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Abstract

Under classical survey sampling theory the errors mainly studied in the
estimation are sampling errors. However, often non-sampling errors are more
influential to the properties of the estimator than sampling errors. This is
recognized by practitioners, researchers and many great works of literature
regarding non-sampling errors have been published during last two decades,
especially regarding non-response error which is one of the cornerstones of
the non-sampling errors. The literature handles one kind of non-sampling
error at a time, although in real surveys more than one non-sampling error
is usually present.In this paper, two kinds of non-sampling errors are con-
sidered at the estimation stage: non-response and measurement error. An
exponential ratio type estimator has been developed to estimate the pop-
ulation mean of the response variable in the presence of non-response and
measurement errors. Theoretically and empirically, it has been shown that
the proposed estimator is more efficient than usual unbiased estimator and
other existing estimators.

Key words: Estimation, Mean Squared Error, Measurement Error, Non-
response, Ratio Estimator, Sampling Error.

Resumen

En la teoría de muestreo de la encuesta clásica los errores estudiados prin-
cipalmente en la estimación son el muestreo errores. Sin embargo, a menudo
los errores ajenos al muestreo son más influyentes que las propiedades del
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estimador de errores de muestreo. Esto es reconocido por los profesionales,
los investigadores y muchos grandes obras de la literatura en relación con
los errores ajenos al muestreo se ha publicado en los últimos dos decenios,
especialmente en relación con el error de falta de respuesta, que es una de las
piedras angulares de los errores ajenos al muestreo. La literatura se ocupa
de un tipo de error no muestral a la vez, aunque en las encuestas reales más
de un error no muestral suele estar presente. En este trabajo, dos tipos de
errores ajenos al muestreo son considerados en la etapa de la estimación: la
falta de respuesta y el error de medición. Un tipo exponencial estimador de
razón ha sido desarrollado para estimar la media poblacional de la variable
de respuesta en presencia de errores de falta de respuesta y de medición.
Teóricamente y empíricamente, se ha mostrado que el estimador propuesto
es más eficiente que estimador insesgado habitual y otros estimadores exis-
tentes.

Palabras clave: error cuadrático medio, error de medición, error de muestreo,
estimación, estimador de razón.

1. Introduction

Design based estimation methods use the sampling distribution that results
when the values for the finite population units are considered to be fixed, and the
variation of the estimates arises from the fact that statistics are based on a random
sample drawn from the population rather than a census of the entire population,
(see, Kish 1954, Sarndal, Swensson & Wretman 1992, Kish 1994, Gregoire 1998,
Koch & Gillings 2006, Binder 2008, Dorazio 1999, Shabbir, Haq & Gupta 2014).

The results of a survey are used to make quantitative statements about the
population studied i.e. descriptive statements about the aggregate population
analytic statements about the relationship among subgroups of the population,
or interpretive statements about the nature of social or economic processes. A
survey error occurs when there is discrepancy between the statements and reality.
These errors are of two types sampling and non-sampling errors. Sampling errors
comprise the differences between the sample and the population due solely to the
particular units that happen to have been selected. Non sampling errors encompass
all other things that contribute to survey error. Non sampling errors are said to
arise from wrongly conceived definitions, imperfections in the tabulation plans,
failure to obtain response from all sample members, and so on. (see, Ilves 2011,
Groves 1989).

In practice the researcher faces the problem of measurement error while collect-
ing information from individuals. Measurement error is the difference between the
value that is recorded and the true value of a variable in the study. For example,
in surveys regarding household consumption/expenditure where the respondents
are asked to report their consumption/expenditure catalog, there is a great like-
lihood that the respondents may fail to recall precisely how much they spent on
various items over the interval. Many researchers have studied measurement errors
like Cochran (1963), Cochran (1977), Fuller (1995), Shalabh (1997), Manisha &
Singh (2001), Manisha & Singh (2002), Wang (2002), Allen, Singh & Smarandache
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(2003), Singh & Karpe (2007), Singh & Karpe (2008), Singh & Karpe (2009), Singh
& Karpe (2010), (Gregoire & Salas 2009, Salas & Gregoire 2010), Shukla, Pathak
& Thakur (2012), and Sharma & Singh (2013), etc.

Another problem the researcher faces is due to non-response which refers to the
failure to collect information from one or more respondents on one or more vari-
ables. The reasons non-response occurs include non-availability of the respondents
at home, refusal to answer the questionnaire, lack of information, etc. Hansen &
Hurwitz (1946) considered the problem of non-response while estimating the pop-
ulation mean by taking a sub sample from the non-respondent group with the
help of extra efforts and an estimator was proposed by combining the information
available from the response and non-response groups. In estimating population
parameters like the mean, total or ratio, sample survey experts sometimes use
auxiliary information to estimate improve precision. When the population mean
of the auxiliary variable X is known and in presence of non-response, the problem
of estimating the population mean of the study variable Y has been discussed by
Cochran (1977), Rao (1986), Khare & Srivastava (1997), Kumar, Singh, Bhougal
& Gupta (2011), Singh & Kumar (2008). In Hansen & Hurwitz (1946) method,
questionnaires are mailed to all the respondents included in a sample and a list
of non-respondents is prepared after the deadline is over. Then a sub sample is
drawn from the set of non-respondents and a direct interview is conducted with
the selected respondents and the necessary information is collected.

Researchers who have studied non-response have ignored the presence of pos-
sible measurement errors and researchers who have studied measurement errors
have neglected non-response. In practice, it is possible for a researcher to face
the problem of measurement error and non-response at the same time. Jackman
(1999) dealt with both non-response and measurement error simultaneously, in
the case of voter turnout, where a reasonably large body of vote validation studies
supply auxiliary information, allowing the components of bias in survey estimates
of turnout rates to be isolated. Averaging over the auxiliary information provides
bounds on the quantity of interest, yielding an estimate corrected for both non-
response and measurement error. Further, Dixon (2010) studied the estimation
of non-response bias and measurement error on the data from Consumer Expen-
diture Quarterly Interview Survey (CEQ), Current Population Survey (CPS) and
National Health Interview Survey (NHIS), an attempt to measure the differences
in employment status of Washington.

In this paper, we have developed new estimators for estimating the population
mean of the variable of interest when there is measurement error and non-response
error in the study as well as in the auxiliary variable. An empirical study is
carried out to show the efficiency of our suggested estimators over some available
estimators.
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2. Sampling Procedure and Some Well Defined
Estimators

A simple random sample of size n is selected from the population of size N
by a simple random sampling without replacement (SRSWOR) method. Let
Y and X be the study variable and auxiliary variable, respectively. Let µY =
1
N

∑N
i=1 yi,µX = 1

N

∑N
i=1 xi, σ

2
y = 1

N

∑N
i=1 (yi − µY )

2and σ2
x = 1

N

∑N
i=1 (xi − µX)

2

denote the population mean and the population variance of the study variable y
and auxiliary variables x.

Let (xi, yi) be the observed values and (Xi, Yi) be the true values of two
characteristics (x, y) respectively associated with the ith (i = 1, 2, . . . , n) sample
unit. Let the measurement errors be

Ui = yi − Yi,

and
Vi = xi −Xi.

Measurement errors are assumed to be random in nature and they are uncor-
related with mean zero and variances σ2

U and σ2
V respectively. Let σ2

X and σ2
Y

denote the variances of the auxiliary variable X and the variable of interest Y
respectively for the population, Cy and Cxbe the coefficient of variations of vari-
able Y and X respectively for the population, and let ρyx be the coefficient of
correlation between the variable Y and X for the population. We further assume
that the measurement errors for variable Y and X are independent.

If there is some non-response, (Hansen & Hurwitz 1946) proposed a double
sampling scheme for estimating population a mean, simple random sample of size
n is selected and the questionnaire is mailed to the sampled units; the number of
respondents in the sample is denoted by n1 and the number of the non-respondents
in the sample is denoted by n2 and a sub-sample of size r (r = n2/k; k > 1)
is taken from non-respondents in the sample, where k is the inverse sampling
ratio. Let (x∗i , y∗i ) be the observed values and (X∗i , Y

∗
i ) be the true values of two

characteristics (x,y) respectively associated with the ith (i = 1, 2, . . . , n) sample
unit. Let the measurement error associated with the study variable be

u∗i = y∗i − Y ∗i .

If there is complete response on the auxiliary variable, let the measurement
error associated with the auxiliary variable be

vi = xi −Xi.

If there is some non-response on the auxiliary variable, let the measurement
error associated with the auxiliary variable be

v∗i = x∗i −X∗i .
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The measurement errors are random in nature having mean zero and variances
σ2
U and σ2

V respectively for the responding units and σ2
U(2) and σ

2
V (2) respectively

for non-respondents of the population. Let σ2
X(2) and σ2

Y (2) be the variances for
variables X and Y respectively for population non-respondents and ρyx(2) be the
coefficient of correlation between the variable X and Y for non-respondents of the
population. Let Cx(2) and Cy(2) be the coefficient of variations for variables X and
Y respectively for the non-respondents in the population. It is further assumed
that the measurement errors for variables X and Y are independent.

The usual unbiased estimator for the population mean of the study variable in
the presence of measurement error is given as

t0 = µ̂y =
1

n

n∑
i=1

yi

The variance in the presence of measurement error of the mean per unit estimator
is given as

V ar (t0) = λ2
(
σ2
y + σ2

U

)
, (1)

where λ2 =
(
1
n −

1
N

)
.

Shalabh (1997) developed the following ratio-type estimator in the presence of
measurement error t1 = µ̂y

(
µX

µ̂x

)
; where µ̂x = 1

n

∑n
i=1 xi; µX = 1

N

∑N
i=1Xi. The

mean square error of t1 (using finite population correction factor) is given as:

MSE (t1) ∼= λ2
{
σ2
y +R2σ2

x − 2Rρyxσyσx + σ2
U +R2σ2

V

}
, (2)

Shukla et al. (2012) developed the following estimator

t2 = αµ̂y

(
µ̂δx
µX

)
+ (1− α) µ̂y,

where µ̂δx = NµX−nµ̂x

N−n and α is a suitable constant.
The mean square error of t2 in the presence of measurement error is given as:

MSE (t2) ∼= λ2
{
σ2
y + µ2

1R
2σ2
x − 2µ1Rρyxσyσx + σ2

U + µ2
1R

2σ2
V

}
, (3)

where µ1 = α n
N−n .

MSE (t2) =MSE1 (t2) +MSE2 (t2) ,

where
MSE1 (t2) ∼= λ2

{
σ2
y + µ2

1R
2σ2
x − 2µ1Rρyxσyσx

}
, (4)

is the mean square error of t2 without measurement error, and

MSE2 (t2) ∼= λ2
{
σ2
U + µ2

1R
2σ2
V

}
, (5)

is the contribution of measurement error to the mean square error of t2.

The optimum value of µ1 is given as
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µ1(opt) =
σ2
x

σ2
x+σ

2
V
ρyx

Cy

Cx
= µ0, (say).

The optimum mean square error of t2is given as

min .MSE (t2) = λ2
{
σ2
y + µ2

0R
2σ2
x − 2µ0Rρyxσyσx + σ2

U + µ2
0R

2σ2
V

}
. (6)

When there is some non-response, it is assumed that the population of size
N is composed of two mutually exclusive groups, the N1respondents and the
N2non-respondents, though their sizes are unknown. Let µY1 = 1

N1

∑N1

i=1 yi and
σ2
y(1) = 1

N1−1
∑N1

i=1 (yi − µY1
)
2 denote the mean and variance of the response

group. Similarly, let µY2 = 1
N2

∑N2

i=1 yi and σ
2
y(2) =

1
N2−1

∑N2

i=1 (yi − µY2)
2 denote

the mean and variance of the non-response group. The population mean can be
written as µY = W1µY1

+ W2µY2
, where W1 = N1/N and W2 = N2/N . Let

µ̂y1 = 1
n1

∑n1

i=1 yi and µ̂y2r = 1
r

∑r
i=1 yi denote the means of the n1 responding

units and the r sub sampled units. Thus an unbiased estimator of the population
mean Y due to Hansen and Hurwitz is given by

µ̂∗y = w1µ̂y1 + w2µ̂y2r ,

where w1 = n1/n and w2 = n2/n are responding and non-responding proportions
in the sample. The variance of µ̂∗y to terms of order n−1, is given by

V ar
(
µ̂∗y
)
= λ2σ

2
y + θσ2

y(2), (7)

where λ2 = 1−f
n , θ = W2(k−1)

n , Cy = σy/µY and Cy(2) = σy(2)/µY , (see, Cochran
1977, p. 371).

Let the information on auxiliary variable x be available and correlated with
study variable y. In some situations, information on the auxiliary variable is
not fully available i.e. non-response on auxiliary variable. One can define in
similar manner to the above the auxiliary variable i.e. µ̂x1 = 1

n1

∑n1

i=1 xi and
µ̂x2r = 1

r

∑r
i=1 xi denotes the means of responding and r sub sampled units.

Under such situation, an unbiased estimator for the population mean X of the
auxiliary variable as

µ̂∗x = w1µ̂x1
+ w2µ̂x2r

.

The variance of µ̂∗x is
V ar (µ̂∗x) = λ2σ

2
x + θσ2

x(2). (8)

Cochran (1977) proposed the following ratio-type estimator of population mean

t3 = µ̂∗y

(
µX
µ̂∗x

)
The mean square error of t3 is given as

MSE (t3) ∼= λ2
(
σ2
y +R2σ2

x − 2Rρyxσyσx
)

+ θ
(
σ2
y(2) +R2σ2

x(2) − 2Rρyx(2)σy(2)σx(2)

)
(9)
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Singh & Karpe (2008) suggested the following generalized estimator of popu-
lation mean

t4 = µ̂∗y

(
µX
µ̂∗x

)α1
(
µX
µ̂x

)α2

,

where α1 and α2 are suitably chosen constants.
The optimum mean square error of t4 is given as

min .MSE (t4) ∼= λ2
{
σ2
y (1− ρyx)

}
+ θ

{
σ2
y(2)

(
1− ρyx(2)

)}
, (10)

In the situation where there is measurement and non-response both in the study
and auxiliary variables, one can obtain the following estimator

t5 = µ̂∗y
µ̂δx
µX

exp

(
µ̂∗δx − µ̂∗x
µ̂∗δx + µ̂∗x

)
,

where µ̂∗δx =
NµX−nµ̂∗

x

N−n .
The MSE of the estimator t5 is given as

MSE (t5) =MSE1 (t5) +MSE2 (t5) , (11)

where

MSE1 (t5) ∼= λ2

{
σ2
y +

1

4

(
N + 2n

N − n

)2

R2σ2
x −

(
N + 2n

N − n

)
Rρyxσyσx

}

+ θ

{
σ2
y(2) +

1

4

(
N + 2n

N − n

)2

R2σ2
x(2)

−
(
N + 2n

N − n

)
Rρyx(2)σy(2)σx(2)

}
,

(12)

is the mean square error of t5 without measurement error, and

MSE2 (t5) ∼= λ2

{
σ2
U +

1

4

(
N + 2n

N − n

)2

R2σ2
V

}

+ θ

{
σ2
U(2) +

1

4

(
N + 2n

N − n

)2

R2σ2
V (2)

}
, (13)

is the contribution of measurement error to the mean square error of t5.
In the present study, we have proposed exponential ratio type estimator in the
situation where non-response and measurement errors are present in both study
variable and auxiliary variable.

3. The Suggested Estimator

Non sampling errors are present in both sample surveys and censuses, and
can occur at any stage of the survey process. There are many potential sources of
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non-sampling error, for example, businesses not responding to a survey, processing
errors, or respondents unintentionally reporting incorrect values. The greater the
impact these sources of error, the greater the difference will be between our survey
(or census) estimate and the true value. The following is the proposed estimator
when there is non-response and measurement error in both study and auxiliary
variable

t = µ̂∗y
µ̂δx
µX

{
α exp

(
µ̂∗x − µ̂∗δx
µ̂∗x + µ̂∗δx

)
+ (1− α) exp

(
µ̂∗δx − µ̂∗x
µ̂∗δx + µ̂∗x

)}
. (14)

For α = 0, the proposed estimator t becomes equal to estimator t5.
To obtain the expressions of mean squared error (MSE) of the proposed esti-

mator, let us assume
ω∗y = 1√

n

∑n
i=1 (y

∗
i − µY ), ω∗U = 1√

n

∑n
i=1 U

∗
i , ω

∗
x = 1√

n

∑n
i=1 (x

∗
i − µX) and

ω∗V = 1√
n

∑n
i=1 V

∗
i .

Adding ω∗y and ω∗U , we have ω∗y + ω∗U = 1√
n
{
∑n
i=1 (y

∗
i − µY ) +

∑n
i=1 U

∗
i }.

Multiplying both sides by 1√
n
, we have

1√
n

(
ω∗y + ω∗U

)
=

{
1

n

n∑
i=1

(y∗i − µY ) +
1

n

n∑
i=1

(y∗i − Y ∗i )

}
or

1√
n

(
ω∗y + ω∗U

)
= µ̂∗y − µY ,

or
µ̂∗y = µY +

1√
n

(
ω∗y + ω∗U

)
.

Similarly, one can obtain

µ̂∗x = µX +
1√
n
(ω∗x + ω∗V ) .

Further

E
(
ω∗

y+ω
∗
U√

n

)2
= λ2

(
σ2
y + σ2

U

)
+ θ

(
σ2
y(2) + σ2

U(2)

)
E
(
ω∗

x+ω
∗
V√

n

)2
= λ2

(
σ2
x + σ2

V

)
+ θ

(
σ2
x(2) + σ2

V (2)

)
= B (say)

E
{(

ω∗
y+ω

∗
U√

n

)(
ω∗

x+ω
∗
V√

n

)}
= λ2ρyxσyσx + θρyx(2)σy(2)σx(2) = A (say)

 ,

Expressing t in terms of ω∗i ; ; i = x, y, U, V ; we have

t = (µY +Wy)

(
1− nWx

(N − n)µX

)[
αexp

{
NWx

2(N − n)µX

(
1 +

(N − 2n)Wx

2(N − n)X

)−1}

+(1− α) exp

{
−NWx

2(N − n)µX

(
1 +

(N − 2n)Wx

2(N − n)µX

)−1}]
,
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where Wy = 1√
n

(
ω∗y + ω∗U

)
and Wx = 1√

n
(ω∗x + ω∗V ).

Simplifying and ignoring terms of order greater than two, one can obtain

t− µY ∼=Wy −
1

2µX

(
N + 2n

N − n

)
Wx (µY +Wy) +

3µY
8µX2

(
N

N − n

)2

W 2
x

+
α

µX

(
N

N − n

)
(µY +Wy)Wx.

(15)

Taking expectation on both sides of (15), we get the bias of t as

B (t) ∼=
1

µX (N − n)

{
αN − N + 2n

2

}(
λ2ρyxσyσx + θρyx(2)σy(2)σx(2)

)
+

3

8

µ2
Y

µ2
X

(
N

N − n

)2 {
λ2
(
σ2
X + σ2

V

)
+ θ

(
σ2
X(2) + σ2

V (2)

)}
Squaring both sides of equation (15) ignoring terms of order greater than two and
taking expectations, the mean squared error (MSE) of t is

MSE (t) = E(t− µY )2 ∼= E

[
Wy −

µY
2µX

(
N + 2n

N − n

)
Wx + α

µY
µX

(
N

N − n

)
W 2
x

]2

= E

[
W 2
y +

(
N + 2n

N − n

)2
µ2
YW

2
X

4µ2
X

− µY
µX

(
N + 2n

N − n

)
WxWy

]

MSE (t) =MSE1 (t) +MSE2 (t) , (16)

where

MSE1 (t) =
{
λ2σ

2
y + θσ2

y(2)

}
+
µ2
Y

µ2
X

{
1

4

(
N + 2n

N − n

)2

+ α2

(
N

N − n

)2

− α
(

N

N − n

)(
N + 2n

N − n

)}{
λ2σ

2
x + θσ2

x(2)

}
− µY
µX

(
N + 2n− 2αN

N − n

){
λ2ρyxσxσy + θρyx(2)σx(2)σy(2)

}
is the MSE of t without measurement error, and

MSE2 (t) =
{
λ2σ

2
U + θσ2

U(2)

}
+
µ2
Y

µ2
X

{
1

4

(
N + 2n

N − n

)2

+α2

(
N

N − n

)2

− α
(

N

N − n

)(
N + 2n

N − n

)}{
λ2σ

2
V + θσ2

V (2)

}
is the contribution of measurement error to the MSE of t.
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Minimize equation (16) with respect to α yields its optimum value as

α =

(
N + 2n

2N

)
−
(
N − n
N

)(
µX
µY

)(
A

B

)
. (17)

Substituting the value of α from equation (17) in equation (16), we get the opti-
mum MSE of t as

min .MSE (t) = λ2
(
σ2
y + σ2

U

)
+ θ

(
σ2
y(2) + σ2

U(2)

)
− A2

B
. (18)

4. Efficiency Comparisons

To compare the efficiency of the proposed estimator t with the existing esti-
mator t0, t1, t2, µ̂∗y, t3, t4 and t5, we have

V ar (t0)−min .MSE (t) ≥ 0; if
A2

B
≥ θ

(
σ2
y(2) + σ2

U(2)

)
. (19)

MSE (t1)−min .MSE (t) ≥ 0;

if
A2

B
+ λ2

{
R2
(
σ2
x + σ2

V

)
− 2Rρyxσyσx

}
≥ θ

(
σ2
y(2) + σ2

U(2)

)
. (20)

min .MSE (t2)−min .MSE (t) ≥ 0

if
A2

B
+ λ2

{
µ2
0R

2
(
σ2
x + σ2

V

)
− 2µ0Rρyxσyσx

}
≥ θ

(
σ2
y(2) + σ2

U(2)

)
. (21)

V ar
(
µ̂∗y
)
−min .MSE (t) ≥ 0; if

A2

B
≥
(
λ2σ

2
U + θσ2

U(2)

)
. (22)

MSE (t3)−min .MSE (t) ≥ 0

if
A2

B
≥ λ2

(
σ2
U −R2σ2

x + 2Rρyxσyσx
)

+ θ
(
σ2
U(2) −R

2σ2
x(2) + 2Rρyx(2)σy(2)σx(2)

)
. (23)

MSE (t5)−min .MSE (t) ≥ 0;

if
A2

B
≥ λ2

(
σ2
U + ρ2yxσ

2
y

)
+ θ

(
σ2
U(2) + ρ2yx(2)σ

2
y(2)

)
. (24)

From (19)-(24), we envisage that the proposed estimator t outperforms existing
estimators viz. t0, t1, t2, µ̂∗y, t3, t4 and t5, respectively.
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5. Empirical Study

In this section, we demonstrate the performance of different estimators over the
usual unbiased estimators, generating four populations from normal distribution
with different choices of parameters by using R language program. The auxiliary
information on variableX has been generated from N(5, 10) population. This type
of population is very relevant in most socio-economic situations with one interest
and one auxiliary variable.

Population I: X = N (5, 10) 4; 4Y = X + N (0, 1); y = Y + N (1, 3); x =
X + N (1, 3); N = 5000; µY = 4.927167; µX = 4.924306; σ2

y = 102.0075; σ2
x =

101.4117; σ2
U = 8.862114; σ2

V = 9.001304; ρyx = 0.995059

N1 N2 σ2
y(2) σ2

x(2) σ2
U(2) σ2

V (2) ρyx(2)

4500 500 99.99174 99.87471 9.150544 8.756592 0.994916
4250 750 100.9428 100.8224 9.053862 8.766538 0.995535
4000 1000 104.2711 103.2349 8.821278 8.339179 0.995472

Population II: X = N (5, 10); Y = X + N (0, 1); y = Y + N (1, 5); x =
X + N (1, 5); N = 5000; µY = 4.996681; µX = 5.013507; σ2

y = 97.12064; σ2
x =

95.95803; σ2
U = 23.96055; σ2

V = 24.19283; ρyx = 0.994822

N1 N2 σ2
y(2) σ2

x(2) σ2
U(2) σ2

V (2) ρyx(2)

4500 500 97.02783 94.54578 22.80557 25.43263 0.994546
4250 750 98.27616 97.42674 23.27837 24.13829 0.994992
4000 1000 96.09359 94.71923 24.42978 23.03076 0.99467

Population III: X = N (5, 10); Y = X + N (0, 1); y = Y + N (2, 3);
x = X + N (2, 3); N = 5000; µY = 4.730993; µX = 4.741928; σ2

y = 101.2633;
σ2
x = 100.2288; σ2

U = 9.1025; σ2
V = 9.052019; ρyx = 0.995187

N1 N2 σ2
y(2) σ2

x(2) σ2
U(2) σ2

V (2) ρyx(2)

4500 500 102.7504 101.2097 9.095136 8.8123 0.995045
4250 750 99.55993 99.49764 9.233619 8.805872 0.995314
4000 1000 105.4334 103.8947 9.277715 9.072151 0.995105

Population IV: X = N (5, 10); Y = X + N (0, 1); y = Y + N (2, 5);
x = X + N (2, 53); N = 5000; µY = 4.961081; µX = 4.96178; σ2

y = 102.2408;
σ2
x = 100.868; σ2

U = 25.94111; σ2
V = 25.03951; ρyx = 0.394221

N1 N2 σ2
y(2) σ2

x(2) σ2
U(2) σ2

V (2) ρyx(2)

4500 500 103.5361 102.1031 25.31099 22.84483 0.394622
4250 750 103.6790 102.7446 24.6859 26.12337 0.395036
4000 1000 100.1031 99.31665 25.80394 24.50468 0.394778

We have computed the percent relative efficiencies (PRE’s) of the estimators.
The results are shown in Tables (1-5).
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Table 1: Percent relative efficiencies of the estimators with respect to the Hansen and
Hurwitz (1946) estimator µ̂∗

y for population I.

Percent relative efficiencies of the estimator with respect to Hansen and Hurwitz (1946) estimator.
N1 N2 Esti. PRE without measurement error PRE with measurement error

(1/k) (1/k)
(1/2) (1/3) (1/4) (1/5) (1/2) (1/3) (1/4) (1/5)

4500 500 µ̂∗
y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 3589.91 3588.7 3587.87 3587.36 407.81 407.34 406.95 406.62

t(opt) 10115.23 10091.44 10071.7 10055.67 562.28 561.26 560.42 559.7
4250 750 µ̂∗

y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 3643.38 3683.63 3715.99 3742.73 408.25 408.16 408.08 408.02

t(opt) 10283.99 10391.55 10477.01 10546.55 563.33 563.18 563.07 562.98
4000 1000 µ̂∗

y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 3612.39 3627.65 3639.68 3649.71 410.12 411.32 412.19 412.87

t(opt) 10302.55 10414.41 10497.72 10562.18 569.27 573.31 576.29 578.59

Table 2: Percent relative efficiencies of the estimators with respect to the Hansen and
Hurwitz (1946) estimator µ̂∗

y for population II.

Percent relative efficiencies of the estimator with respect to (Hansen & Hurwitz 1946) estimator
N1 N2 Esti. PRE without measurement error PRE with measurement error

(1/k) (1/k)
(1/2) (1/3) (1/4) (1/5) (1/2) (1/3) (1/4) (1/5)

4500 500 µ̂∗
y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 8810.15 8774.57 8746.13 8723.19 208.96 209.04 209.12 209.18

t(opt) 9626.52 9582.74 9546.95 9517.16 219.1813 219.21 219.23 219.25
4250 750 µ̂∗

y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 8865.94 8876.05 8886.02 8896.18 209.63 210.21 210.23 211.04

t(opt) 9727.01 9761.53 9788.52 9810.21 220.04 220.72 221.25 221.67
4000 1000 µ̂∗

y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 8822.61 8803.71 8793.64 8789.89 208.53 208.31 208.14 208.02

t(opt) 9630.34 9595.3 9569.72 9550.23 218.97 218.84 218.75 218.68

Table 3: Percent relative efficiencies of the estimators with respect to the Hansen and
Hurwitz (1946) estimator µ̂∗

y for population III.

Percent relative efficiencies of the estimator with respect to Hansen and Hurwitz (1946) estimator
N1 N2 Esti PRE without measurement error PRE with Measurement Error

(1/k) (1/k)
(1/2) (1/3) (1/4) (1/5) (1/2) (1/3) (1/4) (1/5)

4500 500 µ̂∗
y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 3764.03156 3749.06 3736.85 3726.78 399.90 400.13 400.32 400.48

t(opt) 10382.13 10356.68 10335.67 10318.03 552.05 553.01 553.81 554.49
4250 750 µ̂∗

y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 3801.01 3815.27 3826.87 3836.65 399.59 399.56 399.54 399.53

t(opt) 10449.44 10477.23 10499.40 10517.49 550.39 550.04 549.79 549.54
4000 1000 µ̂∗

y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 3755.45 3737.65 3725.56 3717.28 400.31 400.78 401.12 401.38

t(opt) 10379.70 10356.86 10340.41 10328.01 553.30 554.95 556.19 557.12

From the above tables, the following points are noted:

1. The performance of the proposed estimator t at its optimum shows efficient
PRE with respect to the Hansen and Hurwitz’s estimator and t5 estimator
for all the four populations.

For population I, it is noted that
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Table 4: Percent relative efficiencies of the estimators with respect to the Hansen and
Hurwitz (1946) estimator µ̂∗

yfor population IV.

Percent relative efficiencies of the estimator with respect to Hansen and Hurwitz (1946) estimator
N1 N2 Estimators PRE without measurement error PRE with measurement error

(1/k) (1/k)
(1/2) (1/3) (1/4) (1/5) (1/2) (1/3) (1/4) (1/5)

4500 500 µ̂∗
y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 418.06 303.07 276.20 252.057 287.68 231.78 199.54 178.57

t(opt) 788.35 460.99 347.07 289.31 321.79 242.38 202.99 179.52
4250 750 µ̂∗

y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 262.46 277.82 243.19 218.04 254.54 198.65 169.74 152.09

t(opt) 571.21 346.40 269.54 230.90 272.20 201.63 170.01 152.13
4000 1000 µ̂∗

y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
t5 307.48 258.20 222.85 196.56 232.11 178.47 152.52 137.21

t(opt) 471.64 294.80 234.89 204.92 242.70 179.39 152.53 137.74

2. When N1 = 4500; N2 = 500, with increase in the value of k, the PRE of the
estimators t5 and t(opt) with respected to µ̂∗y increases in both cases of with
and without Measurement error, respectively.

3. When N1 = 4250; N2 = 750, in the case with Measurement error, the PRE’s
decreases and in the case without Measurement error, the PRE’s increases
with the increase in the value of k.

4. When N1 = 4000; N2 = 1000, with increase in the value of, k increases in
both cases with and without Measurement error, respectively.

For population II, it is noted that

5. When N1 = 4500; N2 = 500, with increase in the value of k, the PRE of the
estimators t5 and t(opt) with respected to µ̂∗y decreases in the case without
Measurement error and increases in the case with Measurement error.

6. When N1 = 4250; N2 = 750, in the case with Measurement error, the PRE’s
of the estimators increases in both cases with the increase in the value of k.

7. When N1 = 4000; N2 = 1000, with the increase in the value of k decreases
in both cases with and without Measurement error, respectively.

For population III, it is noted that

8. When N1 = 4500; N2 = 500 and N1 = 4500; N2 = 500 in the case without
Measurement error, the PRE’s decreases and in the case with Measurement
error, the PRE’s increases with the increase in the value of k.

9. When N1 = 4250; N2 = 750, in the case without Measurement error, the
PRE’s increases and in the case with Measurement error, the PRE’s decreases
with the increase in the value of k.

10. For population IV, it is envisaged that with poor correlation between the
study and the auxiliary variable, performance of the proposed estimator is
better than the other estimators.
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From Table 5; it is envisaged that the proposed estimator at its optimum
performs more efficiently than the usual unbiased estimator, Shalabh’s (t1) and
Shukla et al. (t2) estimators for estimating the population mean in the presence
of measurement error.

Table 5: Percent relative efficiencies of the estimators with respect to usual unbiased
estimator in the presence of measurement error (no non-response).

Estimator Population I Population II Population III Population IV
t0 = µ̂y 100.00 100.00 100.00 100.00
t1 587.229 247.12 578.26 587.22
t2 612.476 273.193 600.33 612.47

t(opt) 612.480 273.214 600.39 612.48

6. Conclusion

An important goal is understanding, managing, controlling, and reporting all
known sources of error having impact on the quality of our statistics. In the present
study, we have proposed an estimator for estimating the population mean of the
study variable. The suggested estimator uses auxiliary information to improve
efficiencies in situations where there are non-response and measurement errors
concerning study variable and auxiliary variable. The relative performance of the
proposed estimators is compared with conventional estimators. The proposed es-
timator performs better than the usual unbiased estimator t0, Shalabh’s (1997)
(t1) and Shukla, Pathak & Thakue (2012) (t2) estimators in the presence of mea-
surement error; and its performance is better than the usual unbiased estimator
µ̂∗y and estimator t5 in the presence of measurement error and non-response. The
study is supported by empirical study based on four populations.

We recommend our proposed estimator for future assess to study the charac-
teristics of the variable in interest where measurement errors and non-response
occur in the survey.

Acknowledgements

Authors wish to thank the Editor-in-Chief Professor Leonardo Trujillo and the
learned referees for their critical and constructive comments regarding improve-
ment of the paper.

[
Received: January 2014 — Accepted: September 2014

]
Revista Colombiana de Estadística 38 (2015) 145–161



Estimation of Population Mean with Measurement Error 159

References

Allen, J., Singh, H. & Smarandache, F. (2003), ‘A family of estimators of pop-
ulation mean using multi-auxiliary information in presence of measurement
errors’, International Journal of Social Economics 30, 837–849.

Binder, D. A. (2008), Design-based estimation, in P. J. Lavrakas, ed., ‘Encyclope-
dia of Survey Research Methods’, SAGE Publications, Inc., pp. 192–194. doi:
10.4135/9781412963947.

Cochran, W. (1963), Sampling Techniques, John Wiley, New York.

Cochran, W. (1977), Sampling Techniques, 3 edn, John Wiley & Sons, Inc., New
York.

Dixon, J. (2010), Assessing nonresponse bias and measurement error using sta-
tistical matching, in R. Harter, ed., ‘Section on Survey Research Methods -
JSM’, American Statistical Association, pp. 3388–3396.
*http://www.bls.gov/osmr/pdf/st100190.pdf

Dorazio, R. M. (1999), ‘Design based and model based inference in surveys of
freshwater mollusks’, Journal of the North American Benthological Society
18, 118–131.

Fuller, W. (1995), ‘Estimation in the presence of measurement error’, International
Statistical Review 63, 121–147.

Gregoire, T. G. (1998), ‘Design-based and model-based inference in survey sam-
pling: Appreciating the difference’, Canadian Journal of Forestry Research
28, 1429–1447.

Gregoire, T. G. & Salas, C. (2009), ‘Ratio estimation with measurement error in
the auxiliary variate’, Biometrics 65, 590–598.

Groves, R. M. (1989), Survey Errors and Survey Costs, Wiley, New York.

Hansen, M. & Hurwitz, W. (1946), ‘The problem of non-response in sample sur-
veys’, Journal of American Statistical Association 41, 517–529.

Ilves, M. (2011), Estimation in the presence of non-response and measurement er-
rors, Proceedings of the Third Baltic – Nortic Conference in Survey Statistics,
Norrfällsviken, Sweden, pp. 13–17.

Jackman, S. (1999), ‘Correcting surveys for non-response and measurement error
using auxiliary information’, Electoral Studies 18, 7–27.

Khare, B. & Srivastava, S. (1997), ‘Transformed ratio type estimators for the
population mean in presence of non-response’, Communication in Statistics
– Theory and Methods 26, 1779–1791.

Kish, L. (1954), ‘Differentiation in metropolitan areas’, American Sociological Re-
view 19, 388–398.

Revista Colombiana de Estadística 38 (2015) 145–161



160 Sunil Kumar, Sandeep Bhougal, N. S. Nataraja & M. Viswanathaiah

Kish, L. (1994), ‘Classical and model based estimators for forest inventory’, Silva
Fennica 28, 3–14.

Koch, G. G. & Gillings, D. B. (2006), Inference, design based vs model based, in
S. Kotz, C. B. Read, N. Balakrishnan & B. Vidakovic, eds, ‘Encyclopedia of
Statistical Sciences’, John Wiley and Sons Inc., New York.

Kumar, S., Singh, H., Bhougal, S. & Gupta, R. (2011), ‘A class of ratio-cum-
product type estimators under double sampling in the presence of non-
response’, Hacettepe Journal of Mathematics and Statistics 40, 589–599.

Manisha & Singh, R. (2001), ‘An estimation of population mean in the presence of
measurement errors’, Journal of the Indian Society of Agricultural Statistics
54, 13–18.

Manisha & Singh, R. (2002), ‘Role of regression estimator involving measurement
errors’, JBrazilian Journal of Probability and Statistics 16, 39–46.

Rao, P. (1986), ‘Ratio estimation with sub sampling the non-respondents’, Survey
Methodology 12, 217–230.

Salas, C. & Gregoire, T. (2010), ‘Statistical analysis of ratio estimators and their
estimators of variances when the auxiliaryvariate is measured with error’,
European Journal of Forest Research 129, 847–861.

Sarndal, C. E., Swensson, B. & Wretman, J. (1992), Model Assisted Survey Sam-
pling’, Springer, New York.

Shabbir, J., Haq, A. & Gupta, S. (2014), ‘A new difference-cum-exponential type
estimator of finite population mean in simple random sampling’, Revista
Colombiana de Estadística 37, 199–211.

Shalabh (1997), ‘Ratio method of estimation in the presence of measurement er-
rors’, Journal of the Indian Society of Agricultural Statistics 50, 150–155.

Sharma, P. & Singh, R. (2013), ‘A generalized class of estimators for finite popula-
tion variance in presence of measurement errors’, Journal of Modern Applied
Statistical Methods 12, 231–241.

Shukla, D., Pathak, S. & Thakue, N. S. (2012), ‘Class(es) of factor-type estima-
tor(s) in presence of measurement error’, Journal of Modern Applied Statis-
tical Methods 11, 336–347.

Shukla, D., Pathak, S. & Thakur, N. (2012), ‘An estimator for mean estimation in
presence of measurement error’, Research and Reviews: A Journal of Statis-
tics 1, 1–8.

Singh, H. & Karpe, N. (2007), ‘Effect of measurement errors on a class of estimators
of population mean using auxiliary information in sample surveys’, Journal
of Statistical Research of Iran 4, 175–189.

Revista Colombiana de Estadística 38 (2015) 145–161



Estimation of Population Mean with Measurement Error 161

Singh, H. & Karpe, N. (2008), ‘Estimation of population variance using auxiliary
information in the presence of measurement errors’, Statistics in Transition-
New Series 9, 443–470.

Singh, H. & Karpe, N. (2009), ‘On the estimation of ratio and product of two pop-
ulation means using supplementary information in presence of measurement
errors’, Statistica, Anno 69, 27–47.

Singh, H. & Karpe, N. (2010), ‘Estimation of mean, ratio and product using aux-
iliary information in the presence of measurement errors in sample surveys’,
Journal of Statistical Theory and Practice 4, 111–136.

Singh, H. & Kumar, S. (2008), ‘A regression approach to the estimation of the
finite population mean in the presence of non-response’, Australian and New
Zealand Journal of Statistics 50, 395–408.

Wang, L. (2002), ‘A simple adjustment for measurement errors in some dependent
variable models’, Statistics & Probability Letters 58, 427–433.

Revista Colombiana de Estadística 38 (2015) 145–161


	Introduction
	Sampling Procedure and Some Well Defined Estimators
	The Suggested Estimator
	Efficiency Comparisons
	Empirical Study
	Conclusion

