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Abstract
We consider one-way analysis of variance (ANOVA) model when the er-

ror terms have skew- normal distribution. We obtain the estimators of the
model parameters by using the maximum likelihood (ML) and the modified
maximum likelihood (MML) methodologies (see, Tiku 1967). In the ML
method, iteratively reweighting algorithm (IRA) is used to solve the like-
lihood equations. The MML approach is a non-iterative method used to
obtain the explicit estimators of model parameters. We also propose new
test statistics based on these estimators for testing the equality of treatment
effects. Simulation results show that the proposed estimators and the tests
based on them are more efficient and robust than the corresponding normal
theory solutions. Also, real data is analysed to show the performance of the
proposed estimators and the tests.

Key words: ANOVA, Modified Likelihood, Iteratively Reweighting Algo-
rithm, Skew-Normal, Monte Carlo Simulation, Robustness.

Resumen
Se considera el modelo de análisis de varianza a una vía (ANOVA) cuando

los términos de error siguen una distribución normal sesgada. Se obtienen es-
timadores de los parámetros desconocidos mediante el uso de la metodología
de máxima verosimilitud (ML). Se proponen nuevos estadísticos de prueba
basados en estos estimadores. Los resultados de la simulación muestran que
los estimadores propuestos y los tests basados en ellos son más eficientes y
robustos que los correspondientes a las soluciones de la teoría normal. Un
conjunto de datos real es analizado con el fin de mostrar el desempeño de
los estimadores propuestos y sus tests relacionados.
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1. Introduction

Consider the following one-way ANOVA model,

yij = µ+ αi + εij , i = 1, 2, . . . , a; j = 1, 2, . . . , n (1)

where, yij are the responses corresponding to jth observation in the ith treatment,
µ is the overall mean, αi is the effect of ith treatment and εij are the independent
and identically distributed (iid) random error terms.

In general, normality assumption is made for the random error terms and the
well known least squares (LS) method is used for estimating model parameters.
However, in the literature, there are numerous studies pointing out that non-
normal distributions are more prevalent than normal distribution , in practice,
see for example, (Pearson 1932, Geary 1947, Huber 1981, Tan & Tiku 1999). It
is known that LS estimators of the parameters and the test statistics based on
them lose their efficiency when the normality assumption is not satisfied, (see,
Tukey 1960). That is why there is great interest in studying the effect of non-
normality on the F statistics used for testing the main effects and the interaction
in the framework of experimental design; see, for example, (Geary 1947, Srivastava
1959, Donaldson 1968, Spjotvoll & Aastveit 1980, Tan & Tiku 1999, Senoglu &
Tiku 2001). The following conclusions have been drawn from these studies. For
numerous non-normal distributions:

i. Type I error of the F statistic is not much different than that for a normal
distribution. This is essentially due to the central limit theorem.

ii. Power of the F test is considerably lower than that for a normal distribution.
This is essentially due to the inefficiency of the sample mean.

See Senoglu & Tiku (2001) and the references therein. These conclusions are
particularly true for non normal distributions having skewness in different direc-
tions (Senoglu & Tiku 2002).

Therefore, it is necessary to obtain new F statistics whose distribution provides
satisfactory approximations to the percentage points of the null distribution when
the distribution of the error terms is non-normal (see condition i). The proposed
test should also maintain higher power than the classical F test based on LS
estimators (see condition ii).

There are various ways of analyzing non-normal data, such as Box-Cox nor-
malizing transformation and nonparametric methods. However, in this study, we
adopt the parametric ML and MML methods where original data are used rather
than transformed data. In the ML method, the likelihood equations are solved
iteratively by using the iteratively reweighting algorithm (IRA). However, in the
MML method, the explicit estimators of model parameters are obtained by ap-
proximating the likelihood equations.

In this study, we assume that the distribution of the error terms in one-way
ANOVA model in (1) is Azzalini’s skew-normal (Azzalini 1985, 1986) and obtain
the ML and the MML estimators of the model parameters. We then propose new
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test statistics based on these estimators. To the best of our knowledge, there is no
previous work assuming SN(λ) as an error distribution in the context of ANOVA.
The reason for choosing the SN(λ) as an error distribution is that it includes the
normal distribution as well as plausible alternatives thereof with different levels
of skewness and kurtosis. Therefore, SN(λ) distribution is considered to be an
extension of normal distribution. This provides us flexibility for modeling the data
with normal − like shape but with skewness and heavy tails. It is also useful for
modeling the data having normal distribution with outliers and contamination.
Its mathematical tractability is another reason for using SN(λ) in this study.

The rest of the paper is organized as follows. In Section 2, SN(λ) distribution is
introduced. The ML and the MML estimators are derived in Section 3 and Section
4, respectively. Efficiencies of the ML and the MML estimators are compared via
Monte Carlo simulation study in Section 5. New test statistics for testing the
equality of treatment effects are proposed in Section 6. Power comparisons and
robustness properties of these tests are also given in this section. A real life example
is analyzed in Section 7 to present the application of the proposed estimators and
the tests based on them. Our conclusions are presented.

2. Skew-Normal Distribution

The probability density function (pdf) of the SN(λ) distribution is given by

h(z) = 2φ(z)Φ(λz) (2)

where φ(z) and Φ(z) are the pdf and the cumulative distribution function (cdf) of
the standard normal distribution, respectively. λ is the skewness parameter, it is
also known as the shape parameter since it regulates the shape of the distribution.
If a random variable Z has a skew-normal distribution with parameter λ then
it is denoted by Z ∼ SN(λ). Some extensions of this distribution con found
in Martínez-Flórez, Vergara-Cardozo & González (2013) and Pereira, Marques &
da Costa (2012).

It may be noted that for λ=0, SN(λ) reduces to the well known standard
normal distribution N(0, 1). When λ → ∞, SN(λ) converges to the half-normal
distribution, h(z) is strongly unimodal for fixed λ. It is right skewed for λ > 0
and left skewed for λ < 0. SN(λ) distribution has also the following properties:

i. If Z ∼ SN(λ) then −Z ∼ SN(−λ)

ii. If Z ∼ SN(λ) then Z2 ∼ χ2
1 (see, Azzalini 2005).

To better understand the shape of the SN(λ) distribution, see the coefficients
of skewness (γ1) and the kurtosis (γ2) for some representative values of λ given in
Table 1.

It is clear from Table 1 that the skewness of the distribution increases as the
skewness parameter λ increases (in absolute value). Skewness of the SN(λ) distri-
bution takes values in the interval (−0.995, 0.995) and the maximum value of its
kurtosis is 3.869. Here, it should be noted that the skewness values correspond-
ing to the positive λ values are exactly the same, but with opposite sign, with
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Table 1: The skewness and the kurtosis values of the SN(λ) distribution.

λ 0.0 1.0 2.0 3.0 4.0 5.0 10 20 ∞
γ1 0.00 0.14 0.45 0.67 0.78 0.85 0.96 0.99 0.995

γ2 3.00 3.06 3.31 3.51 3.63 3.71 3.82 3.86 3.869

the skewness values corresponding to the negative λ values. Therefore, in Table
1, we just reproduce the skewness values corresponding to the positive λ values
for brevity. It can also be seen that the SN(λ) and the normal distribution are
indistinguishable for λ < 3.

Here and in many other studies, we consider a more general form of the distri-
bution given in (2) by performing a change of location and scale:

Y = µ+ σZ (3)

Based on this linear transformation, pdf of the random variable Y is obtained
as shown below,

h(y) =
2

σ
φ(
y − µ
σ

)Φ(λ
y − µ
σ

) (4)

where, µ ∈ R is the location parameter and σ ∈ R+ is the scale parameter. If
the random variable Y has SN(λ) distribution with the parameters µ, σ and λ,
then it is denoted by Y ∼ SN(µ, σ, λ). The expected value and the variance of
SN(µ, σ, λ) distribution are given by,

E(Y ) = µ+

√
2λ2

π(1 + λ2)
σ, V (Y ) = (1− 2λ2

π(1 + λ2)
)σ2 (5)

respectively.

3. Maximum Likelihood Estimator

Consider the model (1) and assume the distribution of εij , (i = 1, 2, . . . , a; j =
1, 2, . . . , n) is skew-normal SN(0, σ, λ).

h(ε) =
2

σ
φ(
ε

σ
)Φ(λ

ε

σ
),−∞ < ε <∞ (6)

Here, it should be noted that the skewness parameter is assumed to be known
throughout the study. Since the ML method gives doubtful estimates when we
estimate the location, the scale and the shape parameters simultaneously unless
large samples ( n > 250 or so) are available, (see, Bowman & Shenton 2001, Kantar
& Senoglu 2008). See also, the Introduction of Acitas, Kasap, Senoglu & Arslan
(2013). However, the sample size is much smaller than 250 in the context of ex-
perimental design. Therefore, in this study, we only estimate the location and the
scale parameters for a better fitting. In spite of the fact that the shape parameter
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is assumed to be known, in practice, we must identify its value. Shape parameters
can be identified by using various techniques, such as Q-Q plots, goodness-of fit
tests etc. The algorithm given in Acitas et al. (2013, p. 417) can also be used
for the identification of the shape parameter, see also Islam & Tiku (2004). Sup-
pose that the value of the shape parameter in skew-normal distribution might be
somewhat misspecified by using these techniques. Then the question arises what
effect will it have on the efficiencies of the location and the scale estimators. The
answer is that this does not adversely affect the efficiencies of the estimators since
the estimators obtained in this study are robust to plausible deviations of the true
model.

To obtain the ML estimators of the unknown parameters in model (1), the log-
likelihood function

lnL = N ln 2−N lnσ − N

2
ln 2π − 1

2

a∑
i=1

n∑
j=1

z2
ij +

1

2

a∑
i=1

n∑
j=1

ln Φ(λzij) (7)

is maximized with respect to the unknown parameters µ, αi and σ. Here zij =
εij
σ =

yij−µ−αi
σ .

By differentiating the log-likelihood function with respect to the unknown pa-
rameters and equating them to zero we obtain the following likelihood equations

∂ lnL

∂µ
=

a∑
i=1

n∑
j=1

zij − λ
a∑
i=1

n∑
j=1

φ(λzij)

Φ(λzij)
= 0

∂ lnL

∂αi
=

n∑
j=1

zij − λ
n∑
j=1

φ(λzij)

Φ(λzij)
= 0

∂ lnL

∂σ
= −N +

a∑
i=1

n∑
j=1

z2
ij − λ

a∑
i=1

n∑
j=1

zij
φ(λzij)

Φ(λzij)
= 0

(8)

Solutions of these equations are the ML estimators. These equations have no
explicit solutions; therefore we resort to iterative methods.

If we appropriately reorganize the likelihood equations in (8) and define the
weight function wij as below

wij =
φ(λzij)

Φ(λzij)

the likelihood equations can be written as follows:

µ̂ = ȳ.. − λw̄..σ̂, α̂i = ȳi. − ȳ.. − λ(w̄i. − w̄..)σ̂, σ̂2 =

∑a
i=1

∑n
j=1(yij − ȳi.)2

N(1− λ2t2)
(9)

where

ȳi. =

∑n
j=1 yij

n
, ȳ.. =

∑a
i=1

∑n
j=1 yij

N
, w̄i. =

∑n
j=1 wij

n
, w̄.. =

∑
i = 1a

∑n
j=1 wij

N

and t=
∑a
i=1 w

2
i.

a
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We use IRA which is very popular in robustness studies to compute the ML esti-
mates of the parameters. It can be shown that IRA is an expectation-maximization
(EM) type algorithm so that its convergence is guaranteed (see, Arslan & Genc
2009). Also Arrellano-Valle, Bolfarine & Lachos (2005),Lachos, Bolfarine, Arellano-
Valle & Montenegro (2007), Xie, Wei & Lin (2009), Lachos, Ghosh & Arellano-
Valle (2010), Lachos, Bandyopadhyay & Garay (2011), Garay, Lachos & Abanto-
Valle (2011), Garay, Lachos, Labra & Ortega (2013). In the above mentioned
papers, skew normal is used as an error distribution in the context of regression
and linear mixed models. Steps of the IRA are given below.

Iteratively reweighting algorithm (IRA):

i. Identify the initial estimates µ(0)
i (i = 1, 2, . . . , a) and σ(0) for µi and σ, re-

spectively.

ii. Compute the weights w(m)
ij =

φ(λz
(m)
ij )

Φ(λz
(m)
ij )

, the averages w̄(m)
i. and t(m) =

∑a
i=1(w̄

(m)
i. )2

a

where z(m)
ij =

yij−µ(m)
i

σ(m) (i = 1, 2, . . . , a; j = 1, 2, . . . , n). Here, m is the number
of iterations and takes the values 1, 2, 3, . . .

iii. Find new estimates of the parameters by using the following updating equa-

tions µ(m+1)
i = ȳ.. − λw̄(m)

i. σ(m) and (σ2)(m) =
∑a
i=1

∑n
j=1(yij−ȳi. )

2

N(1−λ2(t(m))2)

iv. Continue the iterations until |µ(m+1)
i − µ(m)

i | < d and |σ(m+1) − σ(m)| < d
where d is a predetermined small constant.

It should be noted that LS estimates are used as initial estimates for this algo-
rithm. However, some other robust estimates can also be used as initial estimates.

4. Modified Maximum Likelihood Estimator

In this section, we use the MML methodology originated by Tiku (1967) to
obtain the explicit estimators of the model parameters by approximating the like-
lihood equations appropriately. This methodology is used to alleviate the com-
putational difficulties encountered in solving the likelihood equations given above.
MML methodology proceeds as follows: Let

yi(1) < yi(2) < · · · < yi(n)
, i = 1, 2, . . . , a (10)

be the order statistics obtained by arranging yij (i = 1, 2, . . . , a; j = 1, 2, . . . , n)
in ascending order. The likelihood equations in (8) can be written in terms of
the order statistics as shown below, since complete sums are invariant to ordering
(i.e

∑n
i=1 yi =

∑n
i=1 y(i)).
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∂ lnL

∂µ
=

a∑
i=1

n∑
j=1

zi(j) − λ
a∑
i=1

n∑
j=1

g(zi(j)) = 0

∂ lnL

∂αi
=

n∑
j=1

zi(j) − λ
n∑
j=1

g(zi(j)) = 0

∂ lnL

∂σ
= −N +

a∑
i=1

n∑
j=1

z2
i(j)
− λ

a∑
i=1

n∑
j=1

zi(j)g(zi(j)) = 0

(11)

Here, g(z) = φ(λz)
Φ(λz) and zi(j) =

yi(j)−µ−αi
σ . It should be noted that the last two

terms of ∂ lnL
∂σ are obtained by simply multiplying the terms of ∂ lnL

∂µ by zi(j) . zi(j)
is the loading factor and instrumental in yielding an estimator which is always real
and positive. Then, we linearize the intractable terms in (11) by using the first two
terms of Taylor series expansion around the expected values of the standardized
order statistics, i.e., t(j) = E(zi(j)), j = 1, 2, . . . , n. This linearization yields

g(zi(j)) = αj − γjzi(j), i = 1, 2, . . . , a; j = 1, 2 . . . , n (12)

where

γj =
φ(λt(j))

Φ(λt(j))

(
λ2t(j)Φ(λt(j) + λφ(λt(j))

Φ(λt(j))

)
and

α(j) =
φ(λt(j))

Φ(λt(j))
+ t(j)γ(j)

The exact values of t(j) are not available, however, we use their approximate
values obtained from the equation,

F (t(j)) =

∫ t(j)

−∞
h(z)dz =

j

n+ 1
, (j = 1, 2 . . . , n) (13)

(see, Tiku & Akkaya 2004). Here, we use the property: If F (zj) ∼ U(0, 1) then
F (z(j)) ∼ Beta(j, n− j + 1) with the expected value j

n+1 , (j = 1, 2 . . . , n).
Incorporating equation (12) into the likelihood equations in (11), we obtain

the modified likelihood equations ∂ lnL∗

∂µ , ∂ lnL∗

∂αi
and ∂ lnL∗

∂σ . The solutions of these
modified likelihood equations are the following MML estimators

µ̂ = µ̂.. − λ
∆

m
σ̂, α̂i = µ̂i. − µ̂.., σ̂ =

B +
√
B2 − 4NC

2
√
N(N − a)

(14)

where

µ̂i. =

∑n
j=1 β(j)yi(j)

m
, µ̂.. =

∑a
i=1 µ̂i.
a

, ∆ = λ

n∑
j=1

α(j), β(j) = 1+λγ(j), m =

n∑
j=1

β(j)
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B =

a∑
i=1

n∑
j=1

α(j)(yi(j) − µ̂i.), C =

a∑
i=1

n∑
j=1

β(j)(yi(j) − µ̂i.)2

The divisor N in the expression for σ̂ was replaced by
√
N(N − a) as a bias

correction. MML estimators have the following properties:

i. They are the functions of sample observations and are easy to compute.

ii. They are asymptotically equivalent to the ML estimators. Therefore, under
regularity conditions, they are asymptotically fully efficient, i.e., they are un-
biased and minimum variance bound (MVB) estimators.

iii. Even for small sample sizes, they are highly efficient.

iv. They are robust.

It should be noted that weights β(j) in (12) have half-umbrella ordering, i.e.,
they are a decreasing sequence of positive numbers in the direction of the long
tail. Therefore, weights β(j) given to the extreme residuals deplete the dominant
effect of long tail and outliers. This is a very important property for achieving
robustness, see for example Tiku & Akkaya (2004). On the other hand, in LS
method, all e(j) receive the same weight. This exposes the LS estimators to the
dominant effect of long tail and outliers making them nonrobust.

5. Comparison of Estimators

In this section, we compare the ML, MML and LS estimators of the model
parameters in terms of means, variances and mean square errors (MSE) for some
representative values of the skewness parameter λ. All the simulations are based
on [100, 000/n] Monte Carlo runs. In the simulation study, we use a = 3, 5, n =
5, 10, 15, 20 and α = 0.05, however, we just reproduce the results for a = 3 for the
sake of brevity. Without loss of generality, we choose the following setting in our
simulation: µi(µ+ αi) = 0(i = 1, 2, . . . , 1) and σ = 1.

Here, it should be noted that we are interested in λ values satisfying the prop-
erty 0.4 < [P (X > E(X))] < 0.6 in the context of experimental design. We,
therefore use λ values satisfying the mentioned condition, i.e. we take −1 < λ < 1
from now on. Simulation results are given in Table 2.

From Table 2, it is seen that both the ML and the MML estimators are more
efficient than the LS estimators of µi and σ when the skewness parameter λ is close
to 1. When the skewness parameter λ is close to 0 all the three estimators have
similar efficiencies as expected. Because, SN(λ) distribution reduces to normal
distribution when λ is equal to 0; in that case, algebraic forms of the ML and the
MML estimators are exactly the same with the corresponding LS estimators of the
unknown parameters.

It is interesting to note that relative efficiencies (REs) of the ML and the MML
estimators decrease as the sample size n increases.
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Table 2: Means, variances and MSEs for the LS, ML and MML estimators of µi and σ.

Mean Variance MSE RE
n µ̂i,LS µ̂i,ML µ̂i,MML µ̂i,LS µ̂i,ML µ̂i,MML µ̂i,LS µ̂i,ML µ̂i,MML µ̂i,ML µ̂i,MML

λ = 0

5 −0.002 −0.002 −0.002 0.201 0.201 0.201 0.201 0.201 0.201 100 100

10 −0.005 −0.005 −0.005 0.097 0.097 0.097 0.097 0.097 0.097 100 100

15 −0.003 −0.003 −0.003 0.067 0.067 0.067 0.067 0.067 0.067 100 100

20 −0.001 −0.001 −0.001 0.048 0.048 0.048 0.048 0.048 0.048 100 100

λ = 0.4

5 0.021 0.008 0.009 0.186 0.186 0.186 0.186 0.186 0.186 100 100

10 0.017 0.005 0.006 0.091 0.089 0.090 0.091 0.089 0.090 98 99

15 0.011 −0.001 0.001 0.063 0.060 0.061 0.063 0.060 0.061 96 97

20 0.015 0.002 0.002 0.048 0.046 0.046 0.048 0.046 0.046 96 96

λ = 0.7

5 0.055 0.012 0.013 0.165 0.166 0.166 0.168 0.166 0.166 99 99

10 0.053 0.006 0.008 0.082 0.082 0.082 0.085 0.082 0.082 97 97

15 0.051 0.003 0.004 0.053 0.054 0.054 0.056 0.054 0.054 96 96

20 0.055 0.006 0.008 0.041 0.042 0.042 0.044 0.026 0.042 96 96

λ = 1.0

5 0.104 0.023 0.024 0.139 0.139 0.139 0.149 0.142 0.142 95 95

10 0.107 0.015 0.018 0.072 0.072 0.072 0.083 0.073 0.073 88 88

15 0.104 0.011 0.012 0.045 0.045 0.045 0.056 0.046 0.046 82 82

20 0.101 0.004 0.007 0.034 0.034 0.034 0.044 0.034 0.034 77 77

n σ̂i,LS σ̂i,ML σ̂i,MML σ̂i,LS σ̂i,ML σ̂i,MML σ̂i,ML σ̂i,MML σ̂i,LS σ̂i,ML σ̂i,MML
λ = 0

5 0.981 0.981 0.981 0.040 0.040 0.040 1.003 1.003 1.003 100 100

10 0.992 0.992 0.992 0.019 0.019 0.019 1.002 1.002 1.002 100 100

15 0.994 0.994 0.994 0.012 0.012 0.012 1.000 1.000 1.000 100 100

20 0.996 0.996 0.996 0.009 0.009 0.009 1.002 1.002 1.002 100 100

λ = 0.4

5 0.997 0.987 0.987 0.038 0.038 0.038 1.033 1.013 1.013 98 98

10 0.991 0.981 0.981 0.018 0.018 0.018 1.001 0.981 0.981 98 98

15 1.007 0.997 0.997 0.012 0.012 0.012 1.026 1.006 1.006 98 98

20 0.997 0.988 0.989 0.010 0.009 0.010 1.006 0.986 0.986 98 98

λ = 0.7

5 1.008 0.981 0.982 0.042 0.039 0.039 1.060 1.001 1.005 95 95

10 1.019 0.991 0.991 0.020 0.019 0.019 1.059 1.005 1.005 95 95

15 1.022 0.994 0.994 0.012 0.012 0.012 1.059 1.001 1.001 95 95

20 1.059 0.997 0.997 0.008 0.008 0.008 1.061 1.003 1.003 95 95

λ = 1.0

5 1.024 0.988 0.989 0.049 0.043 0.044 1.097 0.988 1.002 90 91

10 1.044 0.990 0.996 0.020 0.018 0.018 1.111 0.999 1.012 90 91

15 1.045 0.992 0.996 0.013 0.012 0.012 1.106 0.998 1.005 90 91

20 1.048 0.996 0.998 0.010 0.009 0.009 1.109 1.003 1.006 90 91

Robustness: In this study, we use the following definition of robustness. An
estimator is called robust if it is fully efficient under the assumed model and
maintains high efficiency under the plausible alternatives of the assumed model,
(see, Tiku & Akkaya 2004). Assume, for illustration, that the true model in the
simulation study is taken to be SN(0, 1, 1). We use the following sample models
to represent a large number of plausible alternatives.

Sample Models:
Model (1): Dixon’s outlier model: (n− 1) observations come from SN(0, 1, 1)

but one observation (we do not know which one) comes from SN(0, 2, 1)

Model (2): Dixon’s outlier model: (n− 1) observations come from SN(0, 1, 1)
but one observation (we do not know which one) comes from SN(0, 4, 1)

Model (3): Mixture model: 0.90SN(0, 1, 1) + 0.10SN(0, 1, 0.4)

Model (4): Contamination model: 0.90SN(0, 1, 1) + 0.10N(0, 1).
Given in Table 3 are the simulated values of the means, variances and MSEs

for the ML, the MML and the LS estimators of the model parameters µi(i =
1, 2, . . . , a) and σ under the alternative models. We simply reproduce the results
for µ1 since they are all similar. We also give the REs of the ML and the MML
estimators with respect to the LS estimators.
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Table 3: Means, variances and MSEs for the LS, ML and the MML estimators of µi

and σ for the alternative models.
Mean Variance MSE RE

n µ̂i,LS µ̂i,ML µ̂i,MML µ̂i,LS µ̂i,ML µ̂i,MML µ̂i,LS µ̂i,ML µ̂i,MML µ̂i,ML µ̂i,MML
Model 1

5 0.096 −0.011 0.004 0.206 0.203 0.203 0.216 0.203 0.203 94 94

10 0.101 −0.011 0.007 0.092 0.092 0.092 0.102 0.092 0.092 90 90

15 0.081 −0.022 −0.016 0.059 0.059 0.059 0.066 0.059 0.059 90 90

20 0.089 −0.010 −0.006 0.040 0.040 0.040 0.049 0.041 0.041 84 84

Model 2
5 0.280 0.102 0.199 0.507 0.540 0.489 0.585 0.550 0.528 94 91

10 0.167 0.023 0.119 0.160 0.166 0.154 0.187 0.167 0.169 89 89

15 0.143 0.017 0.112 0.092 0.095 0.090 0.112 0.095 0.097 84 89

20 0.110 0.010 0.084 0.057 0.057 0.056 0.070 0.058 0.060 82 89

Model 3
5 0.057 −0.024 −0.024 0.160 0.163 0.163 0.164 0.164 0.164 100 100

10 0.064 −0.029 −0.026 0.079 0.081 0.081 0.084 0.082 0.082 97 97

15 0.065 −0.029 −0.029 0.048 0.049 0.049 0.052 0.050 0.050 96 96

20 0.068 −0.026 −0.026 0.038 0.038 0.038 0.043 0.039 0.039 91 91

Model 4
5 0.052 −0.034 −0.033 0.148 0.147 0.148 0.147 0.147 0.147 99 99

10 0.055 −0.036 −0.036 0.081 0.080 0.080 0.082 0.080 0.080 98 98

15 0.059 −0.037 −0.037 0.056 0.055 0.055 0.059 0.057 0.057 97 97

20 0.051 −0.031 −0.032 0.039 0.039 0.039 0.041 0.039 0.039 95 95

n σ̂i,LS σ̂i,ML σ̂i,MML σ̂i,LS σ̂i,ML σ̂i,MML σ̂i,ML σ̂i,MML σ̂i,LS σ̂i,ML σ̂i,MML
Model 1

5 1.313 1.242 1.243 0.107 0.096 0.095 1.830 1.639 1.639 90 90

10 1.201 1.138 1.136 0.043 0.038 0.038 1.485 1.334 1.331 90 90

15 1.153 1.094 1.092 0.023 0.021 0.021 1.352 1.219 1.217 90 90

20 1.129 1.072 1.071 0.016 0.015 0.015 1.292 1.164 1.163 90 90

Model 2
5 2.178 2.051 2.020 0.547 0.435 0.426 5.292 4.702 4.521 88 86

10 1.738 1.622 1.599 0.228 0.212 0.238 3.251 2.843 2.721 87 84

15 1.565 1.467 1.441 0.145 0.114 0.134 2.595 2.266 2.179 87 84

20 1.455 1.348 1.340 0.096 0.079 0.087 2.214 1.897 1.861 85 84

Model 3
5 1.046 0.994 1.001 0.045 0.041 0.042 1.141 1.030 1.043 90 91

10 1.063 1.009 1.016 0.023 0.020 0.020 1.154 1.040 1.053 90 91

15 1.071 1.016 1.021 0.015 0.013 0.013 1.161 1.046 1.057 90 91

20 1.067 1.013 1.018 0.011 0.009 0.009 1.149 1.037 1.046 90 91

Model 4
5 1.074 1.015 1.030 0.056 0.050 0.052 1.212 1.085 1.113 90 92

10 1.081 1.025 1.034 0.027 0.024 0.025 1.196 1.077 1.095 90 92

15 1.088 1.034 1.040 0.016 0.015 0.015 1.201 1.084 1.097 90 91

20 1.087 1.032 1.039 0.012 0.010 0.011 1.194 1.077 1.091 90 91

It can be seen that the ML and the MML estimators are robust owing to the
reason mentioned at the end of the Section 4.

6. Hypothesis Testing

In one-way ANOVA, our aim is to compare the equality of treatment effects,
in other words, to test the following null hypothesis

H0 : αi = 0, i = 1, 2, . . . , a (15)

against the alternative hypothesis

H1 : at least oneαi 6= 0.

Traditionally, for testing the null hypothesis given in (15) the following test statis-
tics based on the LS estimators are used

FLS =
n
∑n
i=1 α̂i,LS

(a− 1)σ̂2
LS

(16)
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As mentioned earlier, power of FLS is very sensitive to non-normality and to
data anomalies. Therefore, in this paper, we propose the following test statistics
based on the ML and the MML estimators as an alternative to the test statistic
given in (16),

FML =
n
∑n
i=1 α̂i,ML

(a− 1)(1− λ2t2)σ̂2
ML

, FMML =
m
∑n
i=1 α̂i,MML

(a− 1)σ̂2
MML

(17)

Large values of FML and FMML lead to the rejection of H0. For large n
values, distribution of both FML and FMML are central F with degrees of freedom
(a−1, N−a). On the other hand, for small n values, we use Monte Carlo simulation
study to verify how close their null distribution is to central F . We simulate the
Type I errors of FML and FMML by computing the following probabilities

P (FML ≥ Fα(a− 1, N − a)|H0) and P (FMML ≥ Fα(a− 1, N − a)|H0), (18)

respectively. Table 4 shows that central F distribution with a − 1 and N − a
degrees of freedom provides accurate approximations to the distributions of FML

and FMML even for small n values.

Table 4: Simulated Type I Errors of FLS , FML and FMML tests a = 3; α = 0.050.

λ n 5 10 15 20
FLS 0.050 0.049 0.048 0.050

0 FML 0.054 0.050 0.053 0.052

FMML 0.053 0.051 0.056 0.054

FLS 0.046 0.055 0.055 0.045

0.4 FML 0.049 0.054 0.056 0.049

FMML 0.048 0.055 0.054 0.047

FLS 0.049 0.054 0.049 0.053

0.7 FML 0.050 0.052 0.049 0.049

FMML 0.051 0.054 0.047 0.048

FLS 0.054 0.048 0.051 0.049

1.0 FML 0.055 0.049 0.052 0.054

FMML 0.055 0.049 0.053 0.053

We now compare the power of the FML and FMML tests with the traditional
FLS test by simulating the probabilities

P (FML ≥ Fα(a− 1, N − a)|H1) and P (FMML ≥ Fα(a− 1, N − a)|H1), (19)

for some representative values of λ. It should be noted that all the observations are
divided by their standard errors. A constant d is added to the observations in the
first and third treatments and a constant 2d is subtracted from the observations
in the second treatment. Simulation results showing the power comparisons of the
proposed tests with the LS based test are given in Table 5.

From Table 5 it is clear that power of FLS , FML and FMML are very similar
when λ is close to 0. When λ approaches 1, FML and FMML seem more powerful
than the FLS , but the differences are not very attractive. This is not surprising due
to the fact that the quadratic form of a skew-normal distributed random variable
has the chi-square distribution (Azzalini 1985, Gupta & Huang 2002).
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Table 5: Power values of the FLS , FML and FMML tests: a = 3,n = 10; α = 0.050.

λ 0 0.4 0.7 1.0
d FLS FML FMML FLS FML FMML FLS FML FMML FLS FML FMML

0 0.050 0.050 0.050 0.049 0.049 0.049 0.055 0.056 0.054 0.051 0.052 0.053

0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.08 0.08 0.09 0.09

0.2 0.24 0.24 0.24 0.22 0.22 0.22 0.20 0.21 0.20 0.17 0.19 0.19

0.3 0.48 0.48 0.48 0.46 0.46 0.46 0.40 0.41 0.40 0.35 0.38 0.37

0.4 0.72 0.72 0.72 0.71 0.71 0.71 0.65 0.66 0.66 0.58 0.61 0.59

0.5 0.90 0.90 0.90 0.89 0.89 0.89 0.84 0.85 0.84 0.78 0.80 0.79

0.6 0.98 0.98 0.98 0.97 0.97 0.97 0.95 0.96 0.96 0.91 0.92 0.92

0.7 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.97

Robustness: We use the following definitions of robustness formulated by Box
(1953). See also Box & Tiao (1964), Tiku, Tan & Balakrishnan (1986).

Criterion robustness: If the Type I error of a test is not substantially higher
under plausible alternatives than that attained under an assumed model, the test
is said to have criterion robustness.

Efficiency robustness: If the power of a test is the highest possible (or nearly
so) under an assumed model but stays high for all plausible models, the test is
said to have efficiency robustness.

In this section, our aim is to identify the affect of deviations from an assumed
model on the Type I error and the power of the proposed tests. For this purpose,
we use the sample models given in Section 5. These simulated values of the power
of the proposed tests and the FLS test are given in Table 6.

Table 6: Values of the power for the alternatives to SN(0, 1, 1): a = 3, n = 10; α =
0.050.

(1) (2) (3) (4)
d FLS FML FMML FLS FML FMML FLS FML FMML FLS FML FMML

0 0.050 0.053 0.054 0.031 0.055 0.053 0.050 0.052 0.051 0.048 0.054 0.053

0.1 0.06 0.08 0.08 0.06 0.09 0.08 0.08 0.09 0.10 0.09 0.10 0.10

0.2 0.15 0.19 0.19 0.18 0.26 0.27 0.18 0.21 0.22 0.18 0.21 0.21

0.3 0.28 0.33 0.33 0.35 0.44 0.45 0.35 0.38 0.39 0.35 0.38 0.38

0.4 0.47 0.52 0.52 0.44 0.54 0.55 0.57 0.61 0.61 0.57 0.62 0.63

0.5 0.65 0.70 0.69 0.57 0.67 0.68 0.75 0.78 0.79 0.78 0.81 0.82

0.6 0.81 0.85 0.84 0.70 0.79 0.80 0.90 0.92 0.93 0.91 0.94 0.94

0.7 0.92 0.94 0.95 0.89 0.96 0.96 0.98 0.99 0.99 0.96 0.98 0.98

It is clear from Table 6 that the power of the FML and FMML tests are much
higher than the corresponding FLS test for all the sample models, i.e., Model (1)
through Model (4). For d = 0, the values represent Type I errors. Then it is said
that proposed tests have criterion robustness as well as the efficiency robustness.

7. Application

Consider the data given in Montgomery (2005); pertaining to the relationship
between the radio frequency power setting and the etch rate for plasma. This is
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an example of a one-way ANOVA with 4 levels of the factor and 5 replicates. The
data is given in Table 7.

Table 7: Radio Frequency Data.

160 W 180 W 200 W 220 W
575 565 600 725

542 593 651 700

530 590 610 715

539 579 637 685

570 610 629 710

To identify the distribution of the error terms, we use the Q-Q plot technique,
one of the well-known and widely used graphical techniques. The Q-Q plot of
normal distribution is shown in Figure 1. On the other hand, among the Q-Q plots
of the residuals obtained for various different values of the skewness parameter λ,
SN(µ, σ, λ = 1) adequately models the residuals, since the observations do not
deviate very much from the straight line, see Figure 2.

Figure 1: Q-Q plot of the residuals for normal distribution.

When we take the skewness parameter λ as 1, parameter estimates and calcu-
lated F values are obtained as shown in Table 8).

The ML and the MML estimates of µi are very close to the LS estimate of µi
with smaller standard errors. All the three tests are consistent in rejecting the
null hypothesis, H0: there is no difference between the radio frequency powers.
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Figure 2: Q-Q plot of the residuals for SN(λ = 1).

Table 8: The parameter estimates and the calculated F values.
µ α1 α2 α3 α4 σ F

LS 617.75 −66.55 −30.35 7.65 89.25 22.125 66.797∗

ML 616.28 −64.22 −34.12 8.28 90.08 19.818 84.041∗

MML 616.34 −64.05 −34.68 8.08 90.65 21.108 71.125∗

*Reject H0

However, the p values for FML and FMML are much smaller than the p value
of the FLS . This is due to the smaller standard errors of the ML and the MML
estimators. Therefore, their results are more reliable than normal theory results.

8. Conclusion

Traditionally, LS estimators and the tests based on them are used in the context
of experimental design. However, efficiencies of the LS estimators are low when the
usual normality assumption is not satisfied. They are also not robust to departures
from normality.

In this paper, we derived estimators of the model parameters in one-way
ANOVA by using the ML and the MML methodologies. New test statistics based
on these estimators were proposed for testing the equality of the treatment effects
when the distribution of the error terms is skew-normal. SN(λ) distribution cov-
ers the normal and normal-like distributions with different skewness and kurtosis
values. Therefore, it provides very flexible and simple alternative model for the
normal distribution in most practical problems.
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Simulation studies show that the ML and the MML estimators and the tests
based on them are more efficient and robust than the corresponding LS versions
thereof.

It can also be seen that there is no significant difference between the method-
ologies based on ML and MML even for small sample sizes. The methodology
based on ML is somewhat preferable than the methodology based on MML in
terms of efficiency and power. On the other hand, the methodology based on
MML is computationally feasible and less time consuming.
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