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Abstract

Classical estimation procedures for the parameters of Weibull distribu-
tion are based on precise data. It is usually assumed that observed data
are precise real numbers. However, some collected data might be imprecise
and are represented in the form of fuzzy numbers. Thus, it is necessary to
generalize classical statistical estimation methods for real numbers to fuzzy
numbers. In this paper, different methods of estimation are discussed for
the parameters of Weibull distribution when the available data are in the
form of fuzzy numbers. They include the maximum likelihood estimation,
Bayesian estimation and method of moments. The estimation procedures
are discussed in details and compared via Monte Carlo simulations in terms
of their average biases and mean squared errors. Finally, a real data set
taken from a light emitting diodes manufacturing process is investigated to
illustrate the applicability of the proposed methods.

Key words: Bayesian estimation, EM algorithm, Fuzzy data analysis,
Maximum likelihood principle.

Resumen

Los procedimientos clásicos de estimación para los parámetros de la dis-
tribución Weibull se encuentran basados en datos precisos. Se asume usual-
mente que los datos observados son números reales precisos. Sin embargo,
algunos datos recolectados podrían ser imprecisos y ser representados en la
forma de números difusos. Por lo tanto, es necesario generalizar los méto-
dos de estimación estadísticos clásicos de números reales a números difusos.
En este artículo, diferentes métodos de estimación son discutidos para los
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parámetros de la distribución Weibull cuando los datos disponibles están
en la forma de números difusos. Estos incluyen la estimación por máxima
verosimilitud, la estimación Bayesiana y el método de momentos. Los pro-
cedimientos de estimación se discuten en detalle y se comparan vía simula-
ciones de Monte Carlo en términos de sesgos promedios y errores cuadráticos
medios.

Palabras clave: algoritmo EM, análisis de datos difusos, estimación Baye-
siana, principio de máxima verosimilitud.

1. Introduction

The Weibull distribution was originally proposed by Waloddi Weibull back in
1937 for estimating machinery lifetime. Nowadays, the Weibull distribution is a
broadly used in statistical model in engineering and life-time data analysis. The
probability density function (pdf) and the cumulative distribution function (cdf)
of a two-parameter Weibull random variable X can be written as

f(x;α, λ) = αλxα−1 exp(−λxα), x > 0 (1)

and
F (x;α, λ) = 1− exp(−λxα), x > 0 (2)

respectively, where λ > 0 is the scale and α > 0 is the shape parameter. Several
authors have addressed inferential issues for the parameters of a Weibull distribu-
tion; among others, Al-Baidhani & Sinclair (1987) compared the generalized least
squares, maximum likelihood, and the two mixed method of estimating the param-
eters of a Weibull distribution. Qiao & Tsokos (1994) introduced an effective iter-
ative procedure for the estimation. Watkins (1994) discussed maximum likelihood
estimation for the two parameter Weibull distribution when the data for analysis
contains both times to failure and censored times in operation. Marks (2005) con-
sidered the estimation of Weibull distribution parameters using the symmetrically
located percentiles from a sample. Helu, Abu-Salih & Alkam (2010) proposed
different methods of estimation for the parameters of Weibull distribution based
on different sampling schemes-namely, simple random sample, ranked set sample,
and modified ranked set sample.

The above inference techniques are limited to precise data. In real world sit-
uations, the data sometimes can not be measured and recorded precisely due to
machine errors, human errors or some unexpected situations. The two types of
such data namely, censored data and truncated data are widely used in prac-
tice. Censored data typically arise when an event of interest, such as a disease
or a failure, is only partially observed, because information is gathered at certain
examination times. Two usual models are random right-censorship and random
interval-censorship. In the first case, the observations are assumed to be of the
form Yi = min(Xi,Wi), i = 1, . . . , n, where the Xi are the (partially observed) sur-
vival times, and the Wi are the censoring times. In this model, both survival and
censoring times are assumed to be random, and mutually independent. Estimat-
ing the parameters of Weibull distribution from such data have been considered
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by several authors. See, for example Ageel (2002), Balakrishnan & Kateri (2008),
Nandi & Dewan (2010), Joarder, Krishna & Kundu (2011), Banerjee & Kundu
(2012), and Lin, Chou & Huang (2012). In the case of so-called random interval
censored data, the event is only known to happen between two random examina-
tion times. The observations are thus of the form (Ui, Vi), i = 1, . . . , n, and it is
only known that Ui ≤ Xi ≤ Vi for all i. Here again it is customary to assume
independence between survival times Xi and censoring interval endpoints. Sta-
tistical analysis of Weibull distribution based on interval censored data has been
discussed by Ng & Wang (2009) and Tan (2009), among others. Truncation is
similar to but distinct from the concept of censoring. When the existence of the
unseen “observation ” is not known for observations that fall outside the particular
range, the data that are observed are said to be truncated. Recently, Balakrishnan
& Mitra (2012) developed the EM algorithm for the estimation of the parameters
of the Weibull distribution based on left truncated and right censored data.

The problem addressed in this paper, is different from censoring and trancation.
We are not concerned with imprecision arising from random inspection times, but
with the situation in which the result of a random experiment is reported from the
observer to the statistician with some imprecision, arising from its limited percep-
tion or recollection of the precise numerical values. For instance, the lifetime of
some shaft may be reported as imprecise quantities such as: “about 1, 000h”, “ap-
proximately 1, 400h”, “almost between 1, 000h and 1, 200h”, “essentially less than
1, 200h”, and so on. The lack of precision of such data can be described using
fuzzy sets. The classical statistical estimation methods are not appropriate to
deal with fuzzy sets. Therefore, the conventional procedures used for estimating
the parameters of Weibull distribution will have to be adapted to the new sit-
uation. The main aim of this paper is to develop the inferential procedures for
the two-parameter Weibull distribution when the available data are in the form of
fuzzy numbers. In Section 2, we review the fundamental notation and basic defi-
nitions of fuzzy set theory. In Section 3, we first introduce a generalized likelihood
function based on fuzzy data. We then discuss the computation of maximum like-
lihood estimates (MLEs) of the parameters α and λ by using the Newton-Raphson
(NR) and Expectation Maximization (EM) algorithms, in Section 4. In Section
5, the Bayes estimates of the unknown parameters are obtained by using the ap-
proximation form of Tierney & Kadane (1986) under the assumption of Gamma
priors. The estimation via method of moments is provided in Section 6. A Monte
Carlo simulation study is presented in Section 7, which provides a comparison of
all estimation procedures developed in this paper and one real data set is analyzed
for illustrative purposes.

2. Basic Definition of Fuzzy Sets

To appreciate the nature of a fuzzy set, let us consider the following hypothetical
example taken from Gertner & Zhu (1996). Consider an experiment characterized
by a probability space S = (X ,BX , Pθ), where (X ,BX ) is a measurable space and
Pθ belongs to a specified family of probability measures {Pθ, θ ∈ Θ} on (X ,BX ).
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Any indicator function IA : X → {0, 1}, defined by

IA(x) =

{
1 x ∈ A,
0 x /∈ A,

characterizes a crisp subset A in X . For example, if X = {xi, i = 1, . . . , n},
represents all trees in a forest stand, then A = {x, x’s age ≤ 40 yr} is its subset. So
if tree x3 is 27 yr old, x3 ∈ A and IA(x3) = 1; and if x239’s age equals 56, x239 /∈ A
and IA(x239) = 0. However, when referring to a “young tree”, the set above
described becomes a fuzzy set. Now relate each tree to its youthfulness by assigning
a value between 1, representing absolutely young, and 0, representing absolutely
not young, as the membership degree describing the subjective uncertainty of a tree
being considered young. For instance, µyoung(x3) = 0.9, since x3 will most likely be
allocated into a younger class, whereas µyoung(x239) = 0.49 for x239 seems neither
very young nor very old compared to other older trees in that stand. Thus, similar
to crisp sets, a fuzzy subset Ã in X is characterized by a membership function
µÃ(x) which associates with each point x in X a real number in the interval [0, 1],
with the value of µÃ(x) at x representing the “grade of membership”of x in Ã. We
hereafter assume that the sample space X is a set in a Euclidean space and BX
is the smallest Borel σ−field on X . A fuzzy event in X is a fuzzy subset Ã of
X , whose membership function µÃ is Borel measurable. Many examples of fuzzy
samples and observations appear in social and natural sciences. These occur when
the linguistic concepts or propositions cannot be precisely defined, or accurate
measurements of variables are not possible or necessary.

Example 1. An investigator is interested in analyzing the amount of an adverse
substance extracted from a special brand of cigarettes. Assume that the investiga-
tor has not a mechanism of measurement which is sufficiently precise to determine
exactly the amount of adverse substance of cigarettes, but rather he can only ap-
proximate them by means of imprecise observations, for instance, “The amount
of adverse substance of cigarette is approximately 30 to 40 milligrams”. A fuzzy
approach lies in expressing the preceding observation as a fuzzy event Ã such as
that defined, for instance, by the membership function (Figure 1).

µÃ(x) =


x−20

10 20 ≤ x ≤ 30,

1 30 ≤ x ≤ 40,
50−x

10 40 ≤ x ≤ 50,

0 otherwise,

The notion of probability was extended to fuzzy events by Zadeh (1968) as
follows.

Definition 1. Let (Rn,A, P ) be a probability space in which A is the σ−field of
Borel sets in Rn and P is a probability measure over Rn. Then, the probability of
a fuzzy event Ã in Rn is defined by:

P (Ã) =

∫
µÃ(x)dP. (3)
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Figure 1: Fuzzy approach of the imprecise observation “approximately 30 to 40 ”.

In particular, assume that P is the probability distribution of a continuous
random variable Y with p.d.f. g(Y ). The conditional density of Y given Ã is
given by

g(y | Ã) =
µÃ(y)g(y)∫
µÃ(u)g(u)du

. (4)

The set consisting of all observable events from the experiment S determines
a fuzzy information system (f.i.s.) associated with it, which is defined as follows.

Definition 2. (Tanaka ?). A fuzzy information system S̃ associated with the
experiment S is a fuzzy partition F = {x̃1, . . . , x̃K} of X , i.e., a set of K fuzzy
events on X satisfying the orthogonality condition

K∑
k=1

µx̃k(x) = 1,

where µx̃k denotes the membership function of x̃k.

We now examine a brief example illustrating the preceding concept:

Example 2. To evaluate the problem of psychological depression in a population,
there is no exact method that can measure and express the exact value for the
severity of the disease in each person and, so measurement results may be reported
by means of the following fuzzy observations: x̃1 = “approximately lower than 20”,
x̃2 =“approximately 25 to 30”, x̃3 = “approximately 35 ”, x̃4 =“approximately 40
to 45”, x̃5 = “approximately 50”, x̃6 = “approximately higher than 55”, which are
characterized by the membership functions

µx̃1
(x) =


1 x ≤ 20,
25−x

5 20 ≤ x ≤ 25,

0 otherwise,

µx̃2
(x) =


x−20

5 20 ≤ x ≤ 25,

1 25 ≤ x ≤ 30,
35−x

5 30 ≤ x ≤ 35,

0 otherwise,
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µx̃3
(x) =


x−30

5 30 ≤ x ≤ 35,
40−x

5 35 ≤ x ≤ 40,

0 otherwise,

µx̃4
(x) =


x−35

5 35 ≤ x ≤ 40,

1 40 ≤ x ≤ 45,
50−x

5 45 ≤ x ≤ 50,

0 otherwise,

µx̃5
(x) =


x−45

5 45 ≤ x ≤ 50,
55−x

5 50 ≤ x ≤ 55,

0 otherwise,

µx̃6
(x) =


x−50

5 50 ≤ x ≤ 55,

1 x ≥ 55,

0 otherwise,

respectively, (see Fig.2). Clearly, a f.i.s. S̃ = {x̃1, ..., x̃7} can be immediately

constructed by defining µx̃7
= 1−

6∑
i=1

µx̃i)

0

1

20 25 30 35 40 45 50 55

x

1
~xµ

2
~xµ

3
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Figure 2: Membership functions of the fuzzy observations x̃1, x̃2, x̃3, x̃4, x̃5 and x̃6.

For more details about the membership functions and probability measures of
fuzzy sets, one can refer to Singpurwalla & Booker (2004).

In order to model imprecise data, a generalization of real numbers is necessary.
These data can be represented by fuzzy numbers. A fuzzy number is a subset,
denoted by x̃, of the set of real numbers (denoted by R) and is characterized
by the so called membership function µx̃(.). Fuzzy numbers satisfy the following
constraints (see Dubois & Prade (1980)):

(1) µx̃ : R −→ [0, 1] is Borel-measurable;
(2) ∃x0 ∈ R : µx̃(x0) = 1;

(3) The so-called λ−cuts (0 < λ ≤ 1), defined as Bλ(x̃) = {x ∈ R : µx̃(x) ≥
λ}, are all closed intervals, i.e., Bλ(x̃) = [aλ, bλ], ∀λ ∈ (0, 1].

With the definition of a fuzzy number given above, an exact (non-fuzzy) number
can be treated as a special case of a fuzzy number. For a non-fuzzy real observation
x0 ∈ R, its corresponding membership function is µx0(x0) = 1.
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Among the various types of fuzzy numbers, the triangular and trapezoidal fuzzy
numbers are most convenient and useful in describing fuzzy data. For triangular
membership functions, the triangular fuzzy number can be defined as x̃ = (a, b, c)
and its membership function is defined by the following expression:

µx̃(x) =


x−a
b−a a ≤ x ≤ b,
c−x
c−b b ≤ x ≤ c,
0 otherwise.

The trapezoidal fuzzy number can be defined as x̃ = (a, b, c, d) with member-
ship function

µx̃(x) =


x−a
b−a a ≤ x ≤ b,
1 b ≤ x ≤ c,
d−x
d−c c ≤ x ≤ d,
0 otherwise.

3. Fuzzy Data and the Likelihood Function

Suppose thatX1, . . . , Xn is a random sample of size n fromWeibull distribution
with pdf given by (1). Let X = (X1, . . . , Xn) denotes the corresponding random
vector. If a realization x = (x1, . . . , xn) of X was known exactly, we could obtain
the complete-data likelihood function as

L(α, λ;x) = αnλn exp(−λ
n∑
i=1

xαi )

n∏
i=1

xα−1
i (5)

Now consider the problem where x is not observed precisely and only partial
information about x is available in the form of a fuzzy subset x̃ with the Borel
measurable membership function µx̃(x). In this setting, the fuzzy observation
x̃ can be understood as encoding the observer’s partial knowledge about the re-
alization x of random vector X, and the membership function µx̃ is seen as a
possibility distribution interpreted as a soft constraint on the unknown quantity
x. The fuzzy set x̃ can be considered to be generated by a two-step process:

1. A realization x is drawn from X;

2. The observer encodes his/her partial knowledge of x in the form of a possi-
bility distribution µx̃.

It must be noted that, in this model, only step 1 is considered to be a random
experiment. Step 2 implies gathering information about x and modeling this
information as a possibility distribution.

Example 3. Consider a life-testing experiment in which n identical ball bearings
are placed on test, and we are interested in the lifetime of these ball bearings.
The unknown lifetime xi of ball bearing i may be regarded as a realization of a
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random variable Xi induced by random sampling from a total population of ball
bearings. In practice, however, measuring the lifetime of a ball bearing may not
yield an exact result. A ball bearing may work perfectly over a certain period but
be braking for some time, and finally be unusable at a certain time. Assume that
two intervals are determined for the lifetime of each ball bearing i as follows:

• an interval [ai, di] certainly containing xi;

• an interval [bi, ci] containing highly plausible values for xi.

This information may be encoded as a trapeozoidal fuzzy number x̃i = (ai, bi, ci, di)
with support [ai, di] and core [bi, ci], interpreted as a possibility distribution con-
straining the unknown value xi. Information about x may be represented by the
joint possibility distribution

µx̃(x) = µx̃1
(x1)× ...× µx̃n(xn). (6)

Once x̃ is given, and assuming its membership function to be the Borel mea-
surable, we can compute its probability according to Zadeh’s definition of the
probability of a fuzzy event. By using the expression (3), the observed-data like-
lihood function can then be obtained as

LO(α, λ; x̃) = P (x̃;α, λ) =

∫
f(x;α, λ)µx̃(x)dx. (7)

Since the data vector x is a realization of an independent identically distributed
(i.i.d.) random vector X, and assuming the joint membership function µx̃(x) to
be decomposable as in (6), the likelihood function (7) can be written as:

LO(α, λ; x̃) =

n∏
i=1

∫
αλxα−1 exp(−λxα)µx̃i(x)dx, (8)

and the observed-data log likelihood is

L∗(α, λ; x̃) = logLO(α, λ; x̃)

= n(logα+ log λ) +

n∑
i=1

log

∫
xα−1 exp(−λxα)µx̃i(x)dx. (9)

4. Maximum Likelihood Estimation

The idea behind maximum likelihood parameter estimation is to determine the
parameters that maximize the probability (likelihood) of the sample data. From
a statistical point of view, the method of maximum likelihood is considered to
be more robust and yields estimators with good statistical properties. In other
words, maximum likelihood methods are versatile and apply to most models and
to different types of data. The maximum likelihood estimate of the parameters α
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and λ can be obtained by maximizing the log-likelihood L∗(α, λ; x̃). Equating the
partial derivatives of the log-likelihood (9) with respect to α and λ to zero, the
resulting two equations are:

∂

∂α
L∗(α, λ; x̃) =

n

α
+

n∑
i=1

∫
(xα−1 − λx2α−1) log x exp (−λxα)µx̃i(x)dx∫

xα−1 exp (−λxα)µx̃i(x)dx
= 0 (10)

and
∂

∂λ
L∗(α, λ; x̃) =

n

λ
−

n∑
i=1

∫
x2α−1 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

= 0. (11)

Since there are no closed form of the solutions to the likelihood equations (10)
and (11), an iterative numerical search can be used to obtain the MLEs. In the
following, we describe the NR method and the EM algorithm to determine the
MLEs of the parameters α and λ.

4.1. NR Algorithm

NR algorithm is a direct approach for estimating the relevant parameters in a
likelihood function. In this algorithm, the solution of the likelihood equation is
obtained through an iterative procedure. Let θ = (α, λ)T be the parameter vector.
Then, at the (h+1)th step of iteration process, the updated parameter is obtained
as

θ(h+1) = θ(h) −
[
∂2L∗(θ; x̃)

∂θ∂θT
|θ=θ(h)

]−1 [
∂L∗(θ; x̃)

∂θ
|θ=θ(h)

]
(12)

where
∂L∗(θ; x̃)

∂θ
=

(
∂L∗(α,λ;x̃)

∂α
∂L∗(α,λ;x̃)

∂λ

)
and

∂2L∗(θ; x̃)

∂θ∂θT
=

(
∂2L∗(α,λ;x̃)

∂α2

∂2L∗(α,λ;x̃)
∂λ∂α

∂2L∗(α,λ;x̃)
∂λ∂α

∂2L∗(α,λ;x̃)
∂λ2

)

The second-order derivatives of the log-likelihood with respect to the parameters,
required for proceeding with the NR method, are obtained as follows.

∂2

∂α2
L∗(α, λ; x̃) = − n

α2

+

n∑
i=1

{
∫

(λ2x3α−1 − λx2α−1)(log x)2 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

+

∫
(xα−1 − 2λx2α−1)(log x)2 exp (−λxα)µx̃i(x)dx∫

xα−1 exp (−λxα)µx̃i(x)dx
}

−
n∑
i=1

[∫
(xα−1 − λx2α−1) log x exp (−λxα)µx̃i(x)dx∫

xα−1 exp (−λxα)µx̃i(x)dx

]2
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∂2

∂λ2
L∗(α, λ; x̃) = − n

λ2
+

n∑
i=1

{
∫
x3α−1 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

−[

∫
x2α−1 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

]2},

∂2

∂λ∂α
L∗(α, λ; x̃) = −

n∑
i=1

∫
(2x2α−1 − λx3α−1) log x exp (−λxα)µx̃i(x)dx∫

xα−1 exp (−λxα)µx̃i(x)dx

+

n∑
i=1

{
∫

(1− λxα)xα−1 log x exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

×
∫
x2α−1 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

}

The iteration process then continues until convergence, i.e., until ‖ θ(h+1)−θ(h) ‖<
ε, for some pre-fixed ε > 0. The maximum likelihood estimate of (α, λ) via NR
algorithm is thereafter refereed as “(α̂NR, λ̂NR)” in this paper.

It should be pointed out that the second-order derivatives of the log-likelihood
are required at every iteration in the NR method. Sometimes the calculation of the
derivatives based on fuzzy data can be rather tedious. Another viable alternative
to the NR algorithm is the well-known EM algorithm. In the following, we discuss
how that can be used to determine the MLEs in this case.

4.2. EM Algorithm

The EM algorithm is a broadly applicable approach to the iterative computa-
tion of maximum likelihood estimates and useful in a variety of incomplete-data
problems. Since the observed fuzzy data x̃ can be seen as an incomplete specifi-
cation of a complete data vector x, the EM algorithm is applicable to obtain the
maximum likelihood estimates of the unknown parameters. In the following, we
use the fuzzy EM algorithm (see Denoeux (2011)) to determine the MLEs of α
and λ.
From the Eq. (5), the log-likelihood function for the complete data vector x
becomes:

logL(α, λ;x) = n logα+ n log λ+ (α− 1)

n∑
i=1

log xi − λ
n∑
i=1

xαi (13)

Taking the derivative with respect to α and λ, respectively, on (13), the following
likelihood equations are obtained:

n

λ
=

n∑
i=1

xαi (14)

and
n

α
= λ

n∑
i=1

xαi log xi −
n∑
i=1

log xi (15)
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Therefore the EM algorithm is given by the following iterative process:

1. Given starting values of α and λ, say α(0) and λ(0) and set h = 0.
2. In the (h+ 1)th iteration,

• The E-step requires to compute the following conditional expectations using
the expression (4):

E1i = Eα(h),λ(h)(Xα | x̃i) =

∫
x2α(h)−1 exp

(
−λ(h)xα

(h)
)
µx̃i(x)dx∫

xα(h)−1 exp
(
−λ(h)xα(h)

)
µx̃i(x)dx

E2i = Eα(h),λ(h)(logX | x̃i) =

∫
xα

(h)−1 log x exp
(
−λ(h)xα

(h)
)
µx̃i(x)dx∫

xα(h)−1 exp
(
−λ(h)xα(h)

)
µx̃i(x)dx

E3i = Eα(h),λ(h)(Xα logX | x̃i)

=

∫
x2α(h)−1 log x exp

(
−λ(h)xα

(h)
)
µx̃i(x)dx∫

xα(h)−1 exp
(
−λ(h)xα(h)

)
µx̃i(x)dx

and the likelihood equations (14) and (15) are replaced by

n

λ
=

n∑
i=1

E1i, (16)

and
n

α
= λ

n∑
i=1

[E3i − E2i] . (17)

• The M-step requires to solve the Eqs. (16) and (17), and obtain the next
values, λ(h+1) and α(h+1), of λ and α, respectively, as follows:

λ(h+1) =
n

n∑
i=1

E1i

α(h+1) =

{
1

n
λ(h+1)

n∑
i=1

[E3i − E2i]

}−1

3. Checking convergence, if the convergence occurs then the current α(h+1) and
λ(h+1) are the maximum likelihood estimates of α and λ via EM algorithm; oth-
erwise, set h = h+ 1 and go to Step 2.
The maximum likelihood estimate of (α, λ) via EM algorithm is thereafter refereed
as “(α̂EM , λ̂EM )” in this paper.
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5. Bayesian Estimation

In recent decades, the Bayes viewpoint, as a powerful and valid alternative
to traditional statistical perspectives, has received frequent attention for statis-
tical inference. In this section, we consider the Bayesian estimation under the
assumptions that α and λ have independent gamma priors with the pdfs

π1(α) =
dc

Γ(c)
αc−1 exp(−αd), α > 0 (18)

and

π2(λ) =
ba

Γ(a)
λa−1 exp(−λb), λ > 0 (19)

with the parameters α ∼ Gamma(c, d) and λ ∼ Gamma(a, b). Based on the above
priors, the joint posterior density function of α and λ given the data can be written
as follows:

π(α, λ | x̃) =
π1(α)π2(λ)`(α, λ; x̃)

∞∫
0

∞∫
0

π1(α)π2(λ)`(α, λ; x̃)dαdλ

(20)

where

`(α, λ; x̃) = α(n+c−1)λ(n+a−1) exp(−αd) exp(−λb)
n∏
i=1

∫
xα−1 exp (−λxα)µx̃i(x)dx

is the likelihood function based on the fuzzy sample x̃. Then, under a squared
error loss function, the Bayes estimate of any function of α and λ, say g(α, λ), is

E(g(α, λ) | x̃) =

∞∫
0

∞∫
0

g(α, λ)π1(α)π2(λ)`(α, λ; x̃)dαdλ

∞∫
0

∞∫
0

π1(α)π2(λ)`(α, λ; x̃)dαdλ

=

∞∫
0

∞∫
0

g(α, λ)eQ(α,λ)dαdλ

∞∫
0

∞∫
0

eQ(α,λ)dαdλ

(21)

where Q(α, λ) = ln[π1(α)π2(λ)] + ln `(α, λ; x̃) ≡ ρ(α, λ) + L(α, λ). Note that Eq.
(21) cannot be obtained analytically; therefore, in the following we adopt Tierney
and Kadane’s approximation for computing the Bayes estimates.

Setting H(α, λ) = Q(α, λ)/n and H∗(α, λ) = [ln g(α, λ) +Q(α, λ)] /n, the ex-
pression in (21) can be reexpressed as

E(g(α, λ) | x̃) =

∫∞
0

∫∞
0
enH

∗(α,λ)dαdλ∫∞
0

∫∞
0
enH(α,λ)dαdλ

(22)
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Following Tierney & Kadane (1986), Eq. (22) can be approximated as the
following form:

ĝBT (α, λ) =

[
det Σ∗

det Σ

]1/2

exp
{
n
[
H∗(ᾱ∗, λ̄∗)−H(ᾱ, λ̄)

]}
(23)

where (ᾱ∗, λ̄∗) and (ᾱ, λ̄) maximizeH∗(α, λ) andH(α, λ), respectively, and Σ∗ and
Σ are the negatives of the inverse Hessians of H∗(α, λ) and H(α, λ) at (ᾱ∗, λ̄∗)
and (ᾱ, λ̄), respectively.

In our case, we have

H(α, λ) =
1

n
{k + (n+ c− 1) logα+ (n+ a− 1) log λ− αd

−λb+

n∑
i=1

log

∫
xα−1 exp (−λxα)µx̃i(x)dx}.

where k is a constant; therefore, (ᾱ, λ̄) can be obtained by solving the following
two equations

∂

∂α
H(α, λ) =

1

n
{n+ c− 1

α
− d

+

n∑
i=1

∫
(xα−1 − λx2α−1) log x exp (−λxα)µx̃i(x)dx∫

xα−1 exp (−λxα)µx̃i(x)dx
}

∂

∂λ
H(α, λ) =

1

n

{
n+ a− 1

λ
− b−

n∑
i=1

∫
x2α−1 exp (−λxα)µx̃i(x)dx∫
xα−1 exp (−λxα)µx̃i(x)dx

}
and, from the second derivatives of H(α, λ), the determinant of the negative of
the inverse Hessian of H(α, λ) at (ᾱ, λ̄) is given by

det Σ = (H11H22 −H2
12)−1

where

H11 =
1

n
{−n+ c− 1

ᾱ2

+

n∑
i=1

(

∫
(λ̄2x3ᾱ−1 − λ̄x2ᾱ−1)(log x)2 exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

+

∫
(xᾱ−1 − 2λ̄x2ᾱ−1)(log x)2 exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

)

−
n∑
i=1

[

∫
(xᾱ−1 − λ̄x2ᾱ−1) log x exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

]2 }

H22 =
1

n
{−n+ a− 1

λ̄2
+

n∑
i=1

(

∫
x3ᾱ−1 exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

−[

∫
x2ᾱ−1 exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

]2)}
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H12 =
1

n
{−

n∑
i=1

∫
(2x2ᾱ−1 − λ̄x3ᾱ−1) log x exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

+

n∑
i=1

(

∫
(1− λ̄xᾱ)xᾱ−1 log x exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

×
∫
x2ᾱ−1 exp

(
−λ̄xᾱ

)
µx̃i(x)dx∫

xᾱ−1 exp
(
−λ̄xᾱ

)
µx̃i(x)dx

)}

Now, following the same arguments with g(α, λ) = α and λ, respectively, in
H∗(α, λ), α̂BT and λ̂BT in Equation (23) can then be obtained in a straightforward
manner.

6. Method of Moments

It is well-known that the kth moment of the Weibull distribution with pdf (1)
is

E(Xk) = λ−
k
αΓ(1 +

k

α
)

where Γ(.) is the complete Gamma function.
By equating the first and the second sample moments to the corresponding

population moments, the following equations can be used to find the estimates of
moment method.

λ−
1
αΓ(1 +

1

α
) =

1

n

n∑
i=1

Eα,λ(X | x̃i) (24)

λ−
2
αΓ(1 +

2

α
) =

1

n

n∑
i=1

Eα,λ(X2 | x̃i) (25)

Since the closed form of the solutions to Eqs. (24) and (25) could not be
obtained, an iterative numerical process to obtain the parameter estimates is de-
scribed as follows:
1. Let the initial estimates of α and λ, say α(0) and λ(0) with h = 0.
2. In the (h+ 1)th iteration, we first compute

Eα(h),λ(h)(Xr | x̃i) =

∫
xα

(h)+r−1 exp
(
−λ(h)xα

(h)
)
µx̃i(x)dx∫

xα(h)−1 exp
(
−λ(h)xα(h)

)
µx̃i(x)dx

, r = 1, 2.

3. Based on equations (24) and (25), solve the following equation for α[
n∑
i=1

Eα(h),λ(h)(X | x̃i)
]2

n

[
n∑
i=1

Eα(h),λ(h)(X2 | x̃i)
] =

[
Γ(1 + 1

α )
]2[

Γ(1 + 2
α )
]
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to obtain the solution as α(h+1).
4. The solution for λ, say λ(h+1), is obtained through the following equation

λ(h+1) =


nΓ(1 + (1/α(h+1)))
n∑
i=1

Eα(h),λ(h)(X | x̃i)


α(h+1)

5. Setting h = h+ 1, repeat steps 2 to 4 until convergence occurs and denote the
method of moment estimates as α̂M and λ̂M .

0

1

0.05 0.25 0.5 0.75 1 1.5 2 3

x

1
~xµ

2
~xµ

3
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7
~xµ
8
~xµ

Figure 3: Fuzzy information system used to encode the simulated data.

7. Numerical Experiments

7.1. Simulation

In this section, we present some experimental results, mainly to observe how the
different methods behave for different sample sizes. We obtain the estimates of
the unknown parameters α and λ using the three methods provided in the pre-
ceding sections. The computations are performed using R 2.14.0 (R Development
Core Team (2011)), which is a non-commercial, open source software package for
statistical computing and graphics. First, for different sets of parameter values
namely; (α, λ) = (0.5, 1), (1, 1), (2, 1), and various choices of n, we have generated
i.i.d. random samples, say x, from the Weibull distribution. Each realization of x
was made fuzzy, using the f.i.s. shown in Fig.3, corresponding to the membership
functions

µx̃1
(x) =


1 x ≤ 0.05,
0.25−x

0.2 0.05 ≤ x ≤ 0.25,

0 otherwise,

µx̃2
(x) =


x−0.05

0.2 0.05 ≤ x ≤ 0.25,
0.5−x
0.25 0.25 ≤ x ≤ 0.5,

0 otherwise,
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µx̃3
(x) =


x−0.25

0.25 0.25 ≤ x ≤ 0.5,
0.75−x

0.25 0.5 ≤ x ≤ 0.75,

0 otherwise,

µx̃4
(x) =


x−0.5
0.25 0.5 ≤ x ≤ 0.75,

1−x
0.25 0.75 ≤ x ≤ 1,

0 otherwise,

µx̃5
(x) =


x−0.75

0.25 0.75 ≤ x ≤ 1,
1.5−x

0.5 1 ≤ x ≤ 1.5,

0 otherwise,

µx̃6
(x) =


x−1
0.5 1 ≤ x ≤ 1.5,
2−x
0.5 1.5 ≤ x ≤ 2,

0 otherwise,

µx̃7
(x) =


x−1.5

0.5 1.5 ≤ x ≤ 2,

3− x 2 ≤ x ≤ 3,

0 otherwise,

µx̃8
(x) =


x− 2 2 ≤ x ≤ 3,

1 x ≥ 3,

0 otherwise.

Then the estimates of α and λ for the fuzzy sample were computed using the
maximum likelihood method (via NR and EM algorithms), the moments method
and a Bayesian procedure. For computing the Bayes estimates, we have assumed
that λ and α have Gamma(a, b) and Gamma(c, d) priors respectively. To make the
comparison meaningful, it is assumed that the priors are non-informative, and they
are a = b = c = d = 0. Note that in this case the priors are non-proper also. Press
(2001) suggested to use very small non-negative values of the hyperparameters in
this case, and it will make the priors proper. We have tried a = b = c = d = 0.0001.
The results are not significantly different than the corresponding results obtained
using non-proper priors, and are not reported due to space. From now on, the
estimates of parameters obtained by using NR algorithm, EM algorithm, Bayesian
procedure and moments method will be denoted by NR, EM, BET and MME,
respectively. The average biases (AB) and mean squared errors (MSE) of the
estimates over 5, 000 replications are presented in Tables 1-2.

From the experiments, we found that using the NR or EM algorithm for the
computation of maximum likelihood estimates of α and λ give similar estimation
results, but EM is computationally slower. For small and moderate sample sizes,
the Bayesian procedure gives the most precise parameter estimates as shown by
ABs and MSEs in Tables 1-2. For large sample sizes (n = 100, 200 and 500), the
performance of the MLEs, MMEs and Bayes estimates are almost identical. For
all the methods, it is observed that as the sample size increases, the biases and
MSEs of the estimates decrease as expected.

7.2. Application example

In order to demonstrate the application of proposed methods, let us consider a
case study on the light emitting diodes (LED) manufacturing process that focuses
on the luminous intensities of LED sources. The process distribution has been
justified and has been shown to be fairly close to the Weibull distribution. A
sample of size n = 30 is taken from the stable process. Since the data given by
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Table 1: MSE of the estimates of α and λ for different sample sizes.
n α λ Estimation of α Estimation of λ

NR EM BET MME NR EM BET MME
15 0.5 1 0.0619 0.0620 0.0594 0.0705 0.0870 0.0871 0.0836 0.092

1 1 0.0987 0.0988 0.0830 0.1246 0.1129 0.1130 0.1091 0.1191
2 1 0.1263 0.1264 0.1129 0.1380 0.1465 0.1465 0.1421 0.1483

20 0.5 1 0.0558 0.0559 0.0512 0.0631 0.0727 0.0728 0.0639 0.0792
1 1 0.0942 0.0943 0.0744 0.1193 0.1088 0.1089 0.0966 0.1139
2 1 0.1017 0.1018 0.0922 0.1240 0.1226 0.1227 0.1182 0.1259

30 0.5 1 0.0366 0.0367 0.0341 0.0394 0.0489 0.0489 0.0422 0.0519
1 1 0.0614 0.0614 0.0488 0.0828 0.0691 0.0692 0.0646 0.0707
2 1 0.0721 0.0722 0.0630 0.0895 0.0843 0.0844 0.0819 0.0895

50 0.5 1 0.0285 0.0286 0.0257 0.0335 0.0365 0.0365 0.0342 0.0386
1 1 0.0361 0.0362 0.0331 0.0451 0.0427 0.0427 0.0419 0.0430
2 1 0.0488 0.0489 0.0425 0.0536 0.0572 0.0572 0.0558 0.0587

70 0.5 1 0.0214 0.0215 0.0208 0.0232 0.0305 0.0306 0.0291 0.0318
1 1 0.0282 0.0282 0.0225 0.0346 0.0338 0.0339 0.0328 0.0345
2 1 0.0327 0.0328 0.0311 0.0387 0.0478 0.0478 0.0460 0.0491

100 0.5 1 0.0154 0.0154 0.0152 0.0156 0.0227 0.0228 0.0220 0.0236
1 1 0.0191 0.0192 0.0187 0.0195 0.0284 0.0285 0.0282 0.0289
2 1 0.0270 0.0270 0.0263 0.0271 0.0395 0.0395 0.0390 0.0397

200 0.5 1 0.0104 0.0104 0.0098 0.0109 0.0174 0.0175 0.0168 0.0179
1 1 0.0127 0.0128 0.0120 0.0134 0.0211 0.0211 0.0202 0.0218
2 1 0.0214 0.0214 0.0209 0.0225 0.0356 0.0356 0.0348 0.0360

500 0.5 1 0.0055 0.0055 0.0051 0.0058 0.0118 0.0118 0.0113 0.0122
1 1 0.0086 0.0086 0.0085 0.0088 0.0173 0.0174 0.0161 0.0179
2 1 0.0142 0.0142 0.0139 0.0153 0.0235 0.0235 0.0230 0.0238

luminous intensity of a particular LED inevitably have some degree of imprecision,
the luminous intensities of diodes are reported in the form of lower and upper
bounds as well as a point estimate, which are as follows:

DATA SET:

(2.163, 2.738, 3.068), (5.972, 6.353, 8.150), (1.032, 1.971, 2.642),

(0.628, 0.964, 1.735), (2.995, 3.442, 5.066), (3.766, 5.814, 6.212),

(0.974, 1.839, 2.045), (4.352, 5.206, 5.988), (3.920, 4.762, 6.121),

(1.375, 2.195, 3.086), (0.618, 0.839, 2.217), (4.575, 6.050, 6.734),

(1.027, 1.218, 3.116), (6.279, 8.156, 9.435), (2.821, 3.409, 5.272),

(7.125, 8.470, 9.044), (5.443, 6.231, 7.395), (1.766, 2.190, 2.638),

(7.155, 8.013, 8.352), (0.830, 1.288, 2.541), (3.590, 4.169, 4.899),

(5.965, 7.344, 8.019), (3.177, 3.600, 4.213), (4.634, 5.780, 7.058),

(7.261, 8.325, 8.871), (2.247, 2.990, 4.128), (6.032, 7.746, 8.529),

(4.065, 5.312, 7.480), (5.434, 7.093, 7.655), (1.336, 2.750, 3.284).

In our approach, each triplet is modeled by a triangular fuzzy number x̃i,
and is interpreted as a possibility distribution related to an unknown value xi,
itself a realization of a random variable Xi. For this data, we employ NR and
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Table 2: AB of the estimates of α and λ for different sample sizes.
n α λ Estimation of α Estimation of λ

NR EM BET MME NR EM BET MME
15 0.5 1 0.1272 0.1273 0.0734 0.1533 0.1180 0.1181 0.1092 0.1230

1 1 0.1381 0.1382 -0.0783 0.1698 0.1291 0.1292 0.1262 0.1322
2 1 0.1914 0.1915 0.1527 0.2038 0.1570 0.1571 0.1503 0.1637
20 0.5 1 0.1091 0.1092 -0.0617 0.1326 0.0931 0.0931 0.0865 0.1026

1 1 0.1354 0.1355 -0.0699 0.1633 0.1205 0.1206 0.1177 0.1298
2 1 0.1775 0.1775 0.1344 0.1851 0.1427 0.1428 0.1321 0.1485

30 0.5 1 0.0922 0.0923 0.0591 0.1130 0.0778 0.0779 0.0631 0.0840
1 1 0.1228 0.1228 -0.0621 0.1417 0.1086 0.1087 0.1059 0.1152
2 1 0.1439 0.1439 0.1223 0.1507 0.1162 0.1163 0.1137 0.1218

50 0.5 1 0.0754 0.0755 0.0518 0.0908 0.0620 0.0621 0.0582 0.0685
1 1 0.0917 0.0918 -0.0571 0.1275 0.0927 0.0927 0.0905 0.0996
2 1 0.1254 0.1255 0.1033 0.1445 0.1067 0.1067 0.1013 0.1151

70 0.5 1 0.0628 0.0629 0.0435 0.0711 0.0514 0.0514 0.0507 0.0536
1 1 0.0887 0.0887 0.0494 0.1065 0.0833 0.0834 0.0821 0.0875
2 1 0.1057 0.1058 -0.0932 0.1126 0.0983 0.0983 0.0970 0.0994

100 0.5 1 0.0413 0.0413 0.0408 0.0419 0.0459 0.0459 0.0455 0.0463
1 1 0.0438 0.0438 0.0426 0.0440 0.0648 0.0648 0.0642 0.0655
2 1 0.0906 0.0907 0.0896 0.0918 0.0952 0.0952 0.0948 0.0961

200 0.5 1 0.0287 0.0288 0.0281 0.0290 0.0317 0.0318 0.0314 0.0318
1 1 0.0349 0.0349 0.0345 0.0353 0.0573 0.0573 0.0570 0.0574
2 1 0.0855 0.0856 0.0851 0.0859 0.0736 0.0737 0.0733 0.0738

500 0.5 1 0.0211 0.0212 0.0207 0.0225 0.0244 0.0244 0.0241 0.0245
1 1 0.0267 0.0268 0.0260 0.0271 0.0408 0.0409 0.0404 0.0412
2 1 0.0762 0.0762 0.0758 0.0766 0.0553 0.0554 0.0550 0.0557

EM algorithms to compute the ML estimates. The stopping criterion is based
on the difference between the two consecutive iterates, with a tolerance value
ε = 10−6. The final MLEs are (α̂NR, λ̂NR) = (2.1094, 0.0318) and (α̂EM , λ̂EM ) =
(2.1095, 0.0319). Also, by using the procedure presented in section 6, the moment
estimate of (α, λ) becomes (α̂M , λ̂M ) = (2.1257, 0.0374). For computing the Bayes
estimate, we assume that both α and λ have a Gamma(0.0001, 0.0001) prior.
Therefore, using the Tierney and Kadane’s approximation, the Bayes estimate of
the parameters becomes (α̂BT , λ̂BT ) = (2.1036, 0.0287).

8. Conclusions

Some work has been done in the past on the estimation of Weibull distribu-
tion parameters based on complete and censored samples. But, traditionally it is
assumed that the available data are performed in exact numbers. However, some
collected data might be imprecise and are represented in the form of fuzzy num-
bers. Therefore, we need suitable statistical methodology to handle these data
as well. In this paper, we have discussed different estimation procedures for the
Weibull distribution when the obtained data are fuzzy numbers. They include the
maximum likelihood method (via NR and EM algorithms), a Bayesian procedure
and the method of moments. We have then carried out a simulation study to assess
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the performance of all these procedures. The recommendations of an estimator
based on minimum biases and MSEs are as follows:

i) For small and moderate sample sizes, the performance of the Bayes esti-
mates is generally best followed by the MLEs and then the MMEs. Thus, it
would seem reasonable to recommend the use of the Bayesian procedure for
estimating the unknown parameters α and λ.

ii) For large sample sizes, the three estimation procedures behave in similar
manner.
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