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Abstract

This paper proposes an approximation method to achieve optimum pos-
sible values of Spearman’s rho for a special class of copulas.
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Resumen

El articulo propone un método de aproximacién para alcanzar los valores
o6ptimos posibles del coeficiente rho de Spearman para algunas clases espe-
ciales de copulas.
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1. Introduction

A study of dependence by using copulas has been getting more attention in
the areas of finance, actuarial science, biomedical studies and engineering because
a copula does not require a normal distribution and independent, identical dis-
tribution assumptions. Furthermore, the invariance property of copula has been
attractive in the area of finance. But most copulas including the Archimedean
copula family are symmetric functions so that fitting these copulas to asymmet-
ric data is not appropriate. Recently, Liebscher (2008) and Durante (2009) have
studied several methods for the construction of asymmetric multivariate copulas.
Amblard & Girard (2009) have proposed a generalized FGM copula family and
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discussed the range of Spearman’s rho. Rodriguez-Lallena & Ubeda-Flores (2004)
and Kim, Sungur, Choi & Heo (2011) investigated new classes of bivariate copulas
and studied different measures of association.

The two most important non-parametric measures of association between two
random variables are Spearman’s rho (p) and Kendall’s tau (7). In this paper we
study bivariate copulas with copula densities of the form c(u,v) = 14+g(u)h(v). We
approximate these copulas through a two-parameter family of copulas, in general
asymmetric in nature, and show that the Spearman’s rho values of these copulas

3 3

have a range of (—3, 7). We also extend these results to more general case where

c(u,v) takes the form as 1+ Y"1, g;(u)h;(v).

2. Definition and Preliminary

In this section we recall some definitions and results that are necessary to
understand a (bivariate) copula. A copula is a multivariate distribution function
defined on I", where I := [0, 1], with uniformly distributed marginals. In this
paper, we focus on bivariate (two-dimensional, n = 2) copulas.

Definition 1. A bivariate copula is a function C' : I? — I, which satisfies the
following properties:

(P1) C(0,v) = C(u,0) = 0, Yu,v €1
(P2) C(1,u) = C(u,1) = u, Vu el
(P3) C is 2-increasing, i.e., Yuy, ug, v1,vs € I with ug < ug,v1 < g,

C(UQ,’UQ) + C(’U,l,’l)l) — C(uhvg) — C(UQ,U1) 2 0.

The importance of copulas has been growing because of their applications in
several fields of research. Their relevance primarily comes from Sklar’s Theorem
(see (Sklar 1959) and (Sklar 1973) for details): If X and Y are two continu-
ous random variables with joint distribution function H and marginal distribution
functions F and G, respectively, then there exists a unique copula C such that
H(x,y) = C(F(x),G(y)) for all (x,y) € R? and conversely, given a copula C and
two univariate distribution functions F' and G, the function H defined above is a
joint distribution function with margins F' and G. Sklar’s theorem clarifies the role
that copulas play in the relationship between multivariate distribution functions
and their univariate margins. A proof of this theorem can be found in (Schweizer
& Sklar 1983).

Definition 2. Suppose X and Y are two random variables with marginal dis-
tribution functions F' and G, respectively. Then Spearman’s rho is the ordinary
(Pearson) correlation coefficient of the transformed random variables F/(X) and
G(Y), while Kendall’s tau is the difference between the probability of concordance
Pr((X1-X2)(Y1-Y2) > 0] and the probability of discordance Pr[(X1—-X2)(Y1—
Y2) < 0] for two independent pairs (X1,Y1) and (X2,Y2) of observations drawn
from the distribution.
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In terms of dependence properties, Spearman’s rho is a measure of average
quadrant dependence, while Kendall’s tau is a measure of average likelihood ratio
dependence (see Nelsen 2006, for details). If X and Y are two continuous random
variables with copula C, then Spearman’s rho and Kendall’s tau of X and Y are
given by,

p:12/ C(u,v) dudv—3 (1)
12

7= 4/ ; C(u,v) dC(u,v) — 1 (2)

Definition 3. A copula C' is called absolutely continuous if, when considered as a
joint distribution function, C'(u,v) has a joint density function given by c(u,v) :=

gjacv and in that case dC'(u,v) = g:g} du dv.

Denoting ¢(u,v) —1 as h(u,v), the following theorem gives a characterization of
absolutely continuous copulas (see De la Pena, Ibragimov & Sharakhmetov 2006).

Theorem 1. A function C : 12 — I is an absolutely continuous bivariate copula
if and only if there exists a function h : 12 — 1, satisfying the following conditions,

1. Integrability: // |h(z,y)|dz dy < oo,
12

2. Degeneracy: /Hh(a:,f)df = /Hh(§7y)d§ =0 Vz,y €1,

3. Positive Definiteness: h(z,y) > —1 Y(x,y) € 12,

and such that

C’(u,v)/ov /Ou (1+ h(z,y)) dz dy.

A copula C is called symmetric if C(u,v) = C(v,u) for all u,v € I, otherwise
asymmetric.

Let us denote the independent copulas as IT(u, v) := uv.

3. Optimization of Rho

We will assume that the function A, mentioned in Theorem (I} has the form
h(u,v) = p(u)(v), where ¢ and @ are continuous real-valued functions on L.
Therefore h is continuous on I2. For non-triviality, we assume A is not identically
equal to zero. Then from Theorem [} integrability of h becomes obvious, degen-
eracy of h implies fH o(z) de = fﬂ ¥(x) de = 0, and positive definiteness simplifies

to min ¢(u)y(v) > —1 and hence
(u,v)€l?

C(u,v) = (u,v) + /Ou ©(s) ds /OU W»(t) dt

forms a copula.
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Notice that in this special case, p can be simplified into the following form,

p:12/01 /Ougo(s)ds du/o1 /va(t)dt dv.

This suggests that optimizing p is equivalent to optimizing both fol Ou ©(8)ds du

and [ [ ¢(t)dt dv.
Define G(u) := [, ¢(s)ds and H(v) := [/ ¢(t)dt. Then for some positive
aq,aa, B1, B2, the optimization problems become,

1 1
max/min [ := / G(u) du max/min Iy = / H(v) dv
0 0
subject to G(0) =G(1) =0 subject to H(0) = H(1)=0
—a1 < G'(u) < B, —az < H'(v) < Ba.

Although it apparently looks like these two optimization problems can be solved
independently, they are related by the fact that G'(u)H'(v) = ¢(u)p(v) > —1 for
all (u,v) € 2. This implies max{c; B2, 21} < 1. For the optimal possibility, we
choose, B2 = (a1)™! and ay = (B1)~!. This is evident from the fact that both
I, and I> can be positive or negative, pmax will occur either if both I; and I
are maximum or if both are minimum and pp;, will occur if one of I; and I is
maximum and the other is minimum.

Since G is continuous on I, assuming —a; < G’ < 7 whenever G’ exists,
geometrically, I; will be maximum if G has the form as in Figure [I] and will be
minimum if G has the form as in Figure

15t
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X

FiGure 1: G, Maximizing I;

One can easily prove that, in order to optimize Iy, 5, must be equal to a;. For
convenience, now onwards we will write a for ay, GM for the G that maximizes I
and Gm for the G that minimizes I;. This suggests that if GM (z) = —a|z—0.5|+
0.5a and Gm(z) = alz — 0.5] — 0.5, then I; will be maximum and minimum,
respectively. But in either case, G is not differentiable at x = 0.5, and hence ¢
is not continuous. To avoid this, we will approximate GM and Gm by smooth
functions as follows: for arbitrarily small €1 > 0, define
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F1cURrE 2: G, Minimizing I

é\]\/i(x)—é\r/n(x)—;<\/l+4€%\/(12$)2+4<€§>.

It is worth noting that sup {|@\//l(z) —GM(x)|, \(?ﬁ@(z) - Gm(z)|} —0ase; =0
zel

— —
and —a < GM (x),Gm (z) < a. Figures 3| and 4| validate this fact.
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FIGURE 3: GM, GM for a =5, 1 = 0.1
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FIGURE 4: GM, GM for a = 5, &1 = 0.03
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We can similarly, for e; > 0, optimize Iy by approximating maximum and
minimum of H by the following functions

HM (2) = —Hm(z <\/l+4€2 Ja zx)2+4s§>.

Hence optimum values of p will be obtained by approximating h by the following
functions,

Do (2, y) = GM (@) HM (y) = Gm' (x)Hm (y)
(1—22)(1—2y)
V= 22)2 143 /(1 — 2y)2 + 4¢3’

Woin (2, y) = GM (2)Hm (y) = Gm (2) HM (y)
(1—22)(1 —2y)
V= 22)2 + 42\ /(1 — 2y)% + 4e2’

where € = (¢1,e2). Notice that each of h¢ . and h, will generate a copula as it

max min

satisfies all the hypothesis of Theorem [I] and the corresponding copulas are given
by,

Crnax (4, 0) = T(u, v)

+1<\/1+45§_\/(1_2u tde ) <\/1+4€2 \/1—2v)2+45§>,

Crin (1, v) = T(u, v)

_4<\/1+45§—\/(1—2u + 4e ) <\/1+452 \/1—2v)2+4a§>.

Figures [f] and [6] show the asymmetric behavior of these copulas.

Then corresponding Spearman’s rho and Kendall’s tau are given by,

2
plsnax = %H {@ 4512 COth_1 <\/@>:|
i=1

3
Pinin = 1 H [\/@ — 4512 coth™? (W)}
i=1
1
Tlilax 5 H {@ — 4512 COth_1 <\/@>:|
=1

2
1
TS = -3 H [. /14 462 — 4¢? coth™* (1/1 + 4@?)}
i=1

The optimal values of p and corresponding 7 will be obtained by letting (1, e2) —
(0,0). Table|l{shows how the values of p approach the optimal values as (¢1,e2) —
(0,0) and it is clear that —0.75 < p < 0.75 and —0.5 < 7 < 0.5.
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TABLE 1: p and 7 values as € changes.

€= (51752) prEnax prenin Tg’lﬂx Trilin

(1, 1) 0.0726437  -0.0726437  0.0484292  -0.0484292
(0.1, 0.1) 0.644923 -0.644923 0.429949 -0.429949
(0.01, 0.01) 0.747539 -0.747539 0.498359 -0.498359
(0.001, 0.001) 0.749962 -0.749962 0.499974 -0.499974
(0.0001, 0.0001)  0.749999 -0.749999 0.5 -0.5

3.1. General Case: h(u,v) => " @i(u)i;(v)

The above optimization method can be generalized to the case when the func-
tion h has the form h(u,v) = > | ¢;(u)1;(v), where, as before, ¢;, 1; are continu-
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ous real valued functions on I. Then A is automatically integrable. The degeneracy
of h, from Theorem [I| implies

ZAz‘%(f) =0 = ZBﬂ/h‘(z) vz el, (3)

where A; = [ 4;(€) d€ and B; = [, ¢i(€) d€, i =1,2,...,n. Since p; and ¢; are
arbitrary, we have from equation

1 1
/soi(ﬁ)d£=0=/ ¥i(€) d¢ fori=1,2,... n.
0 0

Positive definiteness of h implies that

In this case, the copula and the corresponding Spearman’s rho will take the fol-
lowing forms,

Cluv) = Tuo)+Y /O”goi(s) s /vam d,

12;:1;/01 Gi(u) du/o1 H;(v) dv,

©
I

where G;(u) = fou ©i(s)ds and H;(v) = fov ¥i(t)dt, i = 1,2,...,n. Hence opti-

mization of p leads towards the problems of optimizing the following quantities,

. 1 . 1
Il(l) = /0 G;(u) du, 12(1) ::/O H;(v)dv, i=1,2,...,n.

Then for some positive constants «;, 3;, k;, with Z?:l k; < 1, the optimization
problems for i = 1,2,...,n, become,

max,/min Il(i) max/min Iéi)
subject to  G;(0) = G;(1) =0 subject to H;(0) = H;(1) =0
—a; < Gi(u) < B, —ki/Bi < Hi(v) < ki/as.

Again, as before, the optimal values will occur if «; = f3;. Since, for every i, G;
and H; have similar forms as G and H of special case, by a similar approximation
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method, as mentioned in the special case, we obtain,

2

Praax = ZH [\/@ — 4e? coth™! (@)
3.2

Prnin = —7 H {\/@ — 4¢? coth™! <\/@

[
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1
£ —_
=1 Jj=1
1 2 n
-1
Toin = -3 Zl:[l {1 /1 + 4e? — 4¢7 coth ( 1+ 453)] jg_l k;

Since >, k; < 1, by taking (e1,£2) — (0,0) we have —0.75 < p < 0.75 and
—0.5<7<0.5.

4. Conclusion

We proposed an optimization method to increase the range of Spearman’s rho
for a special class of copulas and by doing so we generated a two-parameter family
of asymmetric copulas.
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