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Abstract

In this paper we introduce a new distribution for modeling positive data
with high kurtosis. This distribution can be seen as an extension of the
exponentiated Rayleigh distribution. This extension builds on the quotient
of two independent random variables, one exponentiated Rayleigh in the
numerator and Beta(q, 1) in the denominator with q > 0. It is called the
slashed exponentiated Rayleigh random variable. There is evidence that the
distribution of this new variable can be more flexible in terms of modeling the
kurtosis regarding the exponentiated Rayleigh distribution. The properties
of this distribution are studied and the parameter estimates are calculated
using the maximum likelihood method. An application with real data re-
veals good performance of this new distribution.

Key words: Exponentiated Rayleigh Distribution, Kurtosis, Maximum
Likelihood, Rayleigh Distribution, Slash Distribution.

Resumen

En este trabajo presentamos una nueva distribución para modelizar datos
positivos con alta curtosis. Esta distribución puede ser vista como una exten-
sión de la distribución Rayleigh exponenciada. Esta extensión se construye
en base al cuociente de dos variables aleatorias independientes, una Raileigh
exponenciada en el numerador y una Beta(q, 1) en el denominador con q > 0.
La llamaremos variable aleatoria recortada Rayleigh exponenciada. Hay ev-
idencias que la distribución de esta nueva variable puede ser más flexible en
términos de modelizar la curtosis respecto a la distribución Rayleigh expo-
nenciada. Se estudian las propiedades de esta distribución y se calculan las
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estimaciones de los parámetros utilizando el método de máxima verosimi-
litud. Una aplicación con datos reales revela el buen rendimiento de esta
nueva distribución.

Palabras clave: curtosis, distribución Rayleigh, distribución Rayleigh
exponenciada, distribución recortada, máxima verosimilitud.

1. Introduction

An up to date and detailed review of the exponentiated Weibull (EW) distri-
bution is presented in Nadarajah, Cordeiro & Ortega (2013) (see also, Cancho,
Bolfarine & Achcar 1999). A random variable Z is said to follow the EW distri-
bution if its cumulative distribution function and probability density function are
given, respectively, by

FZ(z;α, β, θ) = (1− e−(βz)θ )α

and
fZ(z;α, β, θ) = θαβθzθ−1e−(βz)θ (1− e−(βz)θ )α−1

for z > 0, α > 0, β > 0 and θ > 0. The particular case θ = 2 is the Burr type X
distribution studied by various authors. In this case, one obtains by scale trans-
formation the distribution of a random variable X that follows an exponentiated
Rayleigh (ER) distribution if its density function is given by

FX(x;α, λ) = (1− e−λx
2

)α

and
fX(x;α, λ) = 2αλxe−λx

2

(1− e−λx
2

)α−1 (1)

respectively, for x > 0, λ > 0 and α > 0. We write X ∼ ER(α, λ).
In Gómez, Quintana & Torres (2007), of slash elliptical distributions was in-

troduced. This class of distributions can be seen as an extension of the class of
elliptical distributions studied in Fang, Kotz & Ng (1990). Genc (2007) derived
the univariate slash by a scale mixture of the exponential power distribution and
investigated asymptotically the bias of the estimators. Wang & Genton (2006)
proposed the multivariate skew version of this distribution and examined its prop-
erties and inferences.

A random variable Y follows a slash elliptical distribution with location pa-
rameter µ and scale parameter σ, denoted by Y ∼ SEl(t;µ, σ, g), if it can be
represented as

Y = σ
X

U1/q
+ µ,

where X ∼ El(0, 1, g) and U ∼ U(0, 1) are independent and q > 0. If Y ∼
SEl(0, 1, q), then the density function of Y is given by

fY (y; 0, 1, q) =

{
q

2|y|q+1

∫ y2
0
v
q−1
2 g(v)dv, if y 6= 0,

q
1+q g(0), if y = 0.

(2)
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In the canonic case, namely q = 1, (2) reduces to

fY (y; 0, 1, 1) =

{
G(y2)
2y2 , if y 6= 0,

1
2g(0), if y = 0,

where G(x) =
∫ x

0
g(v) dv.

The canonic case with g = φ where φ density function for the standard normal
distribution, was studied by Rogers & Tukey (1972) and by Mosteller & Tukey
(1977). Arslan (2008) discussed asymmetric versions of the slash elliptical fam-
ily of distributions. Gómez, Olivares-Pacheco & Bolfarine (2009) considered the
slash elliptical family of distributions to extend the Birnbaum-Saunders family
of distributions (Leiva, Soto, Cabrera & Cabrera 2011). Olmos, Varela, Gómez
& Bolfarine (2012) made use of the slash elliptical family of distributions to ex-
tend the half-normal distribution. Olivares-Pacheco, Cornide-Reyes & Monasterio
(2010) used the slash elliptical family to extend the Weibull distribution. Iriarte,
Gómez, Varela & Bolfarine (2015) use the family of slash elliptical distributions
to extend the Rayleigh distribution.

The rest of this paper is organized as follows. In Section 2, we propose the new
slash distribution and investigate its properties, including a stochastic representa-
tion. Section 3 discusses inference for model parameters, including moments and
maximum likelihood estimation (MLE) for the parameters. Simulation studies are
performed in Section 4 revealing good performance of the MLE. Section 5 gives
a real illustrative application and reports the results indicating good performance
in applied scenarios. Section 6 concludes our work.

2. Slashed Exponentiated Rayleigh Distribution

2.1. Stochastic Representation

Definition 1. A random variable T has slashed exponentiated Rayleigh distribu-
tion if it can be represented as the ratio

T =
X

W
, (3)

where X ∼ ER(α, λ) defined in (1) and W ∼ Beta(q, 1) are independent, α > 0,
λ > 0, q > 0. We denote it as T ∼ SER(α, λ, q)

Proposition 1. Let T ∼ SER(α, λ, q). Then, the density function of T is given
by

fT (t;α, λ, q) =
αq

λq/2
t−(q+1)H(λt2;α, q) t ≥ 0,

where α > 0, λ > 0, q > 0 and H(x;α, q) is defined as

H(x;α, q) =

∫ x

0

uq/2e−u
(
1− e−u

)α−1
du
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Proof . Using the representation given in (3) and the Jacobian method, the den-
sity function associated with T is given by

fT (t;α, λ, q) = 2qαλ

∫ 1

0

twq+1e−λt
2w2

(
1− e−λt

2w2
)α−1

dw

and considering the change of variables u = λt2w2 the result follows.

Note 1. Particularly, if α = λ = q = 1, one obtains the exponentiated canonic
slashed Rayleigh distribution, and is denoted as T ∼ SER(1, 1, 1). Then, the
density function of the random variable T is given by

fT (t) =

√
π

2
t−2G(t2, 3/2, 1), t ≥ 0.

where G(x, α, β) =
∫ x

0
βα

Γ(α)u
α−1e−βu du is the cumulative distribution function of

the gamma distribution.

Figure 1 shows some density functions of the slashed exponentiated Rayleigh
distribution with various parameters.
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Figure 1: Slashed exponentiated Rayleigh density for different values of its parameters

2.2. Properties

In this subsection we deliver some basic properties of the slashed exponentiated
Rayleigh distribution.

Let T ∼ SER(α, λ, q), then

1. lim
(α,q)→(1,∞)

fT (t;α, 1/(2σ2), q) =
t

σ2
e−

t2

2σ2

2. lim
α→1

fT (t;α, 1/(2σ), q) =
q(2σ)q/2

tq+1
Γ

(
q + 2

2

)
G

(
t2

2σ
,
q + 2

2
, 1

)
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3. lim
q→∞

fT (t;α, λ, q) = 2αλte−λt
2
(

1− e−λt
2
)α−1

4. FT (k;α, λ, q) = P (T < k) = (1− e−λk2)α − k
q fT (k;α, λ, q)

where Γ(α) =
∫∞

0
uα−1e−u du is the gamma function.

Note 2. Property 1 shows that as (α, q) → (1,∞) and λ = 1/(2σ2), the slashed
exponentiated Rayleigh converges to the ordinary Rayleigh distribution, i.e. T ∼
R(σ2) (see Johnson, Kotz & Balakrishnan 1994). Property 2 shows that as α→ 1
and λ = 1/(2σ) the slashed exponentiated Rayleigh distribution converges to the
slashed Rayleigh distribution (Iriarte et al. 2015). Property 3 shows that as q →
∞, the slashed exponentiated Rayleigh converges to the exponentiated Rayleigh
distribution.

2.3. Moments

Proposition 2. Let T ∼ SER(α, λ, q), then the rth moments are given by

µr = E(T r) =
αq

λr/2(q − r)
H(α, r), q > r, (4)

for r = 1, 2, . . . and H(α, r) := H(∞;α, r) =
∫∞

0
ur/2e−u (1− e−u)

α−1
du.

Proof . Using the stochastic representation given in (3), we have that

µr = E
((

X
W

)r)
= E(XrW−r) = E(Xr)E(W−r)

from where it follows that E (Xr) = α
λr/2

∫∞
0
ur/2e−u (1− e−u)

α−1
du are the

moments of the ER(α, λ) distribution and E(W−r) = q/(q − r) with q > r.

Corollary 1. Let T ∼ SER(α, λ, q), so that

E(T ) =
αH(α, 1)√

λ

q

(q − 1)
, q > 1

and

V ar(T ) =
αq

λ

(
H(α, 2)

q − 2
− αqH2(α, 1)

(q − 1)2

)
, q > 2

Corollary 2. Let T ∼ SER(α, λ, q), then the coefficients of asymmetry (
√
β1)

and kurtosis (β2) for q > 3 and q > 4 are, respectively, given by

√
β1 =

H(α,3)
q−3 −

3αH(α,1)H(α,2)q
(q−1)(q−2) + 2α2H3(α,1)q2

(q−1)3

√
αq
(
H(α,2)
q−2 −

αqH2(α,1)
(q−1)2

)3/2

β2 =

H(α,4)
q−4 −

4αH(α,1)H(α,3)q
(q−1)(q−3) + 6α2H2(α,1)H(α,2)q2

(q−1)2(q−2) − 3α3H4(α,1)q3

(q−1)4

αq
(
H(α,2)
q−2 −

αqH2(α,1)
(q−1)2

)2
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Note 3. Notice that as (α, q) → (1,∞), the asymmetry and kurtosis coefficients
converge to (π − 3)

√
4π

(4−π)2 y 32−3π2

(4−π)2 respectively, which correspond to the cor-
responding coefficients for the Rayleigh distribution. As q → ∞, the asymmetry
and kurtosis coefficients converge to

γ1 =
H(α, 3)− 3αH(α, 1)H(α, 2) + 2α2H3(α, 1)

√
α (H(α, 2)− αH2(α, 1))

3/2

and

γ2 =
H(α, 4)− 4αH(α, 1)H(α, 3) + 6α2H2(α, 1)H(α, 2)− 3α3H4(α, 1)

α(H(α, 2)− αH2(α, 1))2

the corresponding asymmetry and kurtosis coefficients for the exponentiated Rayleigh
distribution, respectively.

Figures 2 and 3 depict graphs for the coefficients of asymmetry and kurtosis
coefficients for variable SER for different values of the parameter q.
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Figure 2: Asymmetry coefficient SER density for different values of q. The solid line
corresponds to the asymmetry coefficient of ER density.

Note 4. The function H : R+ × R+ −→ R can be approximated using power
series about the point (α0, r0) as follows:

H(α, r) =

∞∑
n=0

1

n!

∑
n1+n2=n

n!

n1!n2!

∂nH(α0, r0)

∂αn1∂rn2
(α− α0)n1(r − r0)n2 ,

where ∂nH(α0,r0)
∂αn1∂rn2

must be solved numerically.

Revista Colombiana de Estadística 38 (2015) 453–466



Slashed Exponentiated Rayleigh 459

0 2 4 6 8

0
10

20
30

40

α

K
ur

to
si

s

ER
q = 10
q = 6
q = 5
q = 4

0 20 40 60 80 100

0
10

20
30

40
50

60

α

K
ur

to
si

s

ER
q = 10
q = 6
q = 5
q = 4

Figure 3: Kurtosis coefficient SER density for different values of q. The solid line cor-
responds to the kurtosis coefficient of ER density.

3. Inference

In this section, we study moment and maximum likelihood estimators for pa-
rameters α, λ and q for the exponentiated slashed Rayleigh distribution.

3.1. Moments Estimators (ME) Inference

The following proposition presents moment estimators for parameters α, λ
and q.

Proposition 3. Let T1, . . . , Tn a random sample from the distribution of the ran-
dom variable T ∼ SER(α, λ, q). Then, the moment estimators (α̂, λ̂, q̂) for (α, λ, q)
with q > 3 can be calculated numerically from the following expressions

λ̂ =

(
α̂q̂

T (q̂ − 1)

)2

H2(α̂, 1) (5)

q̂ =
3(d̂1 − d̂2)±

√
d̂1

2
− 10d̂1d̂2 + 9d̂2

2

2(d̂1 − d̂2)
(6)

where d̂1 = α̂ T 2H2(α̂,1)

T
2
H(α̂,2)

, d̂2 = α̂2 T 3H3(α̂,1)

T
3
H(α̂,3)

and T k is the k-th power sample mean,

k = 1, 2, 3. The terms d̂1 and d̂2 depend only on the sample and the estimator α̂.

Proof . Using (4) and replacing E(T ), E(T 2) and E(T 3) with T , T 2 and T 3,
respectively, it follows that
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T =
α̂H(α̂, 1)

λ̂1/2

q̂

q̂ − 1
, (7)

T 2 =
α̂H(α̂, 2)

λ̂

q̂

q̂ − 2
, (8)

T 3 =
α̂H(α̂, 3)

λ̂3/2

q̂

q̂ − 3
, q̂ > 3, (9)

From equation (7) is easy to obtain the expression for λ̂ in (5). Then, by replacing
λ̂ in equations (8) and (9) we obtain

(q̂ − 1)2

q̂(q̂ − 2)
= d̂1, (10)

(q̂ − 1)3

q̂ 2(q̂ − 3)
= d̂2, (11)

After an algebraic manipulation we get the equation (d̂1 − d̂2)q̂2 − 3(d̂1 − d̂2)q̂

+ 2d̂1 = 0 whose solutions are given in (6) such that d̂1

2
− 10d̂1d̂2 + 9d̂2

2
> 0.

3.2. Maximum Likelihood (ML) Inference

In this section, we consider the maximum likelihood estimation for parameters
θ = (α, λ, q) of the SER model. Suppose t1, t2, . . . , tn is a random sample of
size n from slashed exponentiated Rayleigh distribution. Then the log-likelihood
function is given by

logL(θ) = c(θ)− (q + 1)

n∑
i=1

log(ti) +

n∑
i=1

log(H(ti)), (12)

where H(ti) := H
(
λt2i ;α, q

)
and c(θ) = n log(α) + n log(q)− nq

2 log(λ).

Maximum likelihood estimators are obtained by maximizing the likelihood
function, which can be obtained by differentiating the log-likelihood function and
solving the corresponding (score) equations. The likelihood equations are given by

n

α
+

n∑
i=1

H1(ti)

H(ti)
= 0,

−nq
2λ

+

n∑
i=1

H2(ti)

H(ti)
= 0,

n

q
− n

2
log(λ)−

n∑
i=1

log(ti) +

n∑
i=1

H3(ti)

H(ti)
= 0,
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where

H1(ti) :=
∂

∂α
H(ti) =

∫ λt2i

0

uq/2e−u(1− e−u)α−1 log(1− e−u)du,

H2(ti) :=
∂

∂λ
H(ti) = λq/2tq+2

i e−λt
2
i (1− e−λt

2
i )α−1,

H3(ti) :=
∂

∂q
H(ti) =

1

2

∫ λt2i

0

uq/2 log(u) e−u(1− e−u)α−1du.

Therefore, numerical algorithms are required for solving the score equations. One
possibility is to employ the subroutine optim with the R Core Team (2014).

It is well known that as the sample size increases, the distribution of the MLE
tends (under regularity conditions) to the normal distribution with mean (α, λ, q)
and covariance matrix equal to the inverse of the Fisher (expected) information
matrix. Due to the complexity of the likelihood function it is not possible to
obtain its analytical expression. It is possible, however, to work with the observed
information matrix, which is a consistent estimator for the expected information
matrix. The observed information matrix follows from the Hessian matrix by
replacing unknown parameters by their MLEs. Some algebraic manipulation yield
the following Hessian matrix:

In(θ) =


∂2 logL(θ)

∂α2
∂2 logL(θ)
∂λ∂α

∂2 logL(θ)
∂q∂α

∂2 logL(θ)

∂λ2
∂2 logL(θ)
∂q∂λ

∂2 logL(θ)

∂q2

 ,

such that

∂2 logL(θ)

∂α2
= − n

α2
+

n∑
i=1

H11(ti)

H(ti)
−

n∑
i=1

(
H1(ti)

H(ti)

)2

,

∂2 logL(θ)

∂λ∂α
=

n∑
i=1

H12(ti)

H(ti)
−

n∑
i=1

H1(ti)H2(ti)

H2(ti)
,

∂2 logL(θ)

∂q∂α
=

n∑
i=1

H13(ti)

H(ti)
−

n∑
i=1

H1(ti)H3(ti)

H2(ti)
,

∂2 logL(θ)

∂α∂λ
=
∂2 logL(θ)

∂λ∂α
,

∂2 logL(θ)

∂λ2
=

nq

2λ2
+

n∑
i=1

H22(ti)

H(ti)
−

n∑
i=1

(
H2(ti)

H(ti)

)2

∂2 logL(θ)

∂q∂λ
= − n

2λ
+

n∑
i=1

H23(ti)

H(ti)
−

n∑
i=1

H2(ti)H3(ti)

H2(ti)

∂2 logL(θ)

∂α∂q
=
∂2 logL(θ)

∂q∂α
,
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∂2 logL(θ)

∂λ∂q
=
∂2 logL(θ)

∂q∂λ
,

∂2 logL(θ)

∂q2
= − n

q2
+

n∑
i=1

H33(ti)

H(ti)
−

n∑
i=1

(
H3(ti)

H(ti)

)2

,

where

H11(ti) :=
∂

∂α
H1(ti) =

∫ λt2i

0

uq/2e−u(1− e−u)α−1(log(1− e−u))2du,

H12(ti) :=
∂

∂λ
H1(ti) = λq/2tq+2

i e−λt
2
i (1− e−λt

2
i )α−1 log(1− e−u)du,

H13(ti) :=
∂

∂q
H1(ti) =

1

2

∫ λt2i

0

uq/2 log(u)e−u(1− e−u)α−1 log(1− e−u)du,

H22(ti) :=
∂

∂λ
H2(ti)

=
λq/2tq+2

i e−λt
2
i (1− e−λt2i )α−1(q − qe−λt2i − 2λt2i + 2αλt2i e

−λt2i )

2λ(1− e−λt2i )
,

H23(ti) :=
∂

∂q
H2(ti) =

1

2
λq/2tq+2

i e−λt
2
i (1− e−λt

2
i )α−1(log(λ) + 2 log(ti)),

H33(ti) :=
∂

∂q
H3(ti) =

1

4

∫ λt2i

0

uq/2(log(u))2 e−u(1− e−u)α−1du.

4. Simulation Study

In this section, we conduct a small scale simulation study illustrating the MLEs
behavior for parameters α, λ and q in small and moderate sample sizes. One
thousand random samples of sizes n =100, 200 and 500 were generated from model
SER(θ) for fixed parameters values. To generate T ∼ SER(θ) the following
algorithm was used:

1. Generate U ∼ U(0, 1)

2. Compute X =

√
− log(1−U1/α)

λ

3. Generate W ∼ Beta(q, 1)

4. Compute T = XW−1

MLEs can be obtained as described above using R Core Team (2014). Empirical
means and standard deviations are reported in Table 1 indicating good perfor-
mances.
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Table 1: Empirical means and SD’s for the MLE’s of α, λ and q.
n = 100

α λ q α̂ (SD) λ̂ (SD) q̂ (SD)
1.0 1.0 1.0 1.077 (0.314) 1.089 (0.563) 1.041 (0.155)

1.5 1.065 (0.262) 1.083 (0.410) 1.569 (0.309)
2.0 1.047 (0.206) 1.054 (0.361) 2.224 (1.084)

2.0 3.0 1.5 2.248 (1.178) 3.217 (1.154) 1.548 (0.249)
2.0 2.223 (0.975) 3.172 (1.015) 2.106 (0.422)
2.5 2.182 (0.650) 3.189 (0.952) 2.648 (0.748)

5.0 4.0 2.0 6.853 (10.173) 4.349 (1.383) 2.060 (0.340)
2.5 6.088 (3.874) 4.243 (1.220) 2.610 (0.524)
3.0 6.031 (3.293) 4.253 (1.104) 3.153 (0.924)

n = 200

α λ q α̂ (SD) λ̂ (SD) q̂ (SD)
1.0 1.0 1.0 1.021 (0.174) 1.025 (0.313) 1.024 (0.110)

1.5 1.030 (0.152) 1.036 (0.270) 1.541 (0.193)
2.0 1.029 (0.142) 1.036 (0.242) 2.063 (0.331)

2.0 3.0 1.5 2.105 (0.434) 3.121 (0.686) 1.515 (0.161)
2.0 2.078 (0.407) 3.085 (0.663) 2.051 (0.288)
2.5 2.072 (0.361) 3.071 (0.598) 2.559 (0.388)

5.0 4.0 2.0 5.499 (1.844) 4.125 (0.798) 2.030 (0.220)
2.5 5.362 (1.477) 4.094 (0.699) 2.551 (0.301)
3.0 5.285 (1.387) 4.045 (0.638) 3.098 (0.412)

n = 500

α λ q α̂ (SD) λ̂ (SD) q̂ (SD)
1.0 1.0 1.0 0.991 (0.115) 0.968 (0.197) 1.018 (0.070)

1.5 1.006 (0.091) 1.008 (0.156) 1.514 (0.118)
2.0 1.010 (0.084) 1.010 (0.147) 2.027 (0.188)

2.0 3.0 1.5 2.025 (0.248) 3.014 (0.392) 1.508 (0.102)
2.0 2.032 (0.230) 3.042 (0.370) 2.015 (0.150)
2.5 2.032 (0.214) 3.034 (0.367) 2.521 (0.231)

5.0 4.0 2.0 5.494 (1.908) 4.113 (0.793) 2.031 (0.221)
2.5 5.152 (0.822) 4.052 (0.430) 2.514 (0.182)
3.0 5.148 (0.824) 4.038 (0.438) 3.029 (0.254)

5. Real Data Illustration

We consider a data set to the life of fatigue fracture of Kevlar 49/epoxy which
is subject to constant pressure at the 90% stress level until all failed, so we have
complete data with the exact times of failure. For previous studies with this
data set; see, Andrews & Herzberg (1985) and Barlow, Toland & Freeman (1984).
Using results in Section 3.1, the following moment estimators were computed:
α̂M = 0.257, λ̂M = 0.688 and q̂M = 6.587, which were used as starting values for
MLEs. Table 2 presents descriptive statistics where

√
b1 are b2 are the asymmetry

and kurtosis coefficients, respectively. We note that the data set presents high
positive asymmetry and also high kurtosis. Table 3 shows maximum likelihood
estimators for the parameters of the exponentiated Rayleigh and slashed expo-
nentiated Rayleigh distributions. The usual Akaike information criterion (AIC)
introduced by Akaike (1974) and Bayesian information criterion (BIC) proposed
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by Schwarz (1978) to measure the goodness of fit are also computed. It is known
that AIC=2k − 2loglik and BIC=k log n − 2loglik where k is the number of pa-
rameters in the model, n is the sample size and loglik is the maximized value of
the likelihood function. For the ER model, AIC= 2(2) − 2(−107.697) = 219.394
and BIC= 2 log(101) − 2(−107.697) = 224.624. Similarly, for the SER model,
AIC= 2(3)−2(−100.594) = 207.188 and BIC= 3 log(101)−2(−100.594) = 215.033.
In both cases, the SER model has the lowest values of AIC and BIC. Thus, the
results show that the SER model fits better the data set. Figure 4 displays the
fitted models using the MLEs.

Table 2: Summary for stress-rupture data set.

sample size mean variance
√
b1 b2

101 1.025 1.253 3.047 18.475

Table 3: Maximum likelihood parameter estimates (with (SD)) of the ER and SER
models for stress-rupture data set.

Model α̂ λ̂ q̂ loglik AIC BIC
ER 0.312(0.035) 0.174(0.033) −107.697 219.394 224.624
SER 0.382(0.047) 0.686(0.230) 2.759(0.828) −100.594 207.188 215.033
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Figure 4: Histogram and models fitted for stress-rupture data set: SER (solid line) and
ER (dashed line).

6. Concluding Remarks

In this paper the slashed exponentiated Rayleigh distribution (SER) is studied.
A random variable SER is the quotient between two independent random variables,
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an exponentiated Rayleigh and the Beta(q, 1) random variable with q > 0. This
proposal generalizes the exponentiated Rayleigh family and the Rayleigh family,
among others. This generalization can be used for modeling positive data with
high kurtosis. Moments and maximum likelihood estimation is discussed. A real
data illustration revealed that the proposed model can be very useful in practical
scenarios. [

Received: March 2014 — Accepted: January 2015
]
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