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Abstract

In this article we study a subfamily of the slashed-Weibull family. This
subfamily can be seen as an extension of the Rayleigh distribution with
more flexibility in terms of the kurtosis of distribution. This special feature
makes the extension suitable for fitting atypical observations. It arises as
the ratio of two independent random variables, the one in the numerator
being a Rayleigh distribution and a power of the uniform distribution in
the denominator. We study some probability properties, discuss maximum
likelihood estimation and present real data applications indicating that the
slashed-Rayleigh distribution can improve the ordinary Rayleigh distribution
in fitting real data.

Key words: Kurtosis, Rayleigh Distribution, Slashed-elliptical Distribu-
tions, Slashed-Rayleigh Distribution, Slashed-Weibull Distribution, Weibull
Distribution.

Resumen

En este artículo estudiamos una subfamilia de la familia slashed-Weibull.
Esta subfamilia puede ser vista como una extensión de la distribución Ray-
leigh con más flexibilidad en cuanto a la kurtosis de la distribución. Esta
particularidad hace que la extensión sea adecuada para ajustar observa-
ciones atípicas. Esto surge como la razón de dos variables aleatorias in-
dependientes, una en el numerador siendo una distribución Rayleigh y una
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potencia de la distribución uniforme en el denominador. Estudiamos algunas
propiedades de probabilidad, discutimos la estimación de máxima verosimil-
itud y presentamos aplicaciones a datos reales indicando que la distribución
slashed-Rayleigh presenta mejor ajuste para datos reales que la distribución
Rayleigh.

Palabras clave: curtosis, distribución Rayleigh, distribuciones Slashed-elípticas,
distribución Slashed-Rayleigh, distribución Slashed-Weibull, distribuciónWeibull.

1. Introduction

An important distribution in modeling random phenomena, specially positive
ones is the Rayleigh distribution. Other models for positive data are generalized
exponential distributions (Gómez, Bolfarine & Gómez 2014). A random variable
X follows a Rayleigh distribution where σ is the scale parameter, that we denote
X ∼ R(σ), if its density function is given by

fX(x;σ) =
x

σ
e−

x2

2σ

where x > 0 and σ > 0.
Some properties of this distribution are

E(X) =

√
π

2
σ

V ar(X) =
4− π

2
σ

E(Xr) = (2σ)r/2Γ

(
r + 2

2

)
.

Further details on the Rayleigh distribution can be found in Johnson, Kotz &
Balakrishnan (1994). Gómez, Quintana & Torres (2007) and Gómez & Venegas
(2008) introduced the class of slash-elliptical distributions. This class of distribu-
tions can be regarded as an extension of the class of elliptical distributions studied
in Fang, Kotz & Ng (1990).

A random variable T follows a slashed-elliptical distribution with location pa-
rameter µ and scale parameter σ, denoted as T ∼ SEl(t;µ, σ, g), if it can be
represented as

T = σ
X

U1/q
+ µ, (1)

where X ∼ El(0, 1, g), U ∼ U(0, 1) are independent and q > 0.
Note 1. Specifically, a random variable X follows an elliptical distribution with
location parameter µ and scale parameter σ denoted by X ∼ EL(µ, σ; g) if the
density function of X is given by

fX(x) =
1

σ
g

((
x− µ
σ

)2
)

Revista Colombiana de Estadística 38 (2015) 31–44



Slashed Rayleigh Distribution 33

for a non negative function g(u), u ≥ 0 (called the density generator), satisfying∫∞
0
u−

1
2 g(u) du = 1.

If T ∼ SEl(0, 1, q), then, the density function for T is given by

fT (t; 0, 1, q) =


q

2|t|q+1

∫ t2
0
v
q−1
2 g(v) dv if t 6= 0

q
1+q g(0) if t = 0.

(2)

In the canonic case, that is, for q = 1, density in (2) becomes

fT (t; 0, 1, 1) =


G(t2)
2t2 if t 6= 0

1
2g(0) if t = 0

(3)

where G(x) =
∫ x
0
g(v) dv.

Arslan (2008) discusses asymmetric versions of the family of slashed-elliptical dis-
tributions. Gómez, Olivares-Pacheco & Bolfarine (2009) propose an extension of
the Birnbaum-Saunders distribution based on slashed-elliptical distributions.

Olivares-Pacheco, Cornide-Reyes & Monasterio (2010) introduce an extension
of the two parameter Weibull distribution to make it more flexible in terms of
kurtosis and is called slashed-Weibull distribution. Let W ∼ SW (α, β, q), then W
is distributed as the slashed-Weibull distribution. The density function of W is
given by

fW (w;α, β, q) =
qβ

αβwβ−1
TW (w;α, β, q) (4)

where α > 0, β > 0, q > 0 and TW (w;α, β, q) are defined as

TW (w;α, β, q) =

∫ 1

0

uβ+q−1e−(uw/α)
β

du

If X ∼ SW (α, 2, q), then X is distributed as the slashed-Rayleigh distribution,
denoted as X ∼ SR(α, q). The density function of X is given by

fX(x;α, q) =
2q

α2
xTX(x;α, 1) (5)

where x > 0, α > 0, q > 0 and TX(x;α, q) defined as

TX(x;α, q) =

∫ 1

0

uq+1e−(ux/α)
2

du

Several extensions have been considered in statistical literature for the Rayleigh
distribution. Among the most important we consider Vodǎ (1976); Balakrish-
nan & Kocherlakota (1985); Surles & Padgett (2001); Kundu & Raqab (2005);
Manesh & Khaledi (2008) and Cordeiro, Cristino, Hashimoto & Ortega (2013).
The study of the extension proposed in this paper is motivated by works of Gómez
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et al. (2007); Gómez & Venegas (2008); Olivares-Pacheco et al. (2010) and Olmos,
Varela, Gómez & Bolfarine (2012).

We consider an extension based on the ratio between two independent random
variables, one in the numerator corresponding to a random variable with Rayleigh
distribution and in the denominator a power of a uniform random variable. This
extension allows fitting the Rayleigh distribution to real data, being able to ac-
commodate atypical observations (high kurtosis). Another interesting feature is
that the resulting model has “closed form” in the sense that it is represented in
terms of known functions such as the Gamma function.

The paper is organized as follows. Section 2 is devoted to an extension of
the Rayleigh distribution and we derive its density, moments and kurtosis and
asymmetry coefficients. In Section 3 we discuss moments and maximum likeli-
hood estimation and present applications to two real data sets. The application
illustrates the good performance of the model proposed in real applications. Final
conclusions are reported in Section 4.

2. Slashed Rayleigh Distribution

In this section we introduce the new density, its stochastic representation, some
properties, and graphical representations.

2.1. Definition

A random variable T follows a slashed-Rayleigh distribution with scale param-
eter σ kurtosis parameter q, denoted by T ∼ SR(σ, q), if it can be represented
as

T =
X

U1/q
, (6)

where X ∼ R(σ) and U ∼ U(0, 1) are independent, with q > 0.

2.2. Density Function

The following proposition reveals the probability density function (pdf) for
a random variable T generated using the stochastic representation given in (6)
according to the slashed-Rayleigh.

Proposition 1. Let T ∼ SR(σ, q). Then, the pdf of T is given by

fT (t;σ, q) =
q(2σ)q/2

tq+1
Γ

(
q + 2

2

)
F

(
t2

2σ
,
q + 2

2
, 1

)
(7)

where σ > 0, q > 0, t > 0 and F is the commulative distribution function of the
Gamma distribution.
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Proof . Using the stochastic representation given in (6) and multiplying by the
Jacobian of the transformation, the pdf associated with T is given by

fT (t;σ, q) =

∫ 1

0

qtwq+1

σ
e−

t2w2

2σ dw

Making the variable transformation u = t2w2

2σ it follows that

fT (t;σ, q) =
q(2σ)q/2

tq+1

∫ t2/2σ

0

uq/2e−u du

so that the result follows after identifying a Gamma distribution inside the integral
sign.

In the particular case where σ = q = 1 it follows that the canonic slashed-
Rayleigh distribution, denoted as T ∼ SR(1, 1) is obtained. Then, the density
function for T is given by

fT (t) =
√
π/2t−2F

(
t2/2, 3/2, 1

)
, t > 0 (8)

Figure 1 depicts some of the shapes that the slashed-Rayleigh distribution can
take for different values of the parameters σ and q.
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Figure 1: Plot of the slashed-Rayleigh density, SR(σ, q).

2.3. Properties

In this section some basic properties of the slashed-Rayleigh distribution are
considered.

Proposition 2. Let T ∼ SR(σ, q), then
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1. lim
q→∞

fT (t;σ, q) =
x

σ
e−

x2

2σ

2. FT (t;σ, q) = P (T < t) =
(

1− e− k
2

2σ

)
− k−q(2σ)

q
2 Γ
(
q+2
2

)
F
(
k2

2σ ,
q+2
2 , 1

)
Note 2. Property 1 reveals that as q →∞ the slashed-Rayleigh converges to the
ordinary Rayleigh distribution.

2.4. Moments

Proposition 3. Let T ∼ SR(σ, q). Then, for r = 1, 2, . . . and q > r, it follows
that the r-th moment is given by

µr = E(T r) = (2σ)r/2Γ

(
r + 2

2

)
q

q − r
(9)

Proof . Using the stochastic representation for the distribution given in (6), we
have that

µr = E (T r)

= E

((
X

U
1
q

)r)
= E

(
XrU−

r
q

)
= E (Xr)E

(
U−

r
q

)
where it follows that E

(
U−

r
q

)
= q

q−r , q > r and E (Xr) = (2σ)r/2Γ
(
r+2
2

)
are

the moments for the distribution R(σ).

Proposition 4. Let T ∼ SR(σ, q), then it follows that

E(T ) =
q

q − 1

√
πσ

2
, q > 1 and V ar(T ) =

σq
[
4(q − 1)2 − πq(q − 2)

]
2(q − 1)2(q − 2)

, q > 2

(10)

Proposition 5. Let T ∼ SR(σ, q). Then, the asymmetry (
√
β1) and kurtosis (β2)

coefficients for q > 3 and q > 4 are given respectively by√
β1 =

√
4π(q − 2)

[
3(q − 1)3(q − 2)− 6q(q − 1)2(q − 3) + q2π(q − 2)(q − 3)

]
√
q(q − 3)[4(q − 1)2 − qπ(q − 2)]3/2

β2 =
(q − 2)[8(q − 1)2(q − 2){4(q − 1)(q − 3)− 3πq(q − 4)}]

q(q − 3)(q − 4)[4(q − 1)2 − qπ(q − 2)]2

+
(q − 2)

[
πq2(q − 3)(q − 4){24(q − 1)2 − 3πq(q − 2)}

]
q(q − 3)(q − 4)[4(q − 1)2 − qπ(q − 2)]2
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Note 3. It follows that as q →∞ the asymmetry and kurtosis coefficients converge
to √

4π(π − 3)2

(4− π)2

and
32− 3π2

(4− π)2

respectively, which correspond to those for the Rayleigh distribution. Figures 2
and 3 depict plots for the asymmetry and kurtosis coefficients, respectively.
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Figure 2: Asymmetry coefficient
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Figure 3: Kurtosis coefficient

3. Inference

In this section we discuss moments and maximum likelihood estimation for
parameters σ and q for the slashed-Rayleigh distribution.

3.1. Moment Estimators

In the next proposition we present analytical expressions for the moment esti-
mators of the parameters σ and q.

Proposition 6. Let T1, . . . , Tn a random sample for the random variable T ∼
SR(σ, q). Then, moment estimators for θ = (σ, q), with q > 2, are given by

σ̂M = 2T
2
(q̂−1)2
πq̂2 and q̂M = 1 +

(
πT

2

πT 2−4T 2

)1/2
, if πT 2 > 4T

2
,

where T is the sample mean, and T 2 is the sample mean for square of the sample
units.
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Proof . Using (9), it follows that

E(T ) =
q

q − 1

√
πσ

2
and E(T 2) =

q

q − 2
2σ , if q > 2 (11)

and replacing E(T ) by T and E(T 2) by T 2 in (11), we obtain a system of equations
for which the solution leads to the moment estimators (σ̂M , q̂M ) for (σ, q).

3.2. Maximum Likelihood Estimation

For a random sample T1, . . . , Tn from the distribution SR(σ, q), the log likeli-
hood function can be written as

l(σ, q) = n log(q)+
nq

2
log(2σ)+n log

(
Γ

(
q + 2

2

))
−(q+1)

n∑
i=1

log(ti)+

n∑
i=1

log(F (ti))

(12)
so that the maximum likelihood equations are given by

n∑
i=1

F1(ti)

F (ti)
= −nq

σ
(13)

n

q
+
n

2
log(2σ) +

n

2
Ψ

(
q + 2

2

)
+

n∑
i=1

F2(ti)

F (ti)
=

n∑
i=1

log(ti) (14)

where F (ti) = F
(
t2i
2σ ,

q+1
2 , 1

)
, F1(ti) = ∂

∂σF (ti), F2(ti) = ∂
∂qF (ti) and Ψ is

digamma function. The solution for the equations (13-14) can be obtained by
using the function optim available in software R, the specific method is the L-
BFGS-B developed by Byrd et al. (1995) which allows box constraint. This uses
a limited-memory modification of the quasi-Newton method.

3.3. Observed Information Matrix

In this subsection we consider the observed information matrix for the slashed-
Rayleigh distribution.

Let T ∼ SR(σ, q), so that the observed information matrix is given by


− nq

2σ2
+

n∑
i=1

∂

∂σ

(
F1(ti)

F (ti)

)
n

q
+

n∑
i=1

∂

∂q

(
F1(ti)

F (ti)

)

n

2σ
+

n∑
i=1

∂

∂σ

(
F2(ti)

F (ti)

)
− n
q2

+
n

4
Ψ1

(
q + 2

2

)
+

n∑
i=1

∂

∂q

(
F2 (ti)

F (ti)

)


where F (ti) = F
(
t2i
2σ ,

q+2
2 , 1

)
, F1(ti) = ∂

∂σF (t2i ), F2(ti) = ∂
∂qF

(
t2i
2σ ,

q+2
2 , 1

)
and

Ψ1 is the trigamma function.
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3.4. Simulation Study

Using the stochastic representation considered in (6), we generate 1000 samples
distributed as SR(1, 1), SR(1, 2), SR(1, 3), SR(1, 4) and SR(1, 5), respectively,
for the sample sizes 30, 50 and 100. For each sample we compute the maximum
likelihood estimators (MLEs) using the moment estimators as starting values.

Table 1: Maximum likelihood estimators for samples generated with σ = 1 and several
values of the parameter q.

q n = 30 (SD) n = 50 (SD) n = 100 (SD)
1 1.060303 (0.2435404) 1.025251 (0.1672472) 1.0141615 (0.1141615)
2 2.129808 (0.6008310) 2.075064 (0.4092104) 2.0637530 (0.3004835)
3 3.241356 (1.2942610) 3.226699 (0.9393005) 3.1032040 (0.5203248)
4 4.502840 (2.3793270) 4.306673 (1.6915380) 4.1451880 (0.8128965)
5 6.320374 (5.5379420) 5.811159 (3.6906960) 5.1960890 (1.3196100)

For each generated sample, MLEs were computed numerically using a Newton-
Raphson type procedure. Empirical means and standard deviations (SD) are re-
ported. Notice that the empirical means become very close to the true values and
standard deviations become small, an expected result since MLEs are consistent.

4. Two Illustrative Data Sets

4.1. Illustration 1

Devore (2005), with pedagogic interest, presents a data set corresponding to
a sample of 26 units related to contaminant aluminum (ppm) in certain type
of plastic material. This data set can also be found in Aubin (1990). Using
results in Subsection 3.1, moment estimators were computed and are given by
σ̂M = 6360.913 and q̂M = 3.341. Using these estimates as starting values for
the Newton-Raphson procedure, maximum likelihood estimates were computed.
Table 2 presents descriptive statistics for the amount of contaminated aluminum
in the data set where b1 and b2 are the coefficients of asymmetry and kurtosis,
respectively. Notice that the data set presents high positive asymmetry and also
high kurtosis.

Table 2: Summary statistics for rupture times.

n X s2 b1 b2
26 142.6538 9,644.075 2.028009 8.07527

Table 3 presents parameter estimates for the R, W and SR models, using
maximum likelihood (MLE) approach and the corresponding Akaike information
criterion (AIC) for model choice. For these data, AIC shows a better fit of the SR
model. Standard deviations (SD) were computed using the inverse of the Hessian
matrix. We also computed the Kolmogorov-Smirnov statistic (KSS), for which the
corresponding values for models R and SR were 0.282 and 0.178 respectively, which
also indicates that the best fit is presented by the SR model. Figure 4 depicts the
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Figure 4: Models fitted by the maximum likelihood method for aluminum-contaminant
data set: SR (solid line), R (dashed line), W (doted line) and SW (doted
and dashed line). Log-likelihood profile for the SR distribution with σ =
6, 360.913.

Table 3: Parameter estimates and log-likelihood values for R, W and SR models for
the aluminum-contaminant life data set.

Parameter R (SD) W (SD) SW (SD) SR (SD)
θ - 1.631 2.555 -

(0.226) (0.672)
σ 14,811.630 160.569 102.426 6,360.913

(2,965.821) (20.477) (18.791) (2,324.110)
q - - 2.700 3.386

(1.140) (1.615)
LL -151.5879 -150.3446 -148.039 -148.5184
AIC 305.1758 304.6892 302.078 301.0368

histogram and the fitted densities with parameters replaced by the MLEs. It also
depicts likelihood profile for the fitted models for parameter q. Figures 5 and 6
presents qqplots for both models. Results also corroborate the good performance
of the SR model.

4.2. Illustration 2

We consider in this application the data set from Devore (2005), corresponding
to the lifetime of 50 units of a type of drilling machine.

Using results in Section 3.1, moment estimators were computed, leading to
σ̂ = 3460.013 and q̂ = 2.619. These estimates were then used as starting values
for the optim algorithm for maximizing the likelihood function, Table 4 presents
summary statistics for the lifetime data.

Revista Colombiana de Estadística 38 (2015) 31–44



Slashed Rayleigh Distribution 41

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Theorical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 5: qqplot: R model
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Figure 6: qqplot: SR model

Table 4: Summary statistics for lifetime data.

n X s2 b1 b2
50 119.26 9,503.013 1.970068 4.376542
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Figure 7: Models fitted by maximum likelihood method for the useful life of the drill
data set: SR (solid line), R (dashed line), W (dotted line) and SW (dotted
and dashed line). Profile log-likelihood for the parameter q of the SR model.

Table 5 depicts parameter estimates for models R, W , SW and SR, using the
maximum likelihood (MLE) approach and the corresponding Akaike information
criterion (AIC). For these data, AIC shows a better fit of the SR model. Standard
deviations (SD) were computed using the inverse of the Hessian matrix. We also
computed the Kolmogorov-Smirnov statistic (KSS), so that corresponding values
for the models R and SR were 0.347 and 0.214 respectively, which also indicates
that the best fit is presented by the SR model. Figure 7 presents the histogram
for the data with the fitted densities and the log-likelihood profile for parameter
q. Figures 8 and 9 depicts qqplots for both models.
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Table 5: Parameter estimates and log-likelihood values for R, W , SW and SR models
for the useful life of the drill data set.

Parameters R (SD) W (SD) SW (SD) SR (SD)
θ - 1.370 75.058 -

(0.140) (11.904)
σ 11,767.950 131.365 2.049 3,460.012

(1,614.388) (14.360) (0.386) (1,127.119)
q - - 2.144 2.482

(0.627) (0.765)
LL -293.6905 -285.1543 -282.5264 -282.741
AIC 589.381 574.308 571.052 569.483
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Figure 8: qqplot: R model
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Figure 9: qqplot: SR model

5. Concluding Remarks

In this paper we study a subfamily of the slash-Weibull distribution. This
model arises from the ratio between two independent random variables, the Ray-
leigh distribution in the numerator and the power of uniform random variable in
the denominator. Moment estimators for the slashed-Rayleigh distribution are
obtained explicitly and can be used as initial values for the computation of the
maximum likelihood estimators which requires numerical procedures such as the
Newton-Rapshon algorithm. The derivation of the asymmetry and kurtosis co-
efficients illustrates the fact that the slashed-Rayleigh distribution is able to fit
data sets for which the Rayleigh distribution is adequate but with an excess of
kurtosis. Applications to real data have demonstrated that the slashed-Rayleigh
distribution can present better fit than distributions such as the Rayleigh and
Weibull. It also indicated that the slashed-Rayleigh can present better fit than
the slashed-Weibull distribution.
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