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Abstract

This paper proposes an approximation method to achieve optimum pos-
sible values of Spearman’s rho for a special class of copulas.
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Resumen

El artículo propone un método de aproximación para alcanzar los valores
óptimos posibles del coeficiente rho de Spearman para algunas clases espe-
ciales de cópulas.
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1. Introduction

A study of dependence by using copulas has been getting more attention in
the areas of finance, actuarial science, biomedical studies and engineering because
a copula does not require a normal distribution and independent, identical dis-
tribution assumptions. Furthermore, the invariance property of copula has been
attractive in the area of finance. But most copulas including the Archimedean
copula family are symmetric functions so that fitting these copulas to asymmet-
ric data is not appropriate. Recently, Liebscher (2008) and Durante (2009) have
studied several methods for the construction of asymmetric multivariate copulas.
Amblard & Girard (2009) have proposed a generalized FGM copula family and
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discussed the range of Spearman’s rho. Rodríguez-Lallena & Úbeda-Flores (2004)
and Kim, Sungur, Choi & Heo (2011) investigated new classes of bivariate copulas
and studied different measures of association.

The two most important non-parametric measures of association between two
random variables are Spearman’s rho (ρ) and Kendall’s tau (τ). In this paper we
study bivariate copulas with copula densities of the form c(u, v) = 1+g(u)h(v). We
approximate these copulas through a two-parameter family of copulas, in general
asymmetric in nature, and show that the Spearman’s rho values of these copulas
have a range of (− 3

4 ,
3
4 ). We also extend these results to more general case where

c(u, v) takes the form as 1 +
∑n

i=1 gi(u)hi(v).

2. Definition and Preliminary

In this section we recall some definitions and results that are necessary to
understand a (bivariate) copula. A copula is a multivariate distribution function
defined on In, where I := [0, 1], with uniformly distributed marginals. In this
paper, we focus on bivariate (two-dimensional, n = 2) copulas.

Definition 1. A bivariate copula is a function C : I2 → I, which satisfies the
following properties:

(P1) C(0, v) = C(u, 0) = 0, ∀u, v ∈ I

(P2) C(1, u) = C(u, 1) = u, ∀u ∈ I

(P3) C is 2-increasing, i.e., ∀u1, u2, v1, v2 ∈ I with u1 ≤ u2, v1 ≤ v2,

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0.

The importance of copulas has been growing because of their applications in
several fields of research. Their relevance primarily comes from Sklar’s Theorem
(see (Sklar 1959) and (Sklar 1973) for details): If X and Y are two continu-
ous random variables with joint distribution function H and marginal distribution
functions F and G, respectively, then there exists a unique copula C such that
H(x, y) = C(F (x), G(y)) for all (x, y) ∈ R2 and conversely, given a copula C and
two univariate distribution functions F and G, the function H defined above is a
joint distribution function with margins F and G. Sklar’s theorem clarifies the role
that copulas play in the relationship between multivariate distribution functions
and their univariate margins. A proof of this theorem can be found in (Schweizer
& Sklar 1983).

Definition 2. Suppose X and Y are two random variables with marginal dis-
tribution functions F and G, respectively. Then Spearman’s rho is the ordinary
(Pearson) correlation coefficient of the transformed random variables F (X) and
G(Y ), while Kendall’s tau is the difference between the probability of concordance
Pr[(X1−X2)(Y 1−Y 2) > 0] and the probability of discordance Pr[(X1−X2)(Y 1−
Y 2) < 0] for two independent pairs (X1, Y 1) and (X2, Y 2) of observations drawn
from the distribution.
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In terms of dependence properties, Spearman’s rho is a measure of average
quadrant dependence, while Kendall’s tau is a measure of average likelihood ratio
dependence (see Nelsen 2006, for details). If X and Y are two continuous random
variables with copula C, then Spearman’s rho and Kendall’s tau of X and Y are
given by,

ρ = 12

∫ ∫
I2
C(u, v) du dv − 3 (1)

τ = 4

∫ ∫
I2
C(u, v) dC(u, v)− 1 (2)

Definition 3. A copula C is called absolutely continuous if, when considered as a
joint distribution function, C(u, v) has a joint density function given by c(u, v) :=
∂2C
∂u∂v and in that case dC(u, v) = ∂2C

∂u∂v du dv.

Denoting c(u, v)−1 as h(u, v), the following theorem gives a characterization of
absolutely continuous copulas (see De la Peña, Ibragimov & Sharakhmetov 2006).

Theorem 1. A function C : I2 → I is an absolutely continuous bivariate copula
if and only if there exists a function h : I2 → I, satisfying the following conditions,

1. Integrability:
∫ ∫

I2
|h(x, y)|dx dy <∞,

2. Degeneracy:
∫
I
h(x, ξ)dξ =

∫
I
h(ξ, y)dξ = 0 ∀x, y ∈ I,

3. Positive Definiteness: h(x, y) ≥ −1 ∀(x, y) ∈ I2,

and such that
C(u, v) =

∫ v

0

∫ u

0

(1 + h(x, y)) dx dy.

A copula C is called symmetric if C(u, v) = C(v, u) for all u, v ∈ I, otherwise
asymmetric.

Let us denote the independent copulas as Π(u, v) := uv.

3. Optimization of Rho

We will assume that the function h, mentioned in Theorem 1, has the form
h(u, v) = ϕ(u)ψ(v), where ϕ and ψ are continuous real-valued functions on I.
Therefore h is continuous on I2. For non-triviality, we assume h is not identically
equal to zero. Then from Theorem 1, integrability of h becomes obvious, degen-
eracy of h implies

∫
I ϕ(x) dx =

∫
I ψ(x) dx = 0, and positive definiteness simplifies

to min
(u,v)∈I2

ϕ(u)ψ(v) ≥ −1 and hence

C(u, v) = Π(u, v) +

∫ u

0

ϕ(s) ds

∫ v

0

ψ(t) dt

forms a copula.
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Notice that in this special case, ρ can be simplified into the following form,

ρ = 12

∫ 1

0

∫ u

0

ϕ(s)ds du

∫ 1

0

∫ v

0

ψ(t)dt dv.

This suggests that optimizing ρ is equivalent to optimizing both
∫ 1

0

∫ u

0
ϕ(s)ds du

and
∫ 1

0

∫ v

0
ψ(t)dt dv.

Define G(u) :=
∫ u

0
ϕ(s)ds and H(v) :=

∫ v

0
ψ(t)dt. Then for some positive

α1, α2, β1, β2, the optimization problems become,

max/min I1 :=

∫ 1

0

G(u) du

subject to G(0) = G(1) = 0

− α1 ≤ G′(u) ≤ β1,

max/min I2 :=

∫ 1

0

H(v) dv

subject to H(0) = H(1) = 0

− α2 ≤ H ′(v) ≤ β2.
Although it apparently looks like these two optimization problems can be solved

independently, they are related by the fact that G′(u)H ′(v) = ϕ(u)ψ(v) ≥ −1 for
all (u, v) ∈ I2. This implies max{α1β2, α2β1} ≤ 1. For the optimal possibility, we
choose, β2 = (α1)−1 and α2 = (β1)−1. This is evident from the fact that both
I1 and I2 can be positive or negative, ρmax will occur either if both I1 and I2
are maximum or if both are minimum and ρmin will occur if one of I1 and I2 is
maximum and the other is minimum.

Since G is continuous on I, assuming −α1 ≤ G′ ≤ β1 whenever G′ exists,
geometrically, I1 will be maximum if G has the form as in Figure 1 and will be
minimum if G has the form as in Figure 2.
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Figure 1: G, Maximizing I1

One can easily prove that, in order to optimize I1, β1 must be equal to α1. For
convenience, now onwards we will write α for α1, GM for the G that maximizes I1
and Gm for the G that minimizes I1. This suggests that if GM(x) = −α|x−0.5|+
0.5α and Gm(x) = α|x − 0.5| − 0.5α, then I1 will be maximum and minimum,
respectively. But in either case, G is not differentiable at x = 0.5, and hence ϕ
is not continuous. To avoid this, we will approximate GM and Gm by smooth
functions as follows: for arbitrarily small ε1 > 0, define
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Figure 2: G, Minimizing I1

G̃M(x) = −G̃m(x) =
α

2

(√
1 + 4ε21 −

√
(1− 2x)2 + 4ε21

)
.

It is worth noting that sup
x∈I

{
|G̃M(x)−GM(x)|, |G̃m(x)−Gm(x)|

}
→ 0 as ε1 → 0

and −α ≤ G̃M
′
(x), G̃m

′
(x) ≤ α. Figures 3 and 4 validate this fact.
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Figure 3: GM , G̃M for α = 5, ε1 = 0.1
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Figure 4: GM , G̃M for α = 5, ε1 = 0.03
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We can similarly, for ε2 > 0, optimize I2 by approximating maximum and
minimum of H by the following functions

H̃M(x) = −H̃m(x) =
1

2α

(√
1 + 4ε22 −

√
(1− 2x)2 + 4ε22

)
.

Hence optimum values of ρ will be obtained by approximating h by the following
functions,

hεmax(x, y) = G̃M
′
(x)H̃M

′
(y) = G̃m

′
(x)H̃m

′
(y)

=
(1− 2x)(1− 2y)√

(1− 2x)2 + 4ε21
√

(1− 2y)2 + 4ε22
,

hεmin(x, y) = G̃M
′
(x)H̃m

′
(y) = G̃m

′
(x)H̃M

′
(y)

= − (1− 2x)(1− 2y)√
(1− 2x)2 + 4ε21

√
(1− 2y)2 + 4ε22

,

where ε = (ε1, ε2). Notice that each of hεmax and hεmin will generate a copula as it
satisfies all the hypothesis of Theorem 1 and the corresponding copulas are given
by,

Cε
max(u, v) = Π(u, v)

+
1

4

(√
1 + 4ε21 −

√
(1− 2u)2 + 4ε21

)(√
1 + 4ε22 −

√
(1− 2v)2 + 4ε22

)
,

Cε
min(u, v) = Π(u, v)

− 1

4

(√
1 + 4ε21 −

√
(1− 2u)2 + 4ε21

)(√
1 + 4ε22 −

√
(1− 2v)2 + 4ε22

)
.

Figures 5 and 6 show the asymmetric behavior of these copulas.
Then corresponding Spearman’s rho and Kendall’s tau are given by,

ρεmax =
3

4

2∏
i=1

[√
1 + 4ε2i − 4ε2i coth−1

(√
1 + 4ε2i

)]

ρεmin = −3

4

2∏
i=1

[√
1 + 4ε2i − 4ε2i coth−1

(√
1 + 4ε2i

)]

τεmax =
1

2

2∏
i=1

[√
1 + 4ε2i − 4ε2i coth−1

(√
1 + 4ε2i

)]

τεmin = −1

2

2∏
i=1

[√
1 + 4ε2i − 4ε2i coth−1

(√
1 + 4ε2i

)]
The optimal values of ρ and corresponding τ will be obtained by letting (ε1, ε2)→

(0, 0). Table 1 shows how the values of ρ approach the optimal values as (ε1, ε2)→
(0, 0) and it is clear that −0.75 ≤ ρ ≤ 0.75 and −0.5 ≤ τ ≤ 0.5.
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Figure 5: Contour plot of Cε
max forε = (0.001, 0.1)
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Figure 6: Contour plot of Cε
min forε = (0.001, 0.1)

Table 1: ρ and τ values as ε changes.

ε = (ε1, ε2) ρεmax ρεmin τεmax τεmin
(1, 1) 0.0726437 -0.0726437 0.0484292 -0.0484292
(0.1, 0.1) 0.644923 -0.644923 0.429949 -0.429949
(0.01, 0.01) 0.747539 -0.747539 0.498359 -0.498359
(0.001, 0.001) 0.749962 -0.749962 0.499974 -0.499974
(0.0001, 0.0001) 0.749999 -0.749999 0.5 -0.5

3.1. General Case: h(u, v) =
∑n

i=1 ϕi(u)ψi(v)

The above optimization method can be generalized to the case when the func-
tion h has the form h(u, v) =

∑n
i=1 ϕi(u)ψi(v), where, as before, ϕi, ψi are continu-
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ous real valued functions on I. Then h is automatically integrable. The degeneracy
of h, from Theorem 1, implies

n∑
i=1

Aiϕi(x) = 0 =

n∑
i=1

Biψi(x) ∀x ∈ I, (3)

where Ai =
∫ 1

0
ψi(ξ) dξ and Bi =

∫ 1

0
ϕi(ξ) dξ, i = 1, 2, . . . , n. Since ϕi and ψi are

arbitrary, we have from equation (3)

∫ 1

0

ϕi(ξ) dξ = 0 =

∫ 1

0

ψi(ξ) dξ for i = 1, 2, . . . , n.

Positive definiteness of h implies that

min
(u,v)∈I2

n∑
i=1

ϕi(u)ψi(v) ≥ −1.

In this case, the copula and the corresponding Spearman’s rho will take the fol-
lowing forms,

C(u, v) = Π(u, v) +

n∑
i=1

∫ u

0

ϕi(s) ds

∫ v

0

ψi(t) dt,

ρ = 12

n∑
i=1

∫ 1

0

Gi(u) du

∫ 1

0

Hi(v) dv,

where Gi(u) =
∫ u

0
ϕi(s)ds and Hi(v) =

∫ v

0
ψi(t)dt, i = 1, 2, . . . , n. Hence opti-

mization of ρ leads towards the problems of optimizing the following quantities,

I
(i)
1 :=

∫ 1

0

Gi(u) du, I
(i)
2 :=

∫ 1

0

Hi(v) dv, i = 1, 2, . . . , n.

Then for some positive constants αi, βi, ki, with
∑n

i=1 ki ≤ 1, the optimization
problems for i = 1, 2, . . . , n, become,

max/min I
(i)
1

subject to Gi(0) = Gi(1) = 0

− αi ≤ G′i(u) ≤ βi,

max/min I
(i)
2

subject to Hi(0) = Hi(1) = 0

− ki/βi ≤ H ′i(v) ≤ ki/αi.

Again, as before, the optimal values will occur if αi = βi. Since, for every i, Gi

and Hi have similar forms as G and H of special case, by a similar approximation
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method, as mentioned in the special case, we obtain,

ρεmax =
3

4

2∏
i=1

[√
1 + 4ε2i − 4ε2i coth−1

(√
1 + 4ε2i

)] n∑
j=1

kj

ρεmin = −3

4

2∏
i=1

[√
1 + 4ε2i − 4ε2i coth−1

(√
1 + 4ε2i

)] n∑
j=1

kj

τεmax =
1

2

2∏
i=1

[√
1 + 4ε2i − 4ε2i coth−1

(√
1 + 4ε2i

)] n∑
j=1

kj

τεmin = −1

2

2∏
i=1

[√
1 + 4ε2i − 4ε2i coth−1

(√
1 + 4ε2i

)] n∑
j=1

kj

Since
∑n

i=1 ki ≤ 1, by taking (ε1, ε2) → (0, 0) we have −0.75 ≤ ρ ≤ 0.75 and
−0.5 ≤ τ ≤ 0.5.

4. Conclusion

We proposed an optimization method to increase the range of Spearman’s rho
for a special class of copulas and by doing so we generated a two-parameter family
of asymmetric copulas.
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