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Abstract
The present work offers some fundamental concepts of the Statistical Im-

plicative Analysis for modal variables and proposes an index to establish
the similarity between two modal variables. Expressions to calculate typi-
cality and contribution of the individuals to the classes that are formed in
the classification are also presented. This technique is illustrated by two
examples, one with binary data, which allows the coincidence between the
formulas presented and the existent for the binary case to be shown, and the
other for modal data with more than two modalities.
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Resumen
En el presente trabajo se ofrecen algunos conceptos fundamentales del

análisis estadístico implicativo para el caso de variables modales y se propone
un índice para establecer la similaridad entre dos variables modales, así como
expresiones para el cálculo de la tipicalidad y contribución de los individuos
a las clases que se forman en la clasificación. Con el objetivo de ilustrar la
técnica presentada, es aplicada a dos juegos de datos, uno binario, el cual
permite mostrar numéricamente la coincidencia de las fórmulas presentadas
con las existentes para el caso de variables binarias, y otro modal con más
de dos modalidades.
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1. Introduction

Régis Gras and its collaborators have developed the Statistical Implicative
Analysis (SIA), which allows association rules in a dataset to be established, cross-
ing individuals and variables.

The initial objective of this method was to answer the question: if an object
has a certain quality, could it have some other one? This is the case of binary
variables (Gras 2000).

The research developed by Marc Bailleul from 1991 to 1994, (Bailleul & Gras
1994) showed the necessity to extend the concept of statistical implication to non-
binary variables, in particular to the modal variables.

Bailleul & Gras (1994) refer to the representation that the professors of mathe-
matics make of their own teaching, for which, the professors have been asked to
order a list of significant words depending on their importance. Their elections are
no longer binary. The words selected by a professor are arranged in a scale where
the top words are the most representative. The question of Bailleul is centered on
questions of the type: “if I select a word x with the importance ix then I select the
word y with the importance iy ≥ ix”.

For the application of the SIA techniques, CHIC (Classification Hiérarchique
Implicative et Cohésitive), (Couturier 2008) has been developed. This is a software
of analysis of data that was initially conceived by Regis Gras and it has been
successively improved for personal computers by Saddo Ag Almouloud, Harrisson
Ratsimba-Rajohn and, in its latest versions, by Raphaël Couturier (Version 5.0),
who incorporates the classification, by means of the similarity analysis.

Unlike the techniques of SIA, which are concerned with the cohesive and the
implicative analysis, in the specialized literature, expressions for the determination
of the similarity index, the significant nodes, the typicality and the contribution
of individuals to the classes in the case of modal variables do not appear. For this
reason, the present paper proposes a similarity index for the case of modal varia-
bles, as well as expressions for the determination of the typicality and contribution
of the individuals to the classes formed during the construction of the similarity
tree, extending the works of Bailleul & Gras (1994) and Lagrange (1998).

2. Statistical Implicative Analysis for Modal
Variables

In this section, a brief summary of the theory developed by Bailleul & Gras
(1994) and Lagrange (1998) for the case of modal variables will be presented. It
will be the guideline to define a similarity index for these variables.
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2.1. The Intensity of Propensity

Lagrange (1998) defines the “propensity” as a non-symmetric association of two
variables whose values belong to the interval [0, 1] and introduces the “intensity of
propensity” to decide whether or not an observed association is significant. He also
proves that in the case of binary variables, the intensity of propensity is similar to
the implication intensity.

Similar to the case of binary variables, let us consider a set I formed by n
individuals and a set A = {a1, a2, . . . , ap} formed by p modal variables, each one
of which can take values in the set M = {k ∈ N : 1 ≤ k ≤ m}.

To transform the m modalities to values in the [0, 1] interval, a weight is
assigned to each modality, varying from 1 (the strongest) to 0 by fractions of size

1

m− 1
, by means of the function ψ defined by:

Ψ : M −→ VAL

k −→ k − 1

m− 1

(1)

where V AL =

{
0,

1

m− 1
,

2

m− 1
, . . . ,

m− 2

m− 1
, 1

)
, conserving the notation used by

Bailleul & Gras (1994).

Let a and b be two modal variables, Lagrange (1998) defines the non propensity
index of a on b as:

S =
∑
x∈I

ψa(x) (1− ψb(x))

n
(2)

and to define the intensity of propensity, he considers a set E of size N sufficiently
large, of which I is a random part. The random index is defined as:

Z =
∑
x∈I

Ax (1−Bx)

n
(3)

where {Ax}x∈E and {Bx}x∈E are sets of random variables with equal distributions,
representative of the variables ψa and ψb respectively, for which the observed
non propensity index s is one of its possible values. It is also proved that Z
follows approximately a Normal distribution of mean µ = E [Ax (1−Bx)] and

variance σ2 =
E [Ax (1−Bx)]

2

n
, and therefore, for sufficiently large n,

Z − µ
σ

follows approximately a Normal distribution of mean zero and variance one.

Lagrange (1998) defines the propensity coefficient and the intensity of propen-
sity of a on b as follows:
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• Propensity coefficient:

q̃
(
a, b̄
)

=

∑
x∈I

ψa (x) (1− ψb (x))

n
−ma (1−mb)√(

s2a +m2
a

) (
s2b + (1−mb)

2
)

n

(4)

• Intensity of propensity:

φ
(
−q̃
(
a, b̄
))

= 1− P

 Z −ma (1−mb)√(
s2a +m2

a

) (
s2b + (1−mb)

2
)

n

< q̃
(
a, b̄
)
 (5)

where:

• ma (resp. mb) is the empirical mean of ψa (resp. ψb),

• s2a (resp. s2b) is the variance of ψa (resp. ψb), and

• φ is the standard normal distribution function.

For a risk level α (0 < α < 1), propensity of a on b will be assumed if
φ
(
−q̃
(
a, b̄
))
≥ 1− α.

2.2. Contribution of the Individuals

To define the typicality and the contribution of the individuals to a class or
a path for the binary case, the approach defined by Ratsimba-Rajohn (1992) has
been used, which presents the notion of respect of an implication among binary
variables, in the following way:

ϕx

(
a, b
)

= 1 if [a (x) = 1, a (x) = 0] and b (x) = 1,

ϕx

(
a, b
)

= 0 if a (x) = 1 and b (x) = 0,

ϕx

(
a, b
)

= p if a (x) = 0 and b (x) = 0,

where ϕx

(
a, b
)
is the intensity of the implication of a on b for the individual x and

p is a number between 0 and 1.
For modal variables, Bailleul & Gras (1994) only analyze the contribution of

the individuals to a class or a path. They proceed in two steps:

First. The set of the possible values that the couples of variables can take
is arranged according to the weights that have been assigned to each one of the
modalities.
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In this classification, they divide the couples of variables in two groups:

G1: The couples (a, b) that verify: ψa (x) =
m− j
m− 1

and ψb (x) =
i− j
m− 1

,

with 1 ≤ i ≤ (m− 1) and 1 ≤ j ≤ i, which contradict the implication a ⇒ b.
The rank assigned to these couples of variables is given through the expression

rg (ψa (x) , ψb (x)) =
i (i− 1)

2
+ j.

G2: The couples (a, b) that respect the implication a⇒ b and verify ψa (x) =
m− i
m− 1

and ψb (x) =
m− i+ j

m− 1
, with m ≥ i ≥ 1, and decrement −1, and 0 ≤ j ≤

(i− 1). The rank assigned to these couples of variables is given by the expression

rg (ψa (x) , ψb (x)) = m2 − i (i− 1)

2
+ j + 1.

Second. The value that measures the respect or the contradiction of the impli-
cation is related to the implication intensity.

Thus, the grade of adhesion of the individual x to the implication a ⇒ b is
defined as:

dega,b (x) =
rg (ψa (x) , ψb (x))− 1

m2 − 1
ϕ
(
a, b
)

(6)

From this grade of adhesion, Bailleul & Gras (1994) define the distance d of an
individual x to the class C formed by g sub-classes, for which the g generic couples
(r1, r2, . . . , rg) and the g generic implications (ϕ1, ϕ2, . . . , ϕg) have been defined
as (see Gras & Kuntz 2007):

d (x,C) =

[
1

g

g∑
i=1

(ϕi − degri (x))
2

1− ϕi

]1/2
(7)

and the contribution of an individual x to the class C as:

γ (x,C) = 1− d (x,C)

d (xn, C)
(8)

where xn is the neutral individual, that is, the individual that assigns the value 0
to all the variables of the g generic couples ri.

3. Classificatory Analysis for Modal Variables

In this section, an index to quantify the similarity among modal variables, the
typicality and the contribution of the individuals to a class C is presented.

3.1. Similarity Index

Following the method to define the propensity coefficient, let us denote a set
E of size N , with sufficiently large N , from which a random subset I of size n is
selected, and a set A = {a1, a2, . . . , ap} formed by p modal variables, each one of
which can take values in the set M = {k ∈ N : 1 ≤ k ≤ m}. Specific weights are
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assigned to each variable, from 1 (the strongest) to 0, in size fractions
1

m− 1
by

means of the function ψ defined in (1).
Let {Ax}x∈E and {Bx}x∈E be two groups of random variables with equal

distributions, representatives of the variables a and b with weights ψa and ψb

respectively. Under the assumption of non a priori relationship between a and
b, the 2N variables {Ax}, {Bx} are independents and the N events {x ∈ I} are
independents with an occurrence probability equal to

n

N
.

Let us define the random variable:∑
x∈I

AxBx

n
(9)

for which
∑
x∈I

ψa (x)ψb (x)

n
is one of their possible values. This random variable

follows approximately a Normal distribution of mean µ = E [Ax]E [Bx] and va-
riance σ2 =

(
V ar (Ax) + [E (Ax)]

2
)(

V ar (Bx) + [E (Bx)]
2
)
and therefore, for n

sufficiently large, ∑
x∈I

AxBx

n
− µ

σ
(10)

follows approximately a Normal distribution of mean zero and variance one.
The proof of this result is similar to the one presented by Lagrange (1998) for

the random variable
∑
x∈I

Ax (1−Bx)

n
, therefore it doesn’t show up in this article.

The similarity index of a on b is defined as:

s̃ (a, b) = P


∑
x∈I

AxBx

n
−mamb√(

s2a +m2
a

) (
s2b +m2

b

)
n

<

∑
x∈I

ψa (x)ψb (x)

n
−mamb√(

s2a +m2
a

) (
s2b +m2

b

)
n

 (11)

where:

• ma (mb) is the empirical mean of ψa (ψb),

• s2a (s2b) is the variance of ψa (ψb),

which coincides with the similarity index defined for the binary case.
Let us prove this. For the binary case, there are just two modalities, this is,

M = {1, 2} and the unique assignable weights are 0 and 1, therefore:

•
∑
x∈I

AxBx

n
=

1

n
Card (A ∩B)
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•
∑
x∈I

ψa (x)ψb (x)

n
=
∑
x∈I

a (x) b (x)

n
=
na∧b
n

, where:

na∧b = {x ∈ I : ψa (x) = 1 ∧ ψb (x) = 1} = {x ∈ I : a (x) = 1 ∧ b (x) = 1}

• ma =
1

n

∑
x∈I

ψa (x) =
na
n
, where:

na = {x ∈ I : ψa (x) = 1} = {x ∈ I : a (x) = 1}

• s2a = σ̂2 (ψa) =
1

n

[∑
x∈I

ψ2
a (x)− nm2

a

]
= ma −m2

a,

therefore, s2a +m2
a = ma, and

s̃ (a, b) = P

 Card (A
⋂
B)

n
− nanb

n2√
nanb
n3

<

na∧b
n
− nanb

n2√
nanb
n3



= P

Card (A
⋂
B)− nanb

n√
nanb
n

<
na∧b −

nanb
n√

nanb
n

 = s (a, b).

3.2. Significant Nodes

For the determination of the significant nodes, a similar procedure to that of
the binary case is used, but to define the initial and global pre-order on A × A,
the index s̃ (a, b) is used, this is, Gs̃ (Ω) = {((a, b) , (c, d)) : s̃ (a, b) < s̃ (c, d)}. For
more details, see (Zamora, Gregori & Orús 2009).

3.3. Typicality and Contribution to a Class C

The couple (a, b) so that:

s̃ (a, b) ≥ s̃ (i, j) , ∀i ∈ A and j ∈ B,

is called the generic couple of the class C : A ∼ B. The number s̃ (a, b) is called
generic similarity of C.

If the class C has g subclasses (C included), then there will be g generic simi-
larities (s̃1, s̃2, . . . , s̃g).

Based on the idea presented by Bailleul & Gras (1994), the grade of agreement
between two modal variables a and b is defined. For that purpose:

First. The set of the possible values that the couples of variables can take is
arranged, according to the weights that have been assigned to each modality.

The couples of this ordered set are divided into two groups:
G1: The couples (a, b) that verify the similarity a ∼ b or for which a (x) = b (x).
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G2: The couples (a, b) that don’t verify the similarity.
To establish a classification to the levels of similarity or non similarity, ranks

are assigned to the couples of values that the couples of variables (a, b) can take
for a given individual x, like it is shown below.

Ranks are placed on am×m matrix (see Table 1 for the casem = 4), where the
rank assigned to the cell (i, j), corresponding to the i-th modality of the variable
a and the j-th modality of the variable b, is given by the expression:

Rgi,j =


(m− j + 1) +

(i− 1) (2m− i)
2

, for i 6= j

m (m− 1)

2
+ 1, for i = j

(12)

with 1 ≤ i ≤ (m− 1) and j decreasing from m to (i+ 1) with decrement (−1). It
is also defined that Rgi,j = Rgj,i.

Table 1: Assigned ranges.

i/j 1 2 3 4
1 7 3 2 1
2 7 5 4
3 7 6
4 7

From this table we can appreciate that:

• The couple (1, 4) corresponding to an individual for which ψa (x) = 0 and
ψb (x) = 1 receives the lower rank, 1.

• For the rest of the cases, the cell receives a rank between 1 and 7, according
to the level of discrepancy or disagreement between a (x) and b (x).

Second. The value that measures the respect or the contradiction to the full
agreement is linked to the similarity index.

For that, the grade of agreement of the individual x to the relationship a ∼ b
is defined as:

dega,b (x) =
Rgi,j − 1

m (m− 1)

2

s̃ (a, b) (13)

where a (x) = i and b (x) = j.
The typical subject is defined as the subject whose grade of agreement coin-

cides with the value of the generic similarity for all the generic couples, this is,
degri (x) = s̃i ∀ri.

The distance of an individual x to the class C formed by g sub-classes is then
defined as:

d (x,C) =

[
1

g

g∑
i=1

(s̃i − degri (x))
2

1− s̃i

]1/2
(14)
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where (r1, r2, . . . , rg) are the g generic couples and (s̃1, s̃2, . . . , s̃g) represents the
g generic similarities.

The typicality is defined by the fact that certain individuals are representative
of the population’s behavior; this is, with a similarity index close to that of the
formed class. The typicality of an individual x to the class C is calculated by the
expression:

γ (x,C) = 1− d (x,C)

max
y∈I

d (y, C)
(15)

Let us analyze the two extreme cases:

• If x is a typical subject, it should satisfy that degri = s̃i for all generic couples

ri, which implies that Rgri =
m (m− 1)

2
+ 1, that is, a (x) = b (x) for all the

generic couples ri = (a, b), and therefore, d (x,C) = 0 and γ (x,C) = 1.

• If x is in more disagreement with C, d (x,C) = max
y∈I

d (y, C), which means

that for all generic couples ri, degri (x) = 0, that is, the rank that is assigned
to all generic couples is 1, which occurs if for all generic couples ri = (a, b),
a (x) = 1 and b (x) = m, or a (x) = m and b (x) = 1. However, if d (x,C) =
max
y∈I

d (y, C), then γ (x,C) = 0.

There are individuals more responsible than others in the formation of the
class. The contribution is defined to evaluate this degree of responsibility. The
contribution of an individual x to the class C is given by:

γ̃ (x,C) = 1− d̃ (x,C) (16)

where d̃ (x,C) =

[
1

g

g∑
i=1

(
1− deg∗ri (x)

)2]1/2 is the distance from the individual x

to the class C and deg∗ri =
Rgri − 1

m (m− 1)

2

.

Let us analyze the two extreme cases, the individual of higher contribution and
the individual of lowest contribution to the formation of the class:

• If x is the individual of higher contribution to the formation of the class,

then it satisfies that a (x) = b (x) and therefore Rgri =
m (m− 1)

2
+ 1 for

all generic couples ri = (a, b). Hence deg∗ri (x) = 1, ∀ri, ⇒ d̃ (x,C) = 0 ⇒
γ̃ (x,C) = 1.

• If x is the individual of lowest contribution to the formation of the class,
it satisfies that a (x) = 1 and b (x) = m or a (x) = m and b (x) = 1 and
therefore Rgri = 1 for all generic couples ri = (a, b). Hence deg∗ri (x) = 0,
∀ri and d̃ (x,C) = 1 ⇒ γ̃ (x,C) = 0.
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4. Illustration of the Technique

The techniques presented have been programmed in language R (R Core Team
2014), in a file that will be denoted as ASIM.R. Two examples are presented, the
first with binary data, to show the equivalence of the similarity index proposed
with the existent one for the binary case. The second example deals with modal
variables with more than two modalities, where the similarity index, the typicality
and contribution of the individuals to the classes formed during the construction
of the similarity tree are computed.

In the first example, seventeen binary variables are analyzed in a sample of 100
patients, from which 50 suffer from lung cancer and the other 50 don’t. Before
presenting the results of the application of both systems, CHIC and ASIM, it is
necessary to point out that CHIC, for similarity analysis in the binary case, allows
the user to choose the distribution (Poisson or Binomial); however, the results
that CHIC shows, in both cases, correspond to the Poisson approximation to the
Normal distribution. Given this difficulty, it is possible to compare the result
shown by the CHIC for the binary case, with the result shown by ASIM for the
modal case with two modalities.

The index proposed for the modal case with 2 modalities coincides with the
index proposed for the binary case, in this case the random variable

∑
x∈I

AxBx

n

follows approximately a Normal distribution of mean µ = E [Ax]E [Bx] =
nanb
n

and variance σ2 =
(
V ar (Ax) + [E (Ax)]

2
)(

V ar (Bx) + [E (Bx)]
2
)

=
nanb
n

, dis-
tribution that coincides with the Poisson approximation to the Normal distribu-
tion.

The Figures 1 and 2 show the similarity indexes at level zero of the hierarchy.
The coincidence of the results can be appreciated.

Figure 1: Similarity indexes at the level zero of the hierarchy with ASIM.R.

The Figures 3 and 4 show the classes formed during the construction of the
similarity tree and its corresponding similarity indexes, obtained by ASIM.R.
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Figure 2: Similarity indexes at the level zero of the hierarchy, obtained by CHIC.

Figure 3: Classes obtained by running ASIM.R.

Figure 5 shows the same results, by executing the software CHIC. The coinci-
dence of both results can be appreciated.

Figures 6a and 6b show the similarity trees obtained by means of each program.
Again the results are coincident.

Through the running of the above example and from the execution of other
datasets, we can say that the execution times between CHIC and ASIM.R are
similar.

Next, the results of a modal variable case with five modalities are presented. To
accomplish this, the file “DatosMusicaModalII.txt” is used. This file corresponds
to the degree of preference of twenty students to fifteen different kinds of music.
The degree of preference is assessed by a scale from 1 to 5, 5 being the highest
value of preference.
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Figure 4: Similarity indexes obtained by running ASIM.R.

Figure 5: Classes and similarity indexes obtained by executing CHIC.

Figures 7, 8 and 9 show the similarity indexes obtained at the level zero of the
hierarchy, the grouping of variables in each level of this hierarchy, and the indexes
to which they were joined.

The similarity index of the class 1 formed by variables HIP and PUN (see
Figures 8 and 9) is 0.934143; it means that HIP and PUN are the most similar
music types in the population of which the sample under study has been selected.

The second class is formed by the variables JAZ and HEA. This class also
shows a big similarity index (0.922925), but smaller than the previous one (see
Figures 8 and 9). Then we can say that the preference for these music types is
high, but smaller than for the previous group (HIP and PUN). The other classes
are interpreted in a similar way.
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Figure 6: Similarity trees.

Figure 7: Similarity indexes at the level zero of the hierarchy.

Figure 8: Classes obtained.

Revista Colombiana de Estadística 38 (2015) 335–351



348 Larisa Zamora-Matamoros, Jorge Rey Díaz-Silvera & Lariza Portuondo-Mallet

Figure 9: Similarity indexes obtained.

Figure 10 presents the similarity tree for the music data classification shown
in Figures 8 and 9.

Figure 10: Similarity tree.

The typicality of the individuals and the optimal group are shown for each one
of the formed classes. In Figure 11 we can see that individuals for which the value
of the typicality in a class is 0 exist, for example, the individual 7 in the class
3. These individuals are in more disagreement, this is, the values taken for the
variables in each generic couple for these individuals are respectively the minimum
(modality 1) and maximum (modality 5) value or vice versa.

On the contrary, there are individuals whose typicality value in a class is 1, for
example, the individual 1 of the class 3. The values taken for the variables in each
generic couple for these individuals are the same. The degree of agreement among
these variables for this individual coincides with the similarity index, being hence
the most typical individual.

Figures 13 and 14 show the contributions of the individuals and the optimal
group. The results related to the contribution can be interpreted as follows. When
the contribution of an individual to a class is 1, for example, individual 1 of class

Revista Colombiana de Estadística 38 (2015) 335–351



Fundamental Concepts on Classification and Statistical Implicative Analysis 349

Figure 11: Typicalities of the first 10 individuals to the first 10 classes.

Figure 12: Optimal group for the first 6 classes.

1, the values of the variables for these individuals, in each generic couple, are
equal. This individual evaluates in a similar way his preference for the music
types that form the vector of generic similarities for the class and therefore it is
more responsible in the creation of the class.

If the contribution of an individual to a class is 0, for example, individual 1
of class 4, then its distance to the class is the biggest possible (1). This is the
individual that contributes the least to the formation of the class (FLA, RAP),
doesn’t like the music FLA and assigns the biggest value possible to the preference
for the music RAP. It is the individual of lowest contribution for declaring FLA
and RAP as similar music types.

For space reasons, only a part of the typicalities, contributions and optimal
group are shown.
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Figure 13: Contribution of the first 10 individuals to the first 9 classes.

Figure 14: Optimal group for the first 6 classes.

5. Conclusions

In this work we proposed a similarity index among modal variables, and ex-
pressions for the calculation of the typicalities and contributions of the individuals
to a class, for these types of variables. It has been demonstrated, theoretically
and numerically, that the expression for the calculation of the similarity index for
modal variables with two modalities coincides with the expression for the binary
case, thus the index proposed is a generalization of the binary case. Following the
idea of Bailleul & Gras (1994), we propose an expression to calculate the grade
of agreement between two modal variables and from this, expressions are given to
calculate the typicalities and contributions of the individuals to the formed classes.
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