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Abstract

A bimodal extension of the generalized gamma distribution is proposed
by using a mixing approach. Some distributional properties of the new dis-
tribution are investigated. The maximum likelihood (ML) estimators for the
parameters of the new distribution are obtained. Real data examples are
given to show the strength of the new distribution for modeling data.
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Resumen

Una extensión bimodal de la distribución gamma generalizada es propu-
esta a través de un enfoque de mixturas. Algunas propiedades de la nueva
distribución son investigadas. Los estimadores máximo verosímiles (ML por
sus siglas en inglés) de los parámetros de la nueva distribución son obtenidos.
Algunos ejemplos con datos reales son utilizados con el fin de mostrar las
fortalezas de la nueva distribución en la modelación de datos.
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1. Introduction

It is not known how the real data behaves. In order to model the real data
sets, a parametric model which is flexible enough to capture the data features is
needed. In this paper, we propose a family of distribution with two important
properties. One of these properties is bimodality and the other is skewness. The
data sets, which may have bimodality and/or skewness, can be efficiently modeled
with these two properties.

Hassan & Hijazi (2010) define a bimodal exponential power distribution, but
their bimodal distribution has the same level of peaks and it is symmetric. There-
fore, their distribution may not be very useful for data sets that have two modes
with different frequencies of the observations and the asymmetry.

When exploring the literature on bimodal and skew distributions, there are
many different proposals. Some of these works are (Eugene, Lee & Famoye
2002, Famoye, Lee & Eugene 2004, Ahmed, Goria & Hussein 2008, Sanhueza,
Leiva & Balakrishnan 2008, Elal-Olivero 2010, Arellano-Valle, Cortés & Gómez
2010, Jamalizadeh, Arabpour & Balakrishnan 2011, Gómez, Elal-Olivero, Sali-
nas & Bolfarine 2011, Sanhueza, Leiva & López-Kleine 2011, Rêgo, Cintra &
Cordeiro 2012, Pereira, Marques & da Costa 2012, Torres-Avilés, Icaza & Arellano-
Valle 2012, Genc 2013, Shams & Alamatsaz 2013, Rocha, Loschi & Arellano-
Valle 2013, Cooray 2013, Martínez-Flórez, Vergara-Cardozo & González 2013, Sali-
nas, Martínez-Flórez & Moreno-Arenas 2013, Abdulah & Elsalloukh 2013, Gui
2014, Gómez, Bolfarine & Gómez 2014, Celik, Senoglu & Arslan 2015, Iriarte,
Gómez, Varela & Bolfarine 2015). The model proposed by Abdulah & Elsalloukh
(2014) has a bimodality with the same height, which is not flexible enough to
model bimodal data with a different number of observations in each group.

In this study, we define a new distribution as a scale mixture of the generalized
gamma distribution. The resulting distribution has six parameters. Two of these
parameters are the shape parameters which control the height of peaks. The
other four parameters regulate the peakness, the skewness and the tail thickness.
With these parameters, the model is more flexible than the previously proposed
bimodal distributions for modeling bimodal data sets which may have skewness in
each group.

The paper is organized as follows. In Section 2, we define the new distribution
and give some distributional properties. Maximum likelihood estimations are given
in Section 3. In Section 4, we give the real data examples. Finally, in the last
section we give some conclusions and remarks.

2. Bimodal Generalized Gamma Distribution

It is easy to show that if W ∼ G( δ+1
αβ , η

β), δ > 0, α > 0, β > 0, and η > 0, then
the random variable Y = W 1/β will have a generalized gamma (GG) distribution
with the density function
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g(y) =
β

η
δ+1
α Γ( δ+1

αβ )
y
δ+1
α −1 exp{−(y/η)β}. (1)

Theorem 1. Let Y be a continuous random variable distributed as a GG(β, η, δ+1
αβ )

with the parameters β, η and δ+1
αβ . Let T be a discrete random variable with the

following values and the corresponding probabilities,

T =

{
−(1 + ε), 1+ε

2

1− ε, 1−ε
2

(2)

where ε ∈ (−1, 1). Assume that Y and T are independent. Then, the distribution
of the random variable

X = Y 1/αT (3)

will have the following density function

f(x) =


αβ

2η
δ1+1
α (1+ε)δ1Γ(

δ1+1
αβ )

(−x)δ1 exp{− (−x)αβ

ηβ(1+ε)αβ
}, x < 0

αβ

2η
δ0+1
α (1−ε)δ0Γ(

δ0+1
αβ )

xδ0 exp{− xαβ

ηβ(1−ε)αβ }, x ≥ 0
(4)

with the parameters α > 0, β > 0, δ0 > 0, δ1 > 0, η > 0 and ε.

Proof . For x < 0,

F1(x) = P (X < x) =
1 + ε

2
P (Y > (

−x
1 + ε

)α) =
1 + ε

2
[1− P (Y < (

−x
1 + ε

)α)]

=
1 + ε

2
[1−

∫ ( −x
1+ε )α

0

β

η
δ+1
α Γ( δ+1

αβ )
y
δ+1
α −1exp{−(

y

η
)β}dy].

For x ≥ 0,

F0(x) = P (X < x) =
1− ε

2
P (Y < (

x

1− ε
)α)

=
1− ε

2

∫ ( x
1−ε )α

0

β

η
δ+1
α Γ( δ+1

αβ )
y
δ+1
α −1 exp{−(

y

η
)β}dy.

Then, the derivatives of F1(x) and F0(x) give the density function f(x) with the aid
of the Leibniz integral rule. When we plot this, we observe that both peaks have
the same height. To make this density function more flexible, we can reparametrize
it by taking δ = δ1 for x < 0, δ = δ0 for x ≥ 0. If we do so, we can get the f(x)
function given equation (4). To show that f(x) is a density function, we have to
prove that ∫ ∞

−∞
f(x)dx =

∫ 0

−∞
f(x)dx+

∫ ∞
0

f(x)dx = 1. (5)
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For the first integration, let u = 1
ηβ

( −x1+ε )αβ . Using this, we can easily see that∫ 0

−∞
f(x)dx =

1 + ε

2
.

Similarly, for the second part of equation (5), let u = 1
ηβ

( x
1−ε )αβ then it will be

easily seen that ∫ ∞
0

f(x)dx =
1− ε

2
.

Thus, the desired result is obtained.

Definition 1. The distribution of the random variableX with the density function
given in equation (4) is called a bimodal extended generalized gamma (BEGG)
distribution.

We can also define the location-scale form of this distribution.

Proposition 1. Suppose that Z ∼ BEGG(α, β, δ0, δ1, η, ε). Then, the random
variable X = µ+σZ, µ ∈ R, σ > 0 will have BEGG distribution with the following
density function (X ∼ BEGG(µ, σ, α, β, δ0, δ1, η, ε))

g(x) =


αβ

2ση
δ0+1
α (1−ε)δ0Γ(

δ0+1
αβ )

(x−µσ )δ0 exp{− (x−µ)αβ

ηβ((1−ε)σ)αβ
}, x ≥ µ

αβ

2ση
δ1+1
α (1+ε)δ1Γ(

δ1+1
αβ )

(µ−xσ )δ1 exp{− (µ−x)αβ

ηβ((1+ε)σ)αβ
}, x < µ

(6)

where µ and σ are the location and the scale parameters, respectively.

Proof . Let Z ∼ BEGG(α, β, δ0, δ1, η, ε). If we replaced Z by X−µ
σ with the

Jacobian 1/σ in the density function of Z, then we get the probability density
function given in equation (6).

2.1. Some Properties

Proposition 2. Let X ∼ BEGG(α, β, δ0, δ1, η, ε). Then, the cumulative distribu-
tion function (cdf) of X is

F (x) =

 F1(x) =
∫ x
−∞ f1(u)du = 1+ε

2Γ(
δ1+1
αβ )

Γ( δ1+1
αβ , (−x)αβ

ηβ(1+ε)αβ
), x < 0

F0(x) =
∫ x

0
f0(u)du = 1−ε

2Γ(
δ0+1
αβ )

γ( δ0+1
αβ , xαβ

ηβ(1−ε)αβ ), x ≥ 0
(7)

where γ is the incomplete gamma function.

Proof . For X < 0,
∫ x
−∞ f1(t)dt = F1(x), let (−t)αβ

ηβ(1+ε)αβ
be u, then

du = −αβ(−t)αβ−1

ηβ(1+ε)αβ
dt. For X ≥ 0,

∫ x
0
f0(t)dt = F0(x), let tαβ

ηβ(1−ε)αβ be u, then

du = αβtαβ−1

ηβ(1−ε)αβ dt.
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Proposition 3. Let X ∼ BEGG(α, β, δ0, δ1, η, ε). The rth, r ∈ R, noncentral
moments are given by

E(Xr) =
(−1)rηr/α(1 + ε)r+1

2

Γ( δ1+r+1
αβ )

Γ( δ1+1
αβ )

+
ηr/α(1− ε)r+1

2

Γ( δ0+r+1
αβ )

Γ( δ0+1
αβ )

. (8)

Proof . For X < 0, E1(Xr) =
∫ 0

−∞ xrf1(x)dx, let (−x)αβ

ηβ(1+ε)αβ
be u, then du =

−αβ(−x)αβ−1

ηβ(1+ε)αβ
dx. For X ≥ 0, E0(Xr) =

∫∞
0
xrf0(x)dx, let xαβ

ηβ(1−ε)αβ be u, then

du = αβxαβ−1

ηβ(1−ε)αβ dx. As a result, E(Xr) = E1(Xr) + E0(Xr).

Corollary 1. Let X ∼ BEGG(α, β, δ0, δ1, η, ε). The expected value of X is

E(X) =
−η1/α(1 + ε)2Γ( δ1+2

αβ )

2Γ( δ1+1
αβ )

+
η1/α(1− ε)2Γ( δ0+2

αβ )

2Γ( δ0+1
αβ )

and the variance of X is

V (X) =
η2/α(1− ε)3Γ( δ0+3

αβ )

2Γ( δ0+1
αβ )

+
η2/α(1 + ε)3Γ( δ1+3

αβ )

2Γ( δ1+1
αβ )

−
[−η1/α(1 + ε)2Γ( δ1+2

αβ )

2Γ( δ1+1
αβ )

+
η1/α(1− ε)2Γ( δ0+2

αβ )

2Γ( δ0+1
αβ )

]2

.

Proof . If r = 1, then E(X) is the first moment. If r = 2, then E(X2) is the
second moment. Thus, V (X) = E(X2)− [E(X)]2.

Proposition 4. Let X ∼ BEGG(α, β, δ0, δ1, η, ε). Then, the hazard function of
X is obtained as

h(x) =



αβ

2η

δ1+1
α (1+ε)δ1Γ(

δ1+1
αβ

)

(−x)δ1 exp{− (−x)αβ

ηβ(1+ε)αβ
}

1− 1+ε
2 {1−

γ(
δ1+1
αβ

,
(−x)αβ

ηβ(1+ε)αβ
)

Γ(
δ1+1
αβ

)
}

, x < 0

αβxδ0 exp{ −xαβ

ηβ(1−ε)αβ
}

2η
δ0+1
α (1−ε)δ0{2−(1−ε)γ(

δ0+1
αβ , xαβ

ηβ(1−ε)αβ
)}
, x ≥ 0.

(9)

Proof . Recall that the Hazard function has the form h(x) = f(x)
1−F (x) . Using this

formulae, we can easily get the Hazard function given in equation (9). Note that
since the probability density function and the cumulative density function come
in two parts, the Hazard function also has two parts.

Figures 1 and 2 display some examples of the density function and correspond-
ing cdfs of the BEGG distribution for some values of parameters. From these
figures, we can see bimodality and skewness and we can also observe that if we
take different values of δ0 and δ1 we can get the modes with different heights.
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Figure 1: Examples of the density function of the BEGG distribution for the different
values of parameters.

The parameters α and β control the kurtosis. The distribution is leptokurtic
for α ∈ (0, 2) and β = 1, and it is platikurtic for α ∈ (2,∞) and β = 1. The
parameters δ0 and δ1 control the bimodality. The parameter ε and η control the
skewness and the tail thickness, respectively.

2.2. Special Cases

• If δ0 = δ1, the density function will have two modes with the same height.
If δ0 = δ1 = 0, the distribution will be a unimodal.

• When ε = 0, the distribution will be symmetric with two modes with different
height.

• When α = 2, β = 1, δ0 = δ1 = 0, η = 2, and ε = 0, the distribution will
be a standard normal distribution. Location µ and scale σ case of BEGG
distribution is defined in equation (6).

• If α = 1, β = 1,δ0 = δ1 = 0, η = 1, and ε = 0, the distribution is the Laplace
distribution with the parameters location µ and scale σ in equation (6).

• If β = 1, δ0 = δ1 = δ, η = 1, ε = 0, the distribution is the bimodal exponential
power distribution proposed by Hassan & Hijazi (2010).
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Figure 2: The cdf of the BEGG distribution given in Figure 1.

• The ε-skew exponential power distribution proposed by Elsalloukh, Guardi-
ola & Young (2005) is a special case of this family for β = 1, δ0 = δ1 = 0
and η = 2α/2.

• For the case δ0 = δ1 = k− 1, α = 1, β = 1, the BEGG distribution becomes
ε-skew gamma distribution proposed by Abdulah & Elsalloukh (2013).

• For the case α = 2, β = 1, δ0 = δ1 = 0, η = 2, the distribution becomes the
extended skew normal distribution proposed by Arellano-Valle et al. (2010).

• When α = 2, β = 1, δ0 = δ1 = 0 and η = 2, the distribution is the ε-skew
normal distribution proposed by Mudholkar & Hutson (2000).
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3. Maximum Likelihood Estimation

Let x1, x2, . . . , xn be a random sample of size n from a BEGG distributed
population. We would like to estimate the unknown parameters α, β, δ0, δ1, η, ε.
The log-likelihood function is

l = n0[log(α) + log(β)− log(2)− δ0 + 1

α
log(η)− δ0 log(1− ε)

− log(Γ(
δ0 + 1

αβ
))] + δ0

n0∑
i=1

log(xi)−
n0∑
i=1

xαβi
ηβ(1− ε)αβ

+ n1[log(α) + log(β)− log(2)− δ1 + 1

α
log(η)− δ1 log(1 + ε)

− log(Γ(
δ1 + 1

αβ
))] + δ1

n1∑
i=1

log(−xi)−
n1∑
j=1

(−xi)αβ

ηβ(1 + ε)αβ
,

(10)

where n0 is the number of non-negative observations and n1 is the number of
negative observations.

The maximum likelihood estimates of the parameters α, β, δ0, δ1, η and ε will
be the solution of the following equations

∂l

∂α
=
n0 + n1

α
+

log(η)

α2
[n0(δ0 + 1) + n1(δ1 + 1)]

+ [ψ(
δ0 + 1

αβ
)n0(δ0 + 1) + ψ(

δ1 + 1

αβ
)n1(δ1 + 1)]/(α2β)

− β

ηβ(1− ε)αβ
n0∑
i=1

(xαβi log(xi)− xαβi log(1− ε))

− β

ηβ(1 + ε)αβ

n1∑
j=1

((−xi)αβ log(−xi)− (−xi)αβ log(1 + ε)) = 0,

(11)

∂l

∂β
=
n0 + n1

β
+ [ψ(

δ0 + 1

αβ
)n0(δ0 + 1) + ψ(

δ1 + 1

αβ
)n1(δ1 + 1)]/(αβ2)

−
n0∑
i=1

{xαβi [log(xαi )− log(η(1− ε)α)]}/(ηβ(1− ε)αβ)

−
n1∑
j=1

{(−xi)αβ [log((−xi)α)− log(η(1 + ε)α)]}/(ηβ(1 + ε)αβ) = 0,

(12)
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∂l

∂δ0
=
−n0

α
log(η)− n0 log(1− ε)− n0

αβ
ψ(
δ0 + 1

αβ
)

+

n0∑
i=1

log(xi) = 0,

(13)

∂l

∂δ1
=
−n1

α
log(η)− n1 log(1 + ε)− n1

αβ
ψ(
δ1 + 1

αβ
)

+

n1∑
j=1

log(−xi) = 0,
(14)

∂l

∂η
=
n0(δ0 + 1) + n1(δ1 + 1)

−αη

+
β

ηβ+1
[

n0∑
i=1

xαβi /(1− ε)αβ +

n1∑
j=1

(−xi)αβ/(1 + ε)αβ ] = 0,
(15)

∂l

∂ε
=
n0δ0
1− ε

− n1δ1
1 + ε

− αβ

ηβ
{
n0∑
i=1

xαβi /(1− ε)αβ+1 −
n1∑
j=1

(−xi)αβ/(1 + ε)αβ+1} = 0.
(16)

Since these equations cannot be solved analytically, the numerical methods should
be used to obtain the ML estimates. Since the random variable has scale mixture
format the EM algorithm can be used to obtain the ML estimates. In this paper,
we will use the R package called BB proposed by Varadhan & Gilbert (2009) to
get the solutions of these equations. It should be noted that the BB package
also uses the EM algorithm to solve the system of nonlinear equations like these
equations.

4. Real Data Examples

In this section real data sets will be used to illustrate the modeling capability
of the proposed distribution. We used two data sets. Here, data sets will be
modeled with the BEGG distribution. We first standardize the data set to get rid
of estimating the location and the scale.

Example 1. The data set, which is called duration of Geyser data, is given in
MASS package in R. This data set is also used by Abdulah & Elsalloukh (2014).
It consists of n = 299 observations, and preliminary examination of this data set
shows bimodality (see Figure 3). Figure 3 shows the histogram of the data set with
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fitted densities from BEGG, ESIG (Epsilon Skew Inverted Gamma) and BEP
(Bimodal Exponential Power) distributions. In Table 1 and 2, the estimates of the
parameters and the log-likelihood, AIC, BIC are given, respectively. We can see
that the proposed distribution can capture the bimodality and accurately model
the data. It has the smallest AIC and BIC among these three distributions.

Table 1: MLE of parameters for the duration of geyser data.

α̂ β̂ δ̂0 δ̂1 η̂ ε̂ k̂ b̂

BEGG 2.45979 1.85121 1.00344 2.60223 1.33729 0.22032 - -
BEP 2.36511 - 1.43577 δ̂0 = δ̂1 - - - -
ESIG - - - - - -0.13725 1.39692 0.73039

Table 2: Log-likelihood, AIC and BIC values.

Log(L) AIC BIC
BEGG -6.54 25.08 47.29
BEP -357.46 718.91 726.31
ESIG -542.10 1090.12 1101.23

Empirical values and fitted distributions
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Figure 3: Histogram of the geyser data set together with the fitted three distributions.

Example 2. In this example we will use the height data set which consists of
height of 126 students from the University of Pennsylvania (Cruz-Medina 2001).
The same data set is also considered by Hassan & Hijazi (2010). In this paper
we used the BEGG distribution to model the data set. In Table 3 and 4, the
estimates for the parameters, the log-likelihood, AICs and BICs are given for
the BEGG, ESIG and BEP distributions, respectively. From AIC and BIC, we
observe that BEGG distribution again has the smallest AIC and BIC. In Figure
4, the histogram of the data set and fitted densities from the above distributions
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are displayed. This figure also confirms that the BEGG distribution provides a
better fit than the other distributions in terms of capturing the bimodality. Note
that for this data set the estimate for the skewness parameter is 0.026275 which
indicates that the skewness is not a serious problem.

Table 3: MLE of parameters for the height data.

α̂ β̂ δ̂0 δ̂1 η̂ ε̂ k̂ b̂

BEGG 2.632853 1.285872 0.662026 0.498223 2.481848 0.026275 - -
BEP 1.59198 - 0.42346 δ̂0 = δ̂1 - - - -
ESIG - - - - - 0.09501 1.30702 0.52757

Table 4: Log-likelihood, AIC and BIC values.

Log(L) AIC BIC
BEGG -85.39 182.78 199.79
BEP -174.8047 353.60 359.28
ESIG -204.89 415.79 424.29

Empirical values and fitted distributions
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Figure 4: Histogram of the height data set together with the fitted three distributions.

5. Conclusions

We have proposed a new family of bimodal distributions. The advantage of the
new family is that the data sets that may have bimodal empirical distribution with
different numbers of observations in each mode can be easily modeled using the
distributions in this family. We have shown that many of the well known distribu-
tions are special or limiting cases of this family. Therefore, the new family can be
considered as a unified family of the bimodal distributions defined in this fashion.
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We have provided some examples to show the strength of this family for modeling
bimodality and skewness. We have observed from these examples that the dis-
tributions that belong to the new family can provide alternative distributions to
model bimodality.
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