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Abstract
This present work aims to propose an estimator in order to estimate

the probability of success of a binomial model that incorporates the extra-
binomial variation generated by zero-inflated samples. The construction of
this estimator was carried out with a theoretical basis given by the Holder
function and its performance was evaluated through Monte Carlo simulation
considering different sample sizes, parametric values (π), and excess of zero
proportions (γ). It was concluded that for the situations in (γ = 0.20) and
(γ = 0.50) that the proposed estimator presents promising results based on
the specified margin of error.

Key words: Binomial Distribution, Monte Carlo simulation, Robust Esti-
mator, Robustness.

Resumen
El presente trabajo tiene como objetivo proponer un estimador para

estimar la probabilidad de éxito de un modelo binomial que incorpora la
variación extra-binomial generada por muestras cero-inflados. La construc-
ción de este estimador se llevó a cabo con una base teórica dada por la fun-
ción Holder y su desempeño fue evaluado a través de la simulación de Monte
Carlo considerando diferentes tamaños de muestra, valores paramétricos (π),
y el exceso de proporciones cero (γ). Se concluyó que para las situaciones
en (γ = 0,20) y (γ = 0,50) que el estimador propuesto presenta resultados
prometedores basados en el margen de error especificado..
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Carlo, robustez.
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1. Introduction

The inference on the parameter of a binomial population proportion, in general,
is carried out considering sampling units are independent and provenient from a
single population.

However, there are situations in certain data sets where the sampling variance
may be superior in relation to the expected variability in the binomial model.
Uncountable factors may cause overdispersion, among them, we can mention the
existence of a correlation among the individual responses, data clustering and
outliers.

Starting from the assumption that individuals belonging to the same popula-
tion are more likely to provide correlated responses, meaning that an individual
response depends on the previous response, consequently excess of zeros in a sam-
ple may occur, and in these cases, an alternative is given for modeling through
the binomial model correlated and proposed by Kupper & Haseman (1998), in
order to adjust extra-binomial variance caused by overdispersion or subdispersion
(Achcar & Junqueira 2002).

In the presence of covariates, Hinde & Demetrio (1978) studied binary re-
sponses with overdispersion assuming random variables Yi represent the success
number of samples of sizemi(i = 1, . . . , n), where n is the nth element of each sam-
ple. Thus, writing E[Yi] = µi = miπi through the generalized linear model, the
proportion πi is modulated assuming the explanatory variables Xi with a fitting
link function.

Regarding robust inferential methods, which in general attenuate the present
effects of outliers in the samples, we can mention some kinds of estimators, as
M-estimators (Huber 1964) and minimum disparity estimators (Lindsay 1994).
Specifically in the case of discrete data we can refer to M-estimators (Simpson
1987), minimum disparity estimators (Simpson, Carrol & Ruppert 1987) and E-
estimators (Ruckstuhl & Welsh 2001).

As we know zero-inflated binomial samples in general exhibit an asymmetric
form, thus explaining E-estimator use in the π proportion estimation of a binomial
population, which model is described by

pπ(y) =

(
m

y

)
πy(1− π)m−ywith y = 0, . . . ,m. (1)

According to Ruckstuhl & Welsh (2001), the E-estimator is derived from a
modification in the likelihood in order to reduce the effect of observations in the
tails of the distributions. A brief presentation of the construction of this estimator
is given below.

Assuming the disparity function H(π, fn) defined by

H(π, fn) =

m∑
y=0

ρ(x)pπ(y), wherex =
fn(y)

pπ(y)
(2)
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and fn(y) = n−1
n∑
i=1

I(Yi = y), y = 0, . . . ,m, correspondent to the proportion of

observations equal y in a sample of size n and pπ(y) to the probability of success
of π of the binomial model, and

ρ(x) =


(ln(c1) + 1)x− c1, if x < c1
x ln(x), if c1 ≤ x ≤ c2

(ln(c2) + 1)x− c2, if x > c2

(3)

where c1 and c2 are tuning constants from which the estimator depends. Based
on these specifications, the estimator π̂ that minimizes H is given by:

π̂= argminH
π

(π, fn) (4)

The choice of tuning constants acts directly on the robustness of the estimators,
providing them with full asymptotic efficiency, and good robustness properties
(Basu, Shiyoa & Park 2011). In this way the accuracy of this estimator is given
by the choice of tuning constants c1 and c2. In the case of binomial mixture, Silva
& Cirillo (2010) concluded that the appropriate value for the tuning constant c1
depends on the degree of contamination of the sample and, therefore, it is desirable
that the researcher have some prior information about the probability of mixture.

Some recommendations made by Ruckstuhl & Welsh (2001) were mentioned, in
a way that, when assuming c1 = 0 and c2 →∞, π̂ will correspond to the minimum
relative entropy estimator which is identical to the maximum likelihood estimator
(MLE) of the binomial model. The authors also point out that the estimates
become more robust assuming c1 < c2 = 1. Determination of the values that
will guarantee better accuracy and precision is still a matter of study. Ruckstuhl
& Welsh (2001) have mentioned that when fn is a finite-sample realization of a
binomial distribution and c1 < c2 = 1, the E-estimator may be biased and the
substitution of c2 by another value will be discussed in future work.

As a result of the above motivation, the present work aims to construct a new
estimator in order to estimate the probability of success of a binomial distribution
given a zero-inflated sample.

The main advantage provided by this estimator is highlighted in the compu-
tational aspect once the estimator (4) that minimizes (2) is obtained assuming
infinite values belonging to the interval [0,1]. Therefore, we understand that a
problem of a continuous nature that is treated in a discretized way, depending on
the algorithm to be used, or even, in an application with real data may occasionally
cause a non-fitted estimate.

Due to this fact, the estimator proposed in this work is shown in Section 2.
Basically with of a modification in (3), in such manner that the researcher may
fix an only value for the constants c1 and c2, based on a single point represented
by the maximum likelihood estimator and not on every point of the parametric
dominium, as suggested in (4).
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2. Methodology

The binomial samples with different zero percentages (γ) were generated via
Monte Carlo method according to the zero-inflated binomial model (ZIB):

f(Y = y) =


γ + (1− γ)(1− π)

m
, y = 0

(1− γ)

(
m

y

)
πy(1− π)

m−y
, y = 1, 2, . . . ,m

(5)

According to the model mentioned and because it is an empirical study, arbi-
trarily, the parametric values were determined deliberately to represent different
situations of sample of sizes (n = 20, 30, 50, 70, 90), extracted from a population
of m = 100 elements, zero percentages (γ = 0.2, 0.5 and 0.7) and parametric
values at “small”, “medium” and “large” proportions (π = 0.3, 0.5, 0.8). Therefore,
the resultant combination from these factors provided different configurations, in
which the estimator Pzib was evaluated by 10000 Monte Carlo simulations using
the R software (R Development Core Team 2013).

The disparity function as defined by Lindsay (1994), such discrepancy between
the data and the model density, based on the function G(·) and considering the
sample space as Ω = {0, 1, 2, . . .}, is given by

ρG (d, fθ) =
∑
x∈Ω

G (δ (x))fθ (x)

where G(·) is a thrice differentiable convex function on [−1,∞) with G(0) = 0 and
δ the Pearson residual at x, given by

δ (x) =
d (x)− fθ (x)

fθ (x)

with fθ (x) representing a density function and d (x) the empirical density at x.
According to Park, Basu & Lindsay (2002), the range of the Pearson residual

is [−1,∞) and under certain regularity conditions, all minimum disparity estima-
tors are first order efficient; in addition many of them have attractive robustness
properties.

Due to these considerations, based on a function belonging to the Hölder class,
a new estimator was constructed, modifying the function ρ(x), given in (3).

The construction of the estimator denominated Pzib was based on a modifica-
tion in the disparity function H(π, fn), given in (2), in order to reduce the speed
ρ(x) =xln(x) tends towards the infinite. This modification was made considering
the following definitions:

Definition 1. We say that a function f : X ⊂ < → < is a Lipschitz continuous
function in X if there is L>0 so that

|f(x0)− f(x1)| < L |x0 − x1| , ∀ x0, x1 ∈ X.
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Definition 2. We say that a function f : X ⊂ < → < is Hölder continuous with
exponent 0< α <1 if there is H>0 so that

|f(x0)− f(x1)| < H |x0 − x1|α , ∀ x0, x1 ∈ X.

Example 1. Consider the function:

f : (0,+∞) ⊂ < → <
x 7→ f(x) =

√
x

(6)

The function described in (6) is Hölder continuous with exponent α = 1
2 .

In fact:

For x0 > x1 we have:

√
x0 =

√
x0 − x1 + x1 ≤

√
x0 − x1 +

√
x1 =

√
|x0 − x1|+

√
x1

⇒ √x0 −
√
x1 ≤

√
|x0 − x1| (∗)

For x1 > x0 we have:

√
x1 =

√
x1 − x0 + x0 ≤

√
x1 − x0 +

√
x0 =

√
|x1 − x0|+

√
x0

⇒ √x1 −
√
x0 ≤

√
|x1 − x0| (∗∗)

In (*) and (**) we conclude that:

|
√
x0 −

√
x1| ≤

√
|x0 − x1|, that is |f(x0)− f(x1)| ≤ |x0 − x1|

1
2

In a general way, given 0< α <1 the function

f : (0,+∞) ⊂ < → <
x 7→ f(x) = xα

(7)

is Hölder continuous with exponent α (Begehr 1994).

The property below will be important for the following:
Property 1: Given 0 < α < β 6 1, xα tends to infinite when x tends to infinite
less rapidly than xβ . We note β − α >0 and therefore

lim
x→∞

xβ

xα
= lim
x→∞

xβ−α =∞ (8)

In order to reduce the speed, the function, g (x) = x ln(x) tends to infinite
when x tends to infinite, the proposal of the Pzib estimator implies modifying the
function ρ(x) given in 3, in order to reduce its growth when x tends to infinite.
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Define:

ρ1(x) =




{
c1−α1 ln(c1) + [(1− α) ln(c1) + 1]

c1−α1

α

}
xα

− [(1− α) ln(c1) + 1]
c1
α

if x < c1

x ln(x) if c1 6 x 6 c2
{
c1−α2 ln(c2) + [(1− α) ln(c2) + 1]

c1−α2

α

}
xα

− [(1− α) ln(c2) + 1]
c2
α

if x > c2

(9)

{x

Note that for α = 1, ρ1 (x) is equivalent to ρ (x) given in (3).
We point out that the function ρ1(x) has the same kind of differentiability as

the function ρ(x), and ρ(x) and ρ1(x) ∈ C1 (<+). Based on the foregoing, the
constructed estimator Pzib is given by:

Pzib =

m∑
y=0

ρ1(x)pπ̂mle
(Y = y) (10)

Note that this estimator will depend only on α parameter, once the constants
c1 and c2 were fixed in 0.1 and 1 , which makes it accurate with a tolerable
margin of error defined by |P̂ zib− π̂mle| where k indicates the tolerable value for
this difference, being interpreted as a deviation resulting from the incorporation
of the extra-binomial variability in the estimation of π when compared with the
maximum likelihood estimator.

3. Results and Discussion

As we know, the usual maximum likelihood estimator submitted to zero-inflated
samples may present gross errors along with the P̂ zib estimate, the researcher may
use it as a reference of Table consulting, since through the deviation it is possible
to verify error magnitude.

Starting from a situation where the fitting of Pzib estimator is verified only
for a simple value of c1, maintaining c2 = 1, as well as the study of the function
ρ1(x) in relation to the speed of convergence when x→∞, the results found in the
Tables 1-3 correspond to the maximum likelihood estimates, P̂ zib and deviations.

The results shown in Table 1 were obtained from a study via Monte Carlo
method which goal was to verify whether the choice of α could be made correctly
with the knowledge of π̂mle. Fixing k = 0.20 for this purpose, we noted that
the values of deviation satisfied the tolerable margin of error. Naturally, π̂mle
may be obtained given a zero-inflated sample. Therefore, taking this estimate
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as a reference, the P̂ zib estimate within the tolerable margin of error will provide
information to verify whether the assumed value of α is in fact the value to be used
in the Pzib estimator to render accurate estimates. In this context, the results
found in Table 1, confirm that given the low concentration of zeros (γ = 0.20) and
different samples of size (n), the estimates of P̂ zib were considered reasonable.
Notice that the deviations obtained were inferior to k = 0.20 and the estimates
π̂mle were not so accurate when compared to the estimates obtained in the Pzib
estimator.

Table 1: Values of α for P̂ zib estimates with ρ1(x) approach minimizing the difference
in relation to the parameter of reference π with proportion of zeros γ = 0.2,
m = 100, c1 fixed in 0.1 and c2 fixed in 1.

n Estimates π = 0.3 π = 0.5 π = 0.8

α 0.2600 0.1700 0.1200
20 π̂mle 0.2374 0.3958 0.6515

P̂ zib 0.2897 0.5268 0.8106
|P̂ zib− π̂mle| 0.0523 0.1310 0.1591

α 0.1900 0.1600 0.1200
30 π̂mle 0.2418 0.3986 0.6479

P̂ zib 0.2827 0.4955 0.8118
|P̂ zib− π̂mle| 0.0409 0.0968 0.1639

α 0.1300 0.1300 0.1200
50 π̂mle 0.2382 0.3990 0.6336

P̂ zib 0.3063 0.5124 0.8156
|P̂ zib− π̂mle| 0.0681 0.1135 0.1819

α 0.1000 0.1200 0.1200
70 π̂mle 0.2411 0.4027 0.6419

P̂ zib 0.2957 0.4621 0.7958
|P̂ zib− π̂mle| 0.0546 0.0594 0.1540

α 0.0900 0.1100 0.1200
90 π̂mle 0.2387 0.3993 0.6387

P̂ zib 0.2985 0.4895 0.7803
|P̂ zib− π̂mle| 0.0598 0.0902 0.1417

Increasing the concentration of zeros to γ = 0.50, given the searched values of α
the results shown in Table 2 provided fitted estimates. However, we can note that
in a general way, the π̂mle estimates resulted in inappropriate values, leading to
an increase of k value in the tolerable margin of error. For high concentrations of
zero (Table 3), the same behavior of the π̂mle estimates in relation to the estimator
Pzib was observed.

According to Ruckstuhl & Welsh (2001) The choice c2 = 1 gives improved first
order robustness against gross error contamination and the choice cl = 1 gives
improved robustness against truncation. Under the binomial model the asymptotic
distribution of the E-estimator is Gaussian for c1 < 1 < c2 and non-Gaussian for
c1 < c2 = 1.

Choosing c1 < c2 we cannot treat both types of contamination simultaneously.
The study of the properties for other c2 values will be covered in future work.
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Table 2: Values of α for P̂ zib estimates with ρ1(x) approach minimizing the difference
in relation to the parameter of reference π with proportion of zeros γ = 0.5,
m = 100, c1 fixed in 0.1 and c2 fixed in 1.

n Estimates π = 0.3 π = 0.5 π = 0.8

α 0.2700 0.1800 0.1300
20 π̂mle 0.1521 0.2537 0.3895

P̂ zib 0.2800 0.5012 0.7720
|P̂ zib− π̂mle| 0.1279 0.2475 0.3825

α 0.2600 0.1800 0.1300
30 π̂mle 0.1471 0.2442 0.4008

P̂ zib 0.2925 0.5001 0.7720
|P̂ zib− π̂mle| 0.1454 0.2558 0.3711

α 0.2500 0.1800 0.1300
50 π̂mle 0.1492 0.2527 0.3922

P̂ zib 0.3053 0.4979 0.7717
|P̂ zib− π̂mle| 0.1562 0.2452 0.3795

α 0.2500 0.1800 0.1300
70 π̂mle 0.1494 0.2537 0.4084

P̂ zib 0.2922 0.4986 0.7718
|P̂ zib− π̂mle| 0.1428 0.2449 0.3633

α 0.2400 0.1800 0.1300
90 π̂mle 0.1478 0.2452 0.3981

P̂ zib 0.3068 0.4969 0.7717
|P̂ zib− π̂mle| 0.1590 0.2517 0.3736

Table 3: Values of α for P̂ zib estimates with ρ1(x) approach minimizing the difference
in relation to the parameter of reference π with proportion of zeros γ = 0.7,
m = 100, c1 fixed in 0.1 and c2 fixed in 1.

n Estimates π = 0.3 π = 0.5 π = 0.8

α 0.2600 0.1800 0.1300
20 π̂mle 0.0949 0.1484 0.2485

P̂ zib 0.2935 0.4995 0.7725
|P̂ zib− π̂mle| 0.1987 0.3511 0.5240

α 0.2600 0.1800 0.1300
30 π̂mle 0.0900 0.1510 0.2343

P̂ zib 0.2843 0.4945 0.7721
|P̂ zib− π̂mle| 0.1943 0.3435 0.5378

α 0.2500 0.1800 0.1300
50 π̂mle 0.0882 0.1452 0.2367

P̂ zib 0.3021 0.4936 0.7717
|P̂ zib− π̂mle| 0.2139 0.3484 0.5350

α 0.2500 0.1800 0.1300
70 π̂mle 0.0890 0.1500 0.2468

P̂ zib 0.2991 0.4936 0.7717
|P̂ zib− π̂mle| 0.2101 0.3436 0.5250

α 0.2500 0.1800 0.1300
90 π̂mle 0.0885 0.1506 0.2349

P̂ zib 0.2981 0.4936 0.7717
|P̂ zib− π̂mle| 0.2096 0.3430 0.5369
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It must be noted that other values of c1 and c2 may be obtained in the function
described in the Appendix, constructed in the R software (R Development Core
Team 2013).

4. An Ilustrative Example

For didactic purposes, is shown, where the application of the Pzib estimator
considering the ρ1(x) in a sample of size n, each sampling unit was considered
independent and identically distributed with a binomial (m,π). Given this spec-
ification and for comparison with a simulated sample from an inflated binomial
model with m = 100 and π = 0.3 (Table 4).

Table 4: Values assumed to illustrate the estimation of π using the estimator Pzib.

Parameter m n γ Sample Units
π = 0.3 100 20 0.20 25, 30, 31, 25, 24, 27, 0, 26, 31, 32,

26, 28, 21, 27, 29, 30, 0, 0, 28, 32

Obtaining the maximum likelihood estimate:

π̂mle = 1/m

m∑
y=0

yfn(y)

and

fn(y) = n−1
n∑
i=1

I(Y = yi), y = 0, . . . ,m

fn(0) =
I(Y = 0) + I(Y = 0) + · · ·+ I(Y = 0)

20
=

3

20
= 0.15

...

fn(32) =
I(Y = 32) + I(Y = 32) + · · ·+ I(Y = 32)

20
=

2

20
= 0.10

Thus the maximum likelihood estimator is given by

π̂mle =
0fn(0) + 1fn(1) + · · ·+ 100fn(100)

100
= 0.236

Based on this estimate, the Table 1 can be used, to seek a value of πmle near
0.236. Obeying the rule that deviations must be less than 0.20, provides an idea
of parameter estimates, which could be 0.30 with α equal to 0.26.
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Calculating probabilities considering the mle:

pπ̂mle
(0) =

(
100

0

)
0.2360(1− 0.236)100−0 = 2.04× 10−12

pπ̂mle
(1) =

(
100

1

)
0.2361(1− 0.236)100−1 = 6.30× 10−11

pπ̂mle
(2) =

(
100

2

)
0.2362(1− 0.236)100−2 = 9.63× 10−10

...

pπ̂mle
(100) =

(
100

100

)
0.236100(1− 0.236)100−100 = 1.96× 10−63

Calculating the Estimator Pzib:

Pzib =

m∑
y=0

ρ1(x)pπ̂mle
(Y = y) ex =

fn(y)

pπ̂mle
(y)

Table 5: Values for Pzib.
m pπ̂mle

x ρ1(x) ρ1(x)pπ̂mle

0 2.0386x10−12 7.3579x1010 2568.8177 5.2368x1009

1 6.2970x10−11 0 0.2707 1.7049x1011

2 9.6280x10−10 0 0.2707 2.6069x1010

3 9.7163x10−09 0 0.2707 2.6305x1009

4 7.2783x10−08 0 0.2707 1.9705x1008

5 4.3167x10−07 0 0.2707 1.1686x1007

...
...

...
...

...
21 0.0804 0.6214 -0.2956 -0.0237
...

...
...

...
...

100 1.9552x10−63 0 0.2707 5.2935x10−64

Pzib=
m∑
y=0

ρ1(x)pπ̂MLE
0.2900

Comparing the estimated P̂ zib with the parametric value (π = 0.30), note
that the value of α used resulted in an accurate estimate, following the criteria
established by |P̂ zib−π̂mle| < 0.20 shows that the value α is suitable for performing
this inference.

5. Considerations Regarding the Use of RAF
(Residual Adjustment Function)

Park et al. (2002) develop another graphical representation to summarize the
behavior of the minimum disparity estimators in relation to maximum likelihood.
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For this purpose, the authors developed a function called RAF (residual adjust-
ment function), which considers as input the Pearson residual, represented by
δ(x).

Referring to this methodology, taking ρ1 function (9) as a function of δ, rede-
fined by δ = fn (y) /pπ (y)− 1 instead of x = fn (y) /pπ (y), the graphic procedure
RAF used to evaluate the disparity is not suitable, since Park et al. (2002) mention
a graphical interpretation of the robustness of the estimators, but this representa-
tion is not completely satisfactory since the domain of the RAF is infinite. With
emphasis on the domain of ρ1 function (9), we do not recommend the use of this
procedure for the following reasons:

• The ρ1 function (9) proposed for obtaining the estimator allows researchers
to search by simulation, the value of α that defines ρ1 function (9). That is,
each value of α has corresponding a ρ1 function (9). Therefore, we note a
limitation in assuming x < 0, since xα cannot be calculated. Such statement
may be conjectured if we consider α = 1/2, which implies that xα can only
be calculated for greater than or equal to zero values.

• Another point to be emphasized, refers to the fact that ρ1 function (9),
considered in its construction ln(x) with the R+ domain, so we cannot allow
negative or zero values in the evaluation.

6. Conclusions

The Pzib estimator proposed in this work, fit the situations where the samples
presented low (γ = 0.20) and medium (γ = 0.50) concentrations of zero. The
accuracy and precision of the P̂ zib estimates are flexible to computational im-
provement, adopting the criterion |P̂ zib − πmle| < k, where k corresponds to a
tolerable value subjectively specified by the researcher.
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Appendix. R Function to Compute the
Simulations

# definition of the fn(y) function
#m: Population size
#n: Sample size
fny<-function(m,n,data,vet)
{
for (a in 1:(m))
{
prop=0; aux=vet[a]
for (b in 1:n)
{
if (aux==data[b]) prop=prop+1
}
vcont[a]=(prop)/n
}
return(vcont)
}
# definition of the Pzib function
#p: probability of success
#c1,c2,alfa: constants to be inserted.
estimaPzib<-function(x,p,c1,c2,alfa)
{
estPzib=0
for (b in 1:length(x))
{
if (x[b]>=c1 && x[b]<=c2) rho[b]=x[b]*log(x[b])
if(x[b]<c1) rho[b]=((c1^(1-u)*log(c1)
+((1-u)*log(c1)+1)
*(c1^(1-u)/u))*x[b]^u)
-(((1-u)*log(c1)+1)*c1/u)
if(x[b]>c2) rho[b]=((c2^(1-u)*log(c2)
+((1-u)*log(c2)+1)
*(c2^(1-u)/u))*x[b]^u)
-(((1-u)*log(c2)+1)*c2/u)
auxPzib=rho[b]*p[b]
estPzib=auxPzib + estPzib
}
return (estPzib)
}
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