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Abstract

The alpha-skew normal (ASN) distribution has been proposed recently
in the literature by using standard normal distribution and a skewing ap-
proach. Although ASN distribution is able to model both skew and bimodal
data, it is shortcoming when data has thinner or thicker tails than normal.
Therefore, we propose an alpha-skew generalized t (ASGT) by using the gen-
eralized t (GT) distribution and a new skewing procedure. From this point
of view, ASGT can be seen as an alternative skew version of GT distribution.
However, ASGT differs from the previous skew versions of GT distribution
since it is able to model bimodal data sest as well as it nests most commonly
used density functions. In this paper, moments and maximum likelihood
estimation of the parameters of ASGT distribution are given. Skewness and
kurtosis measures are derived based on the first four noncentral moments.
The cumulative distribution function (cdf) of ASGT distribution is also ob-
tained. In the application part of the study, two real life problems taken
from the literature are modeled by using ASGT distribution.

Key words: Bimodality, Kurtosis, Maximum Likelihood Estimation, Mod-
eling, Skewness.

Resumen

La distribución normal alfa-sesgada (ASN por sus siglas en inglés) ha sido
propuesta recientemente en la literatura mediante el uso de una distribución
normal estándar y procedimientos de sesgo. Aunque la distribución ASN
es capaz de modelar tanto datos sesgados y bimodales, no es recomendada
cuando los datos tienen colas más livianas o pesadas que la distribución nor-
mal. Por lo tanto, se propone una distribución t alfa-sesgada generalizada
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(ASGT por sus siglas en inglés) mediante el uso de la distribución t generali-
zada (GT por sus siglas en inglés) y un nuevo procedimiento de sesgo. Bajo
este punto de vista, la distribución ASGT se puede ver como una alternativa
sesgada de la distribución GT. Sin embargo, ASGT difiere de previas ver-
siones sesgadas de la distribución GT puesto que es capaz de modelar datos
bimodales y agrupa funciones de densidad más comúnmente usadas. En este
artículo, los momentos y la estimación máximo verosímil de los parámetros
de la distribución ASGT son derivadas. Medidas del sesgo y la curtosis son
derivadas con base a los primeros cuatro momentos no centrales. La función
de distribución acumulada (cdf por sus siglas en inglés) de la distribución
ASGT es también obtenida. En la parte de aplicación del estudio, dos pro-
blemas reales tomados de la literatura son modelados usando la distribución
ASGT.

Palabras clave: bimodalidad, curtosis, estimación máximo verosímil,
modelamiento, sesgo.

1. Introduction

Traditionally, normality assumption is made in most of the statistical proce-
dures. However, in real life problems, nonnormal distributions for modeling data
sets having skewness and/or kurtosis are more prevalent, see for example Tiku,
Islam & Selcuk (2001) and Celik, Senoglu & Arslan (2015). Therefore, there has
been enormous interest in the construction of the alternative distributions to nor-
mal distribution.

Generalized t (GT) is one of these alternative distributions which is proposed
by McDonald & Newey (1988). The probability density function (pdf) of the GT
distribution is given as follows

fGT (z; p, q) =
p

2q1/pB(1/p, q)

(
1 +
|z|p

q

)−(q+1/p)

, −∞ < z <∞ (1)

where p > 0 and q > 0 are the shape parameters and B(·, ·) denotes the beta func-
tion. The pdf given equation (1) is symmetric about 0. Therefore, odd moments
of GT distribution are zero. On the other hand, n−th moment is calculated by
using the following formula

E(Zn) =
qn/pΓ

(
n+1
p

)
Γ
(
q − n

p

)
Γ
(

1
p

)
Γ(q)

, pq > n. (2)

where n is an even number.
GT is known to be a flexible family for modeling thicker or thinner tails since

it nests most commonly used density functions. For example, when p = 2 and
q →∞, GT reduces to normal distribution. Laplace distribution is obtained when
p = 1 and q → ∞. t distribution which has 2q degrees of freedom and scale
parameter σ =

√
2 is also a special case of GT when p = 2. Another limiting
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case of GT is power exponential distribution when q → ∞. GT is thick tailed
when p and q are small and it is thin tailed when p and q are large. For further
information, see McDonald & Newey (1988).

GT distribution is widely used in both theoretical and applied statistical liter-
ature. It is mainly considered and used in the context of partially adaptive esti-
mation method, see for example McDonald & Nelson (1989), McDonald & Nelson
(1993), Butler, McDonald, Nelson & White (1990), Kantar, Usta & Acitas (2011).
Arslan & Genc (2003) use GT for robust modeling by considering GT as a scale
mixture of power exponential and generalized gamma distribution. Multivariate
form of GT is studied by Arslan (2004). GT distribution is proposed to be use
as an alternative to normal distribution by Wang & Romagnoli (2005) to process
data reconciliation and process monitoring. Nadarajah (2008) gives the explicit
formulas for the cumulative distribution function (cdf) of the GT distribution. See
also Choy & Chan (2008) and Fung & Seneta (2010) for other representations of
GT distribution for the univariate and multivariate cases, respectively. Kasap,
Senoglu, Arslan & Acitas (2011) derive modified maximum likelihood estimators
of the location and the scale parameters of the GT distribution. See also Johnson,
Kotz & Balakrishnan (2004), Lye & Martin (1993) and Theodossiou (1998) studies
and the references therein for further details about the GT distribution.

However, nonnormal symmetric distributions such as GT are not flexible for
modeling skew data sets. To overcome this difficulty, many skew distributions were
proposed by various authors, see for example Genton (2004), Martínez-Flórez,
Vergara-Cardozo & González (2013) and Pereira, Marques & da Costa (2012).
Among these distributions, alpha-skew normal (ASN) is one of the most popular
distribution for modeling unimodal or bimodal skew data sets in recent years which
is proposed by Elal-Olivero (2010). The pdf of ASN distribution is given as follows

hASN (z) =
(1− αz)2 + 1

2 + α2
φ(z), −∞ < z <∞ (3)

where φ(·) is the pdf of the standard normal distribution and α ∈ R is the param-
eter which controls both the skewness and the effect of unimodality.

When α = 0, ASN reduces to the well known standard normal distribution.
Elal-Olivero (2010) proves that ASN has at most two modes. Further, he obtains
the moments, discusses maximum likelihood (ML) estimation and some other fea-
tures of ASN distribution.

The main objective of this paper is to present a new skew generalized t dis-
tribution family as an extension of the symmetric GT distribution by using Elal-
Olivero’s skewing procedure. Thus, the proposed family is called an alpha-skew
GT (ASGT) distribution, see Acitas, Senoglu & Arslan (2013). It should be noted
that there are some other skew versions of GT distribution such as skew GT (SGT)
given by Theodossiou (1998). As far as we know, ASGT is the first distribution
used for modeling the bimodal and heavy/light tailed data.

Since ASGT distribution can be seen as a “hybrid” of GT and Elal-Olivero’s
approach, it inherits some distributional properties from both GT distribution and
skewing procedure. For instance, ASGT distribution nests some distributions such
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as alpha-skew power exponential, alpha-skew student t, alpha-skew Laplace and
ASN as special or limiting cases. ASGT takes this property from GT distribution.
On the other hand, ASGT is able to model bimodal and skew data sets which is
because of the skewing procedure.

We believe that these features of ASGT distribution make it attractive for the
practitioners since data encountered in many applied studies may be skew and
bimodal as well as having thinner or thicker tails than normal. ASGT distribution
is able to accommodate these properties of the data.

It should also be noted that these kinds of extensions have appeared in the
statistical literature in recent years. For example, some extensions of Birnbaum-
Saunders distribution are studided by Diaz-Garcia & Leiva-Sanchez (2005), Vilca-
Labra & Leiva-Sánchez (2006), Gomez, Olivares-Pacheco & Bolfarine (2009),
Castillo, Gomez & Bolfarine (2011) and Genc (2013). See also Arellano-Valle,
Cortes & Gomez (2010) and Venegas, Rodríguez, Gomez, Olivares-Pacheco &
Bolfarine (2012) for similar extensions of epsilon-skew-t distribution.

The rest of the paper is organized as follows. In section 2, we define ASGT
distribution. Section 3 discusses the ML estimation of the parameters of ASGT
distribution. Section 4 consists of two real life examples taken from the litera-
ture which are analyzed using ASGT distribution. The paper is finalized with a
conclusion part.

2. Alpha-Skew Generalized t Distribution

In this section, we define ASGT distribution and give some basic properties
of it.

Definition 1 (ASGT distribution). Random variable Z is said to have ASGT
distribution if it has the following pdf

gASGT (z;α, p, q) =
(1− αz)2 + 1

2 + α2c(p, q)
fGT (z; p, q), −∞ < z <∞, pq > 2 (4)

where

c(p, q) =
q2/pΓ

(
3
p

)
Γ
(
q − 2

p

)
Γ
(

1
p

)
Γ (q)

,

α is skewness and uni-bimodality parameter and fGT (z; p, q) is the pdf of GT
distribution.

Random variable Z having ASGT (α, p, q) distribution is denoted shortly Z ∼
ASGT (α, p, q).

When α tends to ±∞ in equation (4), the pdf becomes

gBGT (z; p, q) =
1

c(p, q)
z2fGT (z; p, q), −∞ < z <∞, pq > 2. (5)
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It is easy to see that the function given in equation (5) is also a pdf. Thus,
this limiting case of ASGT is called a bimodal generalized t (BGT) distribution.
BGT is symmetric and bimodal distribution. It can be seen as an extension of
Elal-Olivero’s bimodal normal distribution.

The following proposition can be proven as a result of Definition 1.

Proposition 1. Let Z ∼ ASGT (α, p, q) then

(i) if α = 0, Z ∼ GT (p, q) ,

(ii) −Z ∼ ASGT (−α, p, q).

Proof . (i) is directly obtained from the definition of ASGT distribution. We
prove (ii) below.

Let define Y = −Z and GY (y) denotes the cumulative distribution function
(cdf) of Y . Then, one can easily see that

GY (y) = P (Y ≤ y) = P (−Z ≤ y) = P (Z ≥ −y) = 1−GZ(−y) (6)

where GZ(z) is cdf of Z. Taking derivative in equation (6) reveals

gY (y) = (1−GZ(−y))′

= gZ(−y)

=
(1− α(−y))2 + 1

2 + α2c(p, q)
fGT (−y; p, q).

it is clear that −Z ∼ ASGT (−α, p, q) since fGT (−y; p, q) = fGT (y; p, q).

Figure 1 illustrates the shape of ASGT distribution for some selected values
of the shape parameters. For example, when α = 0, p = 2 and q = 5, the
distribution is symmetric and unimodal, see Figure 1(a). On the other hand,
Figure 1(b) demonstrates that if α = 3, p = 2 and q = 5 ASGT becomes skew
and bimodal. Figure 1(c) and 1(d) display interesting plots of ASGT distribution
since the values of p and q are small.

It is clear from Figure 1 that ASGT distribution is flexible for modeling the
data which may be skew and bimodal as well as having thinner or thicker tails
than normal.

2.1. Special or Limiting Cases

ASGT distribution includes several distributions as special or limiting cases
for specified values of the shape parameters α, p and q. However, the case α = 0
corresponds to symmetric subdistributions which are available in literature (see for
example McDonald and Newey, 1988), we therefore focus on the specified values
of p and q. Thus, in this subsection, we give “alpha-skew” subdistributions that
ASGT distribution nests.
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(a) α = 0, p = 2, q = 5
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(b) α = 3, p = 2, q = 5
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(c) α = 0.1, p = 10, q = 0.5
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(d) α = 1, p = 1, q = 5

Figure 1: The shape of the ASGT distribution for some selected values of the shape
parameters α, p and q.

• Alpha-Skew Normal distribution : In equation (4), if p = 2 and q →∞,
we get the pdf of ASN distribution, see equation (3).

• Alpha-Skew Student’s t distribution : In equation (4), if p = 2, we get
the pdf of alpha-Skew Student’s t (ASST) distribution as follows

gASST (z;α, q) =
(1− αz)2 + 1

2 + α2
(

q
q−1

)ft(z; 2q), −∞ < z <∞, q > 1 (7)

where ft(z; 2q) denotes the pdf of student’s t distribution with 2q degrees of
freedom.

• Alpha-Skew Laplace distribution : In equation (4), if p = 1 and q →∞,
we get the pdf of alpha-skew Laplace (ASL) distribution as follows

gASL(z;α, p) =
(1− αz)2 + 1

2(1 + α2)

e−|z|

2
, −∞ < z <∞. (8)

• Alpha-Skew Power Exponential distribution : In equation (4), if q →
∞, we get the pdf of alpha-skew power exponential (ASPE) distribution as
follows

gASPE(z;α, p) =
(1− αz)2 + 1

2 + α2
(

Γ( 3
p )

Γ( 1
p )

) pe−|z|p
2Γ( 1

p )
, −∞ < z <∞. (9)
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It is clear that these distributions are alpha-skew versions of well known normal,
student’s t, Laplace and power exponential distributions, respectively.

This subsection shows that ASGT family nests subdistributions can be uni-
modal/bimodal and symmetric/skew. Thus, ASGT distribution is flexible for
modeling both skew and bimodal data which may also have thinner or thicker tails
than normal. Since ASGT distribution is able to accommodate these properties of
the data, we believe that it is an attractive distribution family for practitioners.

Here an important question may arise: For which values of α, ASGT distribu-
tion is bimodal? It should be noted that this problem has a demanding solution
process and the solution also depends on the values of the shape parameters p and
q. We therefore present a brief discussion here by considering relatively simple
cases: (i) ASL distribution and (ii) ASN distribution. As mentioned above, ASGT
reduces to ASL distribution when p = 1 and q →∞. After dense algebraic opera-
tions, we see that ASL has at most two modes and the transition from unimodality
to bimodality occurs around α = ±1. A similar argument is also given for ASN
distribution, which is one of the limiting cases of ASGT distribution for p = 2 and
q →∞, by Elal-Olivero (2010). He indicates that the transition from unimodality
to bimodality occurs around α = ±1.34 via a numerical method. It is clear from
these examples that finding a transition point (either algebraically or numerically)
is a very demanding job even for simple cases. For some other values of the p and
q, the solution for the transition point is much more difficult.

2.2. Moments

In this subsection, moments of ASGT distribution are derived. As a result,
the skewness and the kurtosis measures are given.

Here, it should be realized that the even and the odd moments of ASGT distri-
bution can be obtained by using the moments of GT distribution. This is because
of the fact that the pdf of ASGT distribution includes the pdf of GT distribution.
The following proposition gives for both even and odd n values of E(Zn) based
on this phenomena where Z ∼ ASGT (α, p, q).

Proposition 2. Let Z ∼ ASGT (α, p, q) then for k ∈ N

µ2k = E(Z2k) =
1

2 + α2c(p, q)

[
2q2k/pΓ( 2k+1

p )Γ(q − 2k
p )

Γ( 1
p )Γ(q)

+
α2q(2k+2)/pΓ( 2k+3

p )Γ(q − 2k+2
p )

Γ( 1
p )Γ(q)

]
, pq > 2k + 2

(10)

µ2k−1 = E(Z2k−1) =
1

2 + α2c(p, q)

−2αq2k/pΓ( 2k+1
p )Γ(q − 2k

p )

Γ( 1
p )Γ(q)

, pq > 2k. (11)
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Proof . Let us begin with E(Z2k):

E(Z2k) =
1

2 + α2c(p, q)

∞∫
−∞

z2k[(1− αz)2 + 1]fGT (z)dz

=
1

2 + α2c(p, q)

∞∫
−∞

(
2z2k − 2αz2k+1 + α2z2k+2

)
fGT (z)dz

=
1

2 + α2c(p, q)

[
2EGT (Z2k)− 2αEGT (Z2k+1) + α2EGT (Z2k+2)

]
=

1

2 + α2c(p, q)

[
2EGT (Z2k) + α2EGT (Z2k+2)

]
.

By incorporating equation (2) into the last equation, we obtain

E(Z2k) =
1

2 + α2c(p, q)

[
2q2k/pΓ( 2k+1

p )Γ(q − 2k
p )

Γ( 1
p )Γ(q)

+
α2q(2k+2)/pΓ( 2k+2

p )Γ(q − 2k+2
p )

Γ( 1
p )Γ(q)

]

where pq > 2k+ 2 and EGT (·) denotes the expectation based on GT distribution.

E(Z2k−1) can be obtained by following the same lines. Therefore, we omit the
details for the sake of brevity.

Based on these moments, we can obtain the skewness (
√
β1) and the kurtosis

(β2) measures of ASGT distribution by using the following formulas:

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)3/2

and

β2 =
µ4 − 4µ1µ3 + 6µ2µ

2
1 − 3µ4

1

(µ2 − µ2
1)2

,

respectively. Here,
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µ1 =
1

2 + α2c(p, q)

−2αq2/pΓ
(

3
p

)
Γ
(
q − 2

p

)
Γ
(

1
p

)
Γ(q)

, (12)

µ2 =
1

2 + α2c(p, q)

[2q2/pΓ
(

3
p

)
Γ
(
q − 2

p

)
Γ
(

1
p

)
Γ(q)

+
α2q4/pΓ

(
5
p

)
Γ
(
q − 4

p

)
Γ
(

1
p

)
Γ(q)

]
, (13)

µ3 =
1

2 + α2c(p, q)

−2αq4/pΓ
(

5
p

)
Γ
(
q − 4

p

)
Γ
(

1
p

)
Γ(q)

, (14)

µ4 =
1

2 + α2c(p, q)

[2q4/pΓ
(

5
p

)
Γ
(
q − 4

p

)
Γ
(

1
p

)
Γ(q)

+
α2q6/pΓ

(
7
p

)
Γ
(
q − 6

p

)
Γ
(

1
p

)
Γ(q)

]
. (15)

In Table 1, we give the skewness (
√
β1) and the kurtosis (β2) values of ASGT

distribution for some selected values of the shape parameters. It is obvious that
Table 1 provides extra information for modeling performance of ASGT
distribution.

Table 1: The skewness (
√
β1) and the kurtosis (β2) values of the ASGT distribution

based on some selected values of the shape parameters α, p and q.

α p q
√
β1 β2

0 2 5 0 4
0 10 2 0 1.9
0.1 10 0.5 0 3.5
1 4 8 0.4 2.7
1 10 2 0.6 2.5
3 2 5 0.6 3.9

2.3. Distribution Function

In this subsection, we derive the explicit formula for the cdf of ASGT distribu-
tion. It should be noted that the cdf of GT distribution is obtained by Nadarajah
(2008). In Proposition 3, we obtain the cdf of ASGT distribution by following the
similar lines given by Nadarajah (2008).

Proposition 3. If Z ∼ ASGT (α, p, q) then the cdf of random variable Z is
given as

GASGT (z) =
1

2 + α2c(p, q)

{
2FGT (z)− 2αG1(z) + α2G2(z)

}
(16)
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where

FGT (z) =


1

2
− 1

2
I(1− 1

1+(−z)p/q )

(
1

p
, q

)
, z < 0

1

2
+

1

2
I(1− 1

1+zp/q )

(
1

p
, q

)
, z ≥ 0

G1(z) =
q1/pΓ( 2

p )Γ(q − 1
p )

Γ( 1
p )Γ(q)


−1

2
+

1

2
I(1− 1

1+(−z)p/q )

(
2

p
, q − 1

p

)
, z < 0

−1

2
+

1

2
I(1− 1

1+zp/q )

(
2

p
, q − 1

p

)
, z ≥ 0

G2(z) =
q2/pΓ( 3

p )Γ(q − 2
p )

Γ( 1
p )Γ(q)


1

2
− 1

2
I(1− 1

1+(−z)p/q )

(
3

p
, q − 2

p

)
, z < 0

1

2
+

1

2
I(1− 1

1+zp/q )

(
3

p
, q − 2

p

)
, z ≥ 0

and Iy(a, b) denotes the incomplete beta function.

Proof . The cdf of ASGT is obtained as shown below.

GASGT (z) =

z∫
−∞

gASGT (t)dt

=

z∫
−∞

(1− αt)2 + 1

2 + α2c(p, q)
fGT (t; p, q)dt

=
1

2 + α2c(p, q)

z∫
−∞

(2− 2αt+ αt2)fGT (t; p, q)dt

=
2

2 + α2c(p, q)

z∫
−∞

fGT (t; p, q)dt− 2α

2 + α2c(p, q)

z∫
−∞

tfGT (t; p, q)dt

+
α2

2 + α2c(p, q)

z∫
−∞

t2fGT (t; p, q)dt.

Let us define

FGT (z) =

z∫
−∞

fGT (t; p, q)dt, G1(z) =

z∫
−∞

tfGT (t; p, q)dt
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and

G2(z) =

z∫
−∞

t2fGT (t; p, q)dt.

for the sake of simplicity. The main idea for obtaining FGT (z), G1(z) and
G2(z) is

u = 1− 1

1 + tp

q

, t > 0

transformation, see Nadarajah (2008). Since similar lines are followed as in Nadara-
jah (2008), we do not give the details here for the sake of brevity. However, the
complete proof can be provided upon request.

In Figure 2, the plots of the cdf of ASGT distribution for some selected values
of the shape parameters α, p and q are given. The selected values of the shape
parameters are the same as those given in Figure 1.
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Figure 2: The plots of the cdf of ASGT distribution for some selected values of the
shape parameters α, p and q.

2.4. Location-Scale Case

Let Z ∼ ASGT (α, p, q), µ ∈ R and σ > 0 denote the location and the scale
parameters, respectively. If we define random variable X as X = µ+σZ, then the
corresponding pdf is obtained as follows
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g(x;µ, σ, α, p, q) =
1

σ

(
1− α

(
x−µ
σ

))2
+ 1

2 + α2c(p, q)

p

2q1/pB(1/p, q)

1 +

∣∣∣x−µσ ∣∣∣p
q

−(q+1/p)

. (17)

Random variable X having the distribution with the density given in equation
(17) is shown as X ∼ ASGT (µ, σ, α, p, q).

3. Maximum-Likelihood Estimation

Let x1, x2, . . . , xn be a random sample from ASGT (µ, σ, α, p, q) distribution.
The log-likelihood function can be written as follows

`(µ, σ, α, p, q) ∝ −n log σ + n log p− n

p
log q − n logB

(
1

p
, q

)
−

n log(2 + α2c(p, q)) +

n∑
i=1

log
[
(1− αzi)2

+ 1
]
−

(
pq + 1

p

) n∑
i=1

log

(
1 +
|zi|p

q

)
.

(18)

where zi = (xi − µ)/σ, i = 1, 2, . . . , n.
After taking partial derivatives of log-likelihood function with respect to the

parameters of interest and setting them equal to zero, we obtain the following
equations:

∂`

∂µ
=

2α

σ

n∑
i=1

(1− αzi)
(1− αzi)2 + 1

+

(
pq + 1

qσ

) n∑
i=1

|zi|p−1sgn(zi)

1 + 1
q |zi|p

= 0, (19)

∂`

∂σ
= −n

σ
+

2α

σ

n∑
i=1

(1− αzi)zi
(1− αzi)2 + 1

(
pq + 1

qσ

) n∑
i=1

|zi|p

1 + 1
q |zi|p

= 0, (20)

∂`

∂α
=

n∑
i=1

2(1− αzi)zi
(1− αzi)2 + 1

+
2nαc(p, q)

2 + α2c(p, q)
= 0, (21)

∂`

∂p
=
n

p
− n

p2
γ

(
q +

1

p

)
+
n

p2
γ

(
1

p

)
+
n

p2
log q −

nα2c′p(p, q)

2 + α2c(p, q)

+
1

p2

n∑
i=1

log

(
1 +
|zi|p

q

)
− pq + 1

pq

n∑
i=1

|zi|p log |zi|
1 + |zi|p

q

= 0, (22)

∂`

∂q
= nγ

(
q +

1

p

)
− nγ (q)− n

pq
−

n∑
i=1

log

(
1 +
|zi|p

q

)
(23)

−
nα2c′q(p, q)

2 + α2c(p, q)
+
pq + 1

pq2

n∑
i=1

|zi|p

1 + |zi|p
q

= 0 (24)
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where

c′p(p, q) =
c(p, q)

p2

[
−2 log q − 3γ

(
3

p

)
+ 2γ

(
q − 2

p

)
+ γ

(
1

p

)]
,

c′q(p, q) = c(p, q)

[
2

pq
+ γ

(
q − 2

p

)
− γ(q)

]
.

Here, sgn(·) and γ(·) denote the sign and the digamma functions, respectively.
Likelihood equations include nonlinear functions, therefore it is not possible to

obtain explicit forms of the ML estimators. Thus, they have to be computed by
using numerical methods. A lot of software, including optimization toolbox, i.e.
S-Plus, R, RMATLAB2010a etc can be used for obtaining the ML estimates of the
parameters. In this study, we use the optimization toolbox of RMATLAB2010a
which uses “Nelder-Mead simplex direct search” algorithm. It should be noted
that initial estimates for the parameter estimates are needed to compute the cor-
responding ML estimates when numerical algorithms are performed. It is clear
that choosing wrong initial values causes optimization to end with local maxi-
mums. As in Ma & Genton (2004), we try different initial values to obtain global
maximum in order to get rid of local maximums. The same discussion is also given
by Genc (2013).

For obtaining the standard errors of the ML estimates one should compute the
information matrix I. It is well known that the elements of I are given by

I(i, j) = E

(
∂2`(θ)

∂θi∂θj

)
, i, j = 1, 2, . . . , 5 (25)

where θ = (µ, σ, α, p, q)′. Since expectation over ASGT distribution and second
order derivatives are not straightforward, numerical methods should be performed
to obtain the explicit form of the information matrix I. Thus, we use the observed
information matrix for calculating the standard errors in the rest of the paper.

4. Applications

In this section, we investigate the modeling performance of the ASGT distri-
bution on two real life examples taken from the literature. The first data set is an
example of unimodal data called Roller data. Faithful geyser data is the second
one which is bimodal.

4.1. Roller Data

This data set has 1,150 observations which are available at http://lib.stat.
cmu.edu/jasadata/laslett website, see also Gomez, Elal-Olivero, Salinas & Bol-
farine (2011) who analyzed the same data.

In this study, we model roller data by using ASGT distribution. ML estimates
of the parameters and Akaike information criterion (AIC) values are given in Table
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Table 2: Parameter estimates of roller data based on ASGT and ASN distributions.
Standard errors are given in the parentheses.

µ σ α p q AIC
ASN 3.5363 0.6497 0.0025 – – 2277.7318

(0.1512) (0.0002) (0.3573) – –
ASGT 3.7838 0.6210 0.3877 1.5208 5.8424 2154.3653

(0.0009) (0.0016) (0.0051) (0.0393) (10.2366)
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Figure 3: The histogram and the fitted ASGT density for Roller data.

2 along with the results for ASN distribution. The histogram and the fitted density
for roller data are illustrated in Figure 3.

AIC values suggest that ASGT distribution is more reliable than ASN distri-
bution for roller data. It is also obvious from Figure 3 that ASGT provides a
substantially good fitting.

Results obtained from AIC are also supported by the following likelihood ratio
test (LRT) given below. In LRT, we test the null hypothesis

H0 : Distribution of the data is ASN

versus

H1 : Distribution of the data is ASGT.

by using the following likelihood ratio statistic:

− 2λ(x) = −2 log
LASN (µ̂, σ̂, α̂)

LASGT (µ̂, σ̂, α̂, p̂, q̂)
(26)

where LASN and LASGT stand for likelihood functions of ASN and ASGT distri-
butions, respectively. The value of λ(x) is calculated as 127.3665 by using the ML
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estimates given in Table 2. The null hypothesis is rejected at α = 0.05 signifi-
cance level since the critical Chi-square value for two degrees of freedom is 5.99.
Therefore, it can be concluded that the distribution of the data is ASGT.

4.2. Faithful Geyser Data

Faithful geyser data includes 272 observations which denote the waiting-time
between eruptions and the duration-time of these eruptions for Old Faithful geyser
in Yellow National Park, Wyoming, USA. This popular data is available at R-
system and see also Arellano-Valle et al. (2010) in which it is indicated that data
is negatively skewed and bimodal.

In this study, we use ASGT distribution to model this popular data. ML
estimates of the parameters and AIC values for both ASGT and ASN distributions
are given in Table 3. The histogram and the fitted density for Faithful geyser data
are given in Figure 4.

Table 3: Parameter estimates of Faithful geyser data based on ASGT and ASN distri-
butions. Standard errors are given in the parentheses.

µ σ α p q AIC
ASN 3.2344 0.6857 -6.0772 − − 633.9026

(0.0010) (0.0003) (1.6982) − −
ASGT 3.2586 1.5169 -7.7342 16.2196 1.5262 549.3188

(0.0004) (0.0011) (1.5652) (112.2971) (3.6750)
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Figure 4: The histogram and the fitted densities for Faithful geyser data.

It is clear that AIC values suggest that ASGT distribution is more reliable than
ASN distribution for Faithful geyser data. Further, Figure 3 shows that ASGT
provides a satisfactory fitting.

LRT test is also used for testing the null hypothesis given in the previous
subsection. The calculated value of the LRT test statistic is 88.5838. This result
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indicates that the null hypothesis is rejected at 0.05 significance level. Thus, ASGT
distribution is more suitable for Faithful geyser data.

5. Conclusion

In this study, we propose ASGT distribution as an extension of symmetric GT
distribution by using Elal-Olivero’s (2010) skewing procedure. ASGT nests some
distributions for specified values of the shape parameters. This feature of ASGT
distribution makes it very attractive for the practical users since it is flexible for
modeling unimodality or bimodality as well as skewness and kurtosis. Moments
of new distribution are derived. As a result, the skewness and the kurtosis mea-
sures are obtained. Its distribution function is formulated. After discussing ML
estimation of the parameters, two real life data taken from literature are modeled
by using ASGT distribution. The results show that ASGT distribution provides
a good fitting.
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