vector of

fitted values could be expressed from (1) and (2) as below

by = Zbβββ + Òm(x)

= H̆y
(3)

where H̆ is considered as hat matrix in linear regression model defined H̆ = ôH+H∗.
The residual vector is given by

ĕ = y − by = (I− H̆)y

which will be used in defining and interpreting Cook’s distances in the semipara-
metric regression model.

3. Cook’s Distance

Firstly, we briefly review the derivation of Cook’s distance in the linear regres-
sion model: y = Xβββ + εεε, where y is a response vector, X is a n × k matrix of
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known covariates, βββ is a vector of unknown parameters, and εεε is a vector of errors
with mean zero and a common unknown variance σ2. yi and xT

i denote the ith
row of y and X, respectively, and using the subscript (−i) means that the ith
observation is deleted. Hence, X−i denotes the matrix X withith row deleted.
Let bβββ = (XTX)−1XTy be the least squares estimator of βββ, by = Xbβββ = Hy where
H = X(XTX)−1XT is the hat matrix and s2 = eTe/(n− k) is estimation of σ2.

Cook’s distance for measuring the influence of the ith observation is defined
by

Ci = (bβββ − bβββ−i)
T (XTX)(bβββ − bβββ−i)/s

2tr(H)

Using the fact, bβββ − bβββ−i = (XTX)−1xiei/(1− hii)

the Cook’s distance can be written as leverage values and residuals

Ci =
1

tr(H)s2
e2ihii

(1− h2ii)
(4)

where hii is the diagonal elements of H and ei is the element of residual vector
e = y − by. The trace of H is defined to be the sum of the elements on the main
diagonal of H. As a projection matrix, H is symmetric and idempotent (H2 = H),
the eigenvalues of a projection matrix are either zero or one and the number of
non zero eigenvalues is equal to the rank of the matrix. In this case, rank(H) =
rank(X) = k and hence, trace(H) = k which means that tr(H) =

Pn
i=1 hii = k .

3.1. Cook’s Distance for bβββ in Semiparametric Regression

An influence measure for ith observation on bβββ may be defined as a type of
Cook’s distance in linear regression by

fCi =
(bβββ − bβββ−i)

T (eZT eZ)(bβββ − bβββ−i)

s2tr(ÜH)
(5)

Note that tr(ÜH) =
nP

i=1

ehii = k as in linear regression. Equation (5) can be

expressed as a function of the ith residual and leverage such as in (4) for semi-
parametric regression model as below

ÜCi =
1

s2k

ehiiee2i
(1− ehii)2 (6)

where eei is the ith component of residual vector ee = y − ey and ehii is the ith
diagonal component of ÜH = eZ(eZT eZ)−1eZT related to parametric component of
semiparametric regression model (Kim et al. 2002).
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3.2. Cook’s Distance for cm in Semiparametric Regression

An influence measure for ith observation on Òm may be defined as a type of
Cook’s distance utilizing (2) by

C∗
i =
{Òm(xi)− Òm−i(xi)}

s2tr(H∗)

It can be expressed as a function of the ith residual and leverage such as in (4)

C∗
i =

(h∗iie
∗
i )2

(1− h∗ii)2s2tr(H∗)
(7)

where e∗i is the ith component of residual vector e∗ = (I −H∗)y and h∗ii is the
ith diagonal component of H∗ related to the nonparametric component of the
semiparametric regression model (Kim et al. 2002).

3.3. Cook’s Distance for by in Semiparametric Regression

An influence measure for ith observation on by may be defined as a type of
Cook’s distance utilizing (3) such as in linear regression by

C̆i =
(by − by−i)

T (by − by−i)

s2tr(H̆)

It can be expressed as a function of the ith residual and leverage such as in (4)
for by

C̆i =
h̆iiĕ

2
i

(1− h̆ii)2s2tr(H̆)
(8)

where ĕi is the ith component of residual vector ĕ = y − by = (I− H̆)y and h̆ii is
the ith diagonal component of H̆ (Kim et al. 2002).

4. Pena’s Measure

Pena (2005) introduced a new measure to determine the influence of an ob-
servation based on how this observation is being influenced by the rest of the
data. That is, the predicted change when each observation in the data is deleted
is measured for each observation. In this way, the sensitivity of each observation
to changes in the data is measured. Pena (2005) showed that this type of influ-
ential analysis is able to indicate features in the data, such as clusters of high
leverage outliers. Pena’s measure has some advantages over Cook’s distance. In
a sample without outliers or high leverage observations, all of the cases have the
the same expected sensitivity with respect to the entire sample. This is an ad-
vantage over Cook’s distance which has an expected value that depends heavily
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on the leverage of the case. For large sample sizes with many predictors, the dis-
tribution of the Pena’s measure will be approximately normal. This is advantage
over Cook’s distance which has a complicated asymptotical distribution. The sam-
ple contaminated by a group of similar outliers with high leverages, this measure
could discriminate between outliers and good observations while Cook’s distance
fails to detect these observations. In addition, Pena’s measure can be useful for
identifying intermediate-leverage outliers that are not detected by Cook’s distance
(Pena 2005).

In the regression model, Pena’s measure is defined as

Si =
sTi si
ps2

(byi)

(9)

where si = (byi − byi(1), . . . , byi − byi(n)) is a vector and byi(j) is the ith fitted value
when the jth observation is deleted. Using the facts, the difference byi − byi(j) is
obtained as

byi − byi(j) = xT
i
bβββ − xT

i
bβββ−j =

hjjej
1− hjj

and s2
(byi)

= s2hii (10)

Pena’s measure can be expressed as a function of the ith residual and leverage
from (10)

Si =
1

ps2hii
=

nX
j=1

h2jie
2
j

(1− hjj)2
(11)

Pena (2005) stated that Si would be large if it exceeds median (Si)+4.5MAD(Si)
where MAD(Si) = median{|Si −median(Si)|}/0, 6745. Pena’s measure is very
effective in detection of high leverage outliers that can not be detected by Cook’s
distance in large data sets. Also, it is very simple to compute (Türkan, S. and
Toktamis, Ö. 2012).

4.1. Pena’s Measure for Semiparametric Regression

In this study, we derived Pena’s measure formula for the semiparametric re-
gression model. The fitted values vector in (3) can be written as

by = Zβββ + Òm(x)

= eZbβββ + Sy
(12)

Using ith row vector of S in (12), Sxi = tT (XT
xWxXx)−1XT

xWx, the ith fitted
value, byi, can be written byi = ezTi bβββ + txi

(xi)bβββxi

where bβββx = (XT
xWxXx)−1XT

xWxy and tx(xi) = (1, (xi − x), . . . , (xi − x)p). The
ith fitted value when jth observation is deleted, byi,−j , can be expressed as below:

byi,−j = ezTi bβββ−j + txi(xi)
bβββxi,−j (13)
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Utilizing Sherman-Morrison-Woodbury (SMW) theorem, byi − byi,−j can be ob-
tained as a function of the ith residuals and leverages

byi − byi,−j =
ehjjeej

1− ehjj +
hxi

(j, j)exi(j)

1− hxi(j, j)
(14)

where ehij = ezTi (eZT eZ)−1ezj and hxi(i, i) = (XT
xi
WxiXxi)

−1Kh(0) are diagonal
elements of ÜH = eZ(eZT eZ)−1eZT and Hx = Xx(XT

xWxXx)−1XT
xWx, respectively.

From (14), Pena’s measure for semiparametric regression model can be obtained
as

eSi =
sTi si

tr(H̆)var(byi)
=

1

tr(H̆)var(byi)
nX

j=1

� ehjjeej
1− ehjj +

hxi
(j, j)exi(j)

1− hxi(j, j)

�2 (15)

(see Türkan 2012)

5. Application

In this section, we compare the performance of our adjusted Pena’s measure
with adjusted Cook’s distances in the semiparametric regression model to identify
influential observations via actual data, artificial data and a simulation.

5.1. Actual Data

We consider actual data related to diabetes. The response variable is the
logarithm of C-peptide concentration (y) at diagnosis and two predictors are age
(x) and base deficit (z) (Kim et al. 2002). The data set contains 41 observations.
There is a linear relationship between the logarithm of C-peptide concentration
and base deficit, however, there is a nonlinear relationship between the logarithm
of C-peptide concentration and age. Hence, the semiparametric regression model,
yi = zTi βββ +m(xi) + ε, is used. Following the study of Kim et al. (2002), the local
linear smoother was used and the bandwidth h = 5.6 was selected minimizing
cross-validation (CV) criterion (CV =

P
{ei/(1 − hii)}2). Table 1 shows the

estimates of both parametric and nonparametric components.
Figure 1 displays index plots of leverages values h̆ii and residuals ĕi.
As seen from Figure 1(a), observations 20 and 34 are considered as outliers but

these observations are not considered as high leverage from Figure 1(b) that the
values of h̆ii are not close to 1. Hence, it is said that there is no high leverage
outlier in the data.

Figure 2 displays an index plot of influence measures (ÜC,C∗
i , C̆i and eSi) for

this data.
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(a) (b)

Figure 1: (a) index plot of residuals, ĕi (b) index plot of leverages values, h̆ii

(a) (b)

(c) (d)

Figure 2: Plots for diabetes data: (a) index plot of Cook’s distance for bβββ, eCi (b) index
plot of Cook’s distance for Òm, C∗

i , (c) index plot of Cook’s distance for, by,
C̆i (d) index plot of Pena’s measure eSi.

Revista Colombiana de Estadística 36 (2013) 271–284



Detection of Influential Observations in Semiparametric Regression Model 279

Table 1: Estimates of parametric and nonparametric components
Estimates of Parametric Component
0.008 0.111
-0.501 0.312
0.339 0.261
-0.055 0.329
-0.539 -0.327
-0.711 0.286
-0.280 0.330
0.298 -0.430
0.366 0.323
0.033 -0.573
-0.369 0.181
0.213 -0.063
-0.079 -0.477
0.256 0.251
0.309 0.319
-0.133 0.210
-0.249 -0.407
0.404 0.251
0.036 -0.159
0.307 -0.382
0.176

Estimates of Nonparametric Component
4.950 4.450
5.206 5.345
05.279 5.319
5.282 5.168
4.563 5.343
5.332 5.342
5.341 5.253
5.003 5.295
4.617 5.327
4.912 5.297
5.156 4.941
4.950 4.912
4.435 4.852
5.316 5.089
5.156 5.338
5.309 5.257
5.282 5.329
5.191 5.338
5.298 5.212
5.333 5.289
5.304

From Figure 2, according to Cook’s distances (ÜC, C∗
i and C̆i) adjusted by

Kim et al. (2002), observations 6, 34, 31, 20 and 26 are considered the five most
influential observations on bβββ, observations 22, 13, 23, 26, 20 are considered the
five most influential observations on Òm and observations 34, 6, 20, 26, 13 are
considered the five most influential observations on by. As seen from Figure 1(a),
1(b), there are no high leverage outliers in the data. Therefore, according to our
adjusted Pena’s measure eSi, which is not useful in situations there are the outliers
with low leverage, no observation is considered influential.

5.2. Artificial Data

Since we illustrate the performance of adjusted Pena’s measure eSi, an artificial
data set with high leverage outliers is generated for semiparametric regression. We
generate the data set using the model in the study of Kim et al. (2002)

yi = 0.5zi + (xi − 0.5)2 + εi

We generate the 500 observations in which the last 50 observations would
be high leverage outliers. For this reason, the first 450 of xi from U(0, 1) and
zi = i/450 where εi is generated from N(0, 0.02). The remaining 50 of xi are
generated from U(5, 10) and zi = i/50 where εi is generated from N(5, 2). We
suspect the last 50 observations for high leverage outliers. Figure 3 shows that the
index plots of ÜC, C∗

i , C̆i and eSi.
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As seen from Figure 3, eSi perfectly identifies 50 observations (observations
451− 500) as high leverage outliers. It is said that eSi is very useful for identifying
high leverage outliers in semiparametric regression as in linear regression. In addi-
tion, eSi is clearly better than Cook’s distances (ÜCi, C

∗
i , C̆i) to detect high leverage

outliers in large data as mentioned before.

(a) (b)

(c) (d)

Figure 3: Plots for Diabetes data: (a) index plot of Cook’s distance for bβββ, eCi (b) index
plot of Cook’s distance for Òm, C∗

i , (c) index plot of Cook’s distance for, by,
C̆i (d) index plot of Pena’s measure eSi.

5.3. Simulation Results

Here, we present a Monte Carlo simulation study that is designed to compare
the performance of adjusted Pena’s measure for semiparametric regression model.
We generate the data sets from the same model in the previous section. We
consider three different sample sizes, n = 50, 100, 250 with two different levels of
influential observations (i.e, γ = 10%, 20%). The comparison of influence measures
(ÜC,C∗

i , C̆i and eSi) in semiparametric regression is carried out by the following
steps:

1. Generation of the data with certain percentage of high leverages (X’s out-
liers): For this purpose, we generate the first n(1 − γ)% of xi from U(0, 1)
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and zi = i/(n(1− γ)%) where εi is generated from N(0, 0.02). The remain-
ing nγ% of xi are generated from U(5, 10) and zi = i/(nγ%) where εi is
generated from N(0, 0.02).

2. Generation of the data with certain percentage of both high leverages (X’s
outliers) and outliers (Y ’s outliers): For this purpose, we generate the first
n(1 − γ)% of xi from U(0, 1) and zi = i/(n(1 − γ)%) where εi is generated
from N(0, 0.02). The remaining nγ% of xi are generated from U(5, 10) and
zi = i/(nγ%) where εi is generated from N(5, 2).

3. Generation of the data with certain percentage of both intermediate-leverages
and outliers (Y ’s outliers): For this purpose, we generate the first n(1−γ)% of
xi from U(0, 1) and zi = i/(n(1−γ)%) where εi is generated from N(0, 0.02).
The remaining nγ% of xi are generated from U(1, 3) and zi = i/(nγ%) where
εi is generated from N(5, 2).

4. Generation of the data with certain percentage of low outliers: For this pur-
pose, we generate the first n(1−γ)% of xi from U(0, 1) and zi = i/(n(1−γ)%)
where εi is generated from N(0, 0.02). The remaining nγ% of xi are gener-
ated from U(1, 3) and zi = i/(nγ%) where εi is generated from N(1, 0.2).

5. Each measure is computed from each of the 100 replications.

6. Make comparison of detection of influential observations by using correct
determination rate of each measure (i.e., total number of influential obser-
vations identified divided by total number of influential observations).

Table 2-5 show the correct determination rate of each measure (ÜC,C∗
i , C̆i andeSi) for different shows sizes and percentages of influential observations from 100

replications. From Table 2, adjusted Pena’s measure, eSi, performs similar results
with Cook’s distance C̆i for by to identify the high leverages for all the sample size.
But, it is better than ÜCi, C∗

i for all situations. From Table 3, adjusted Pena’s
measure, eSi clearly performs better than Cook’s distances for bβββ, Òm and by (ÜCi, C∗

i ,
C̆i) to detect high leverages outliers in large data. As seen from Table 3, almost all
high leverage outliers could correctly be detected by eSi for n = 250. From Table
4, adjusted Pena’s measure eSi successfully identifies intermediate leverage outliers
that are not detected by Cook’s distance for n = 100 and n = 250. From Table
5, adjusted Pena’s measure eSi fails to detect low outliers with no high leverage as
expected.
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Table 2: The correct determination rate of high leverages (X’s outliers).

Correct determination of measures (in percentages)

Sample
Size

Percentages of
influential

observations
eCi

C∗
i C̆i eSi

n=50 10% 33 60 60 68
20% 16 19 39 36

n=100 10% 23 11 39 45
20% 17 14 38 35

n=250 10% 49 50 69 72
20% 43 17 75 76eCi: Cook’s distance for bβββ; C∗

i : Cook’s distance for Òm; C̆i: Cook’s distance for by; eSi: Adjusted
Pena’s measure

Table 3: The correct determination rate of both high leverages (X’s outliers) and out-
liers (Y ’s outliers).

Correct determination of measures (in percentages)

Sample
size

Percentages of
influential

observations
eCi

C∗
i C̆i eSi

n=50 10% 51 70 72 80
20% 46 44 68 84

n=100 10% 49 66 75 91
20% 45 23 65 92

n=250 10% 52 52 71 98
20% 44 19 62 98eCi: Cook’s distance for bβββ; C∗

i : Cook’s distance for Òm; C̆i: Cook’s distance for by; eSi:
Adjusted Pena’s measure.

Table 4: The correct determination rate of both intermediate leverages (X’s outliers)
and outliers (Y ’s outliers).

Correct determination of measures (in percentages)

Sample
size

Percentages of
influential

observations
eCi

C∗
i C̆i eSi

n=50 10% 40 48 81 82
20% 32 34 70 86

n=100 10% 32 39 77 86
20% 23 27 66 89

n=250 10% 20 31 73 94
20% 14 17 63 96eCi: Cook’s distance for bβββ; C∗

i : Cook’s distance for Òm; C̆i: Cook’s distance for by; eSi:
Adjusted Pena’s measure.
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Table 5: The Correct Determination Rate of low outliers.

Correct determination of measures (in percentages)

Sample
size

Percentages of
influential

observations
eCi

C∗
i C̆i eSi

n=50 10% 51 38 51 21
20% 28 18 33 22

n=100 10% 39 43 47 13
20% 25 19 30 4

n=250 10% 33 29 43 13
20% 23 12 31 1eCi: Cook’s distance for bβββ; C∗

i : Cook’s distance for Òm; C̆i: Cook’s distance for by; eSi:
Adjusted Pena’s measure.

6. Conclusions

In this paper, we derived Pena’s measure formula for semiparametric regression.
The numerical examples and simulation study show that the proposed Pena’s
measure eSi performs very effectively in the identification of high leverage outliers
and intermediate-leverage outliers in large data sets that are not clearly detected
by adjusted Cook’s distances for semiparametric regression model.�
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