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Abstract

This article is concerned with the problem of discrimination between two
classes of locally stationary time series based on minimum discrimination in-
formation. We view the observed signals as realizations of Gaussian locally
stationary wavelet (LSW) processes. The asymptotic Kullback - Leibler
discrimination information and Chernoff discrimination information are de-
veloped as discriminant criteria for LSW processes. The simulation study
showed that our procedure performs as well as other procedures and in some
cases better than some other classification methods. Applications to classi-
fying real data show the usefulness of our discriminant criteria.

Key words: Chernoff information, discrimination, evolutionary wavelet spec-
trum, Kullback - Leibler information, locally stationary wavelet processes,
seismic data.

Resumen

Este artículo se refiere al problema de discriminación entre dos clases de
series de tiempo estacionarias locales basadas en información de discrimi-
nación mínima. Se consideran las señales observadas como realizaciones de
procesos wavelet estacionarios locales (LSW, por sus siglas en inglés) gau-
sianos. La información de discriminación Kullback - Leibler asintótica y
la información de discriminación de Chernoff se desarrollan como criterios
discriminantes para procesos LSW. El estudio de simulación mostró que el
procedimiento propuesto se desempeña tan bien como otros procedimientos
y en algunos casos mejor que otros métodos de clasificación. Aplicaciones
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a la clasificación de datos sísmicos muestran la utilidad de los criterios dis-
criminantes propuestos.

Palabras clave: LATEX Datos sísmicos, discriminación, espectros wavelet
evolucionariosinformación de Chernoff, información de Kullback-Leibler, pro-
cesos wavelet estacionarios locales .

1. Introduction

Many practical problems in time series analysis are reduced to classifying a
stochastic process to one or a other category. Shumway & Stoffer (2011) is a good
source for examples in this field. Kullback & Leibler (1951) and Chernoff (1952)
information measures, hereafter KL and CH information measures, respectively,
are appropriate measures for classification and discrimination of time series data.
KL and CH information measures have been widely used for many years in var-
ious fields such as economics, engineering and medical sciences.Gersch, Yeager,
Diamond, Spire, Gerry & Gevins (1975) and Gersch & Yonemoto (1977) used KL
information measures to determine whether or not patients are sufficiency anes-
thetized for surgery. Shumway & Unger (1974) and Dargahi-Noubary & Laycock
(1981) obtained spectral forms of KL discrimination information to distinguish
between different classes of seismic data, earthquakes and explosions. In an ex-
tension of Shumway & Unger (1974), Kakizawa, Shumway & Taniguchi (1998)
developed KL along with Chernoff discrimination measures to bivariate time se-
ries data. Parzen (1990) and Zhang & Taniguchi (1992) studied the robustness
of KL to non-Gaussian departure. All of the afore mentioned papers are based
on stationary assumption. These methods are performed admirably for stationary
processes, however time series often have time-varying dynamics, and traditional
spectral procedures are not performed well. Recently, to model non-stationary
time series, authors have proposed several approaches such as locally stationary
modeling by Dahlhaus (1997) or smooth localized complex exponential (SLEX)
methodology by Ombao, Raz, von Saches & Malow (2001) and Ombao, Raz, von
Saches & Guo (2002). These methods provide a better basis for the discrimina-
tion of non-stationary time series such as seismic data. Recognizing this, Shumway
(2003) and Sakiyama & Taniguchi (2004) for Dahlhaus’ locally stationary processes
and Huang, Ombao & Stoffer (2004) for stationary time series in the SLEX model,
proposed classification techniques. In the remainder of the article, we refer to these
procedures as the SST and SLEX methods respectively.

Some authors like Maharaj & Alonso (2007) and Fryzlewicz (2003) have pro-
posed methods based on wavelets to discriminate analysis of time series and employ
it to discriminate seismic signals. Modeling a non-stationary random process, such
as a LSW processes is discussed in detail by Nason, von Sachs & Kroisandt (2000).
The LSW model provides a time-scale decomposition of the signals in which we
can define and rigorously estimate the evolutionary wavelet spectrum Fryzlewicz &
Ombao (2009). In this paper we view the observed signals as realizations of Gaus-
sian LSW processes. We obtain likelihood and calculating the asymptotic KL and
CH discrimination measures as discriminant criteria for Gaussian LSW processes.
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Our discriminant criteria are related to evolutionary wavelet spectrum (EWS),
which contains the second-moment information on the non-stationary time series.
Throughout the paper we suppose that there are two different groups of Gaussian
LSW processes and there is a new non-stationary time series vector that has to
be allocated to one of them. For each time series to be classified, we compute the
wavelet discrimination information measures and the divergence from the wavelet
discrimination information measures of each group, which is then assigned to the
group to which it is the least dissimilar. We recognize that our methodology is
very close to the method mentioned in Fryzlewicz & Ombao (2009) (that we refer
to as the LSW method), but ours differs in that the LSW method is based on the
L2 criteria while our method is based on much familiar criteria in discrimination
i. e. the Kullback-Leibler and Chernoff discrimination measures.

The article is organized in six Sections as follows: In Section 2, we discuss
the LSW model as a tool to analyze non-stationary time series data. In Section
3, we obtain the minimum discrimination information for two criteria, Kullback-
Leibler and Chernoff discrimination measures for Gaussian LSW processes. We
explain our discrimination algorithm in Section 4. To evaluate the performance of
our discriminant criteria, in Section 5, a simulation study is carried out and our
methods are compared with other proposed approaches. Finally, in Section 6, we
apply our procedure to real data.

2. The LSW Model

Throughout the paper we assume that the non-stationary time series follows
the LSW model based on the use of the discrete wavelet transform (DWT), use
Nason et al. (2000). A class of LSW processes, is a sequence of doubly-indexed
stochastic processes {Xt,T }t=1,...,T , T ≥ 1, with the following representation in the
mean-square sense in respect to a given wavelet basis {ψj,k(t)}j,k of L2(R), and
an orthonormal random sequence of increments ξj,k

Xt,T =

−1∑
j=−J

∑
k

w0
j,k:Tψj,k(t)ξj,k, (1)

where ψj,k(t) = 2j/2ψ(2jt − k), j = −1,−2, . . . ,−J(T ) = − log2 T, k ∈ Z, and
possess the following properties:

1. E(ξj, k) = 0 for all j, k and hence E(Xt,T ) = 0 for all t and T .

2. Cov(ξj,k, ξl,m) = δj,lδk,m where δi,j is the Dirac function.

3. For each j ≤ −1 there is a Lipschitz-continuous function Wj(z) on (0, 1) so
as

sup
k

∣∣∣∣w0
j,k;T −Wj

(k2−j

T

)∣∣∣∣ = O(T−1) for T →∞,

where for each j = −1,−2, . . . ,−J the sup is over k = 1, . . . , Nj = 2−j .
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4. The real-valued wavelet basis {ψj,k(t)}j,k is orthonormal and the wavelets
have compact support.

5.
∑−1
j=−∞ |Wj(z)|2 <∞ for all z ∈ (0, 1).

Note 1. Let Sj(z) := |Wj(z)|2, z ∈ (0, 1), then {Sj(z)}j≤−1 is the evolutionary
wavelet spectrum (EWS) of the sequence {Xt,T } with respect to {ψj,k}. As such,
Nason et al. (2000), show the following results:

1. Sj(z) = lim
T→∞

∣∣∣w0
j,2j [zT ];T

∣∣∣2 ,∀z ∈ (0, 1).

2. lim
T→∞

V ar{X[zT ],T } =

−1∑
j=−∞

Sj(z) <∞,∀z ∈ (0, 1). (2)

3. lim
T→∞

Cov{X[zT ]−τ,T ;X[zT ]+τ,T } =

−1∑
j=−J

Sj(z)Ψj(τ), τ ∈ Z, z ∈ (0, 1), (3)

where Cov{X[zT ]−τ,T ;X[zT ]+τ,T } and Ψj(τ) =
∑
k ψj,k(0)ψj,k(τ), j < 0 are local

autocovariance and autocorrelation wavelets, respectively.

Note 2. Note that most of the time series, including the stationary series can be
modeled as (1).

3. Kullback-Leibler and Chernoff Information
Measures

3.1. Discrimination Based on Using Decimated Wavelet Basis

Let dj,k:T =
T∑
t=1

Xt,Tψj,k(t) be the empirical wavelet coefficients, where Xt,T

is a LSW process given by (1). Then:

dj,k:T =

T∑
t=1

Xt,Tψj,k(t) =

T∑
t=1

{∑
l

∑
m

w0
l,m;Tψlm(t)ξl,m

}
ψj,k(t)

=
∑
l

∑
m

w0
l,m;T ξlm

{ T∑
t=1

ψl,m(t)ψj,k(t)
}

= w0
j,k;T ξj,k.

Hence, since the ξl,m are uncorrelated:

Cov(dj,k;T , dj′,k′;T ) = ||w0
j,k;T ||2δj,j′δk,k′ .

If ξj,k in (1) is a Gaussian process, the empirical wavelet coefficients are indepen-
dent Gaussian variables, i.e:

dj,k:T ∼ N(0, |w0
j,k:T |2) (4)
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then, using formula (4), the log likelihood ratio based on empirical wavelet coeffi-
cients becomes

LLR = −1

2
ln

(∏
j

∏
k |w0

1,j,k;T |2∏
j

∏
k |w0

2,j,k;T |2

)

+
1

2

−J∑
j=−1

Nj∑
k=1

(
1

|w0
2,j,k;T |2

− 1

|w0
1,j,k;T |2

)
d2
j,k;T (5)

Consider the situation where a LSW process Xt,T , under Hi belong to population

Πi with representation Xt,T =
−1∑

j=−J

∑
k w

0
i,j,k;Tψj,k(t)ξj,k for i = 1, 2. One clas-

sical measure for disparity between two multivariate distribution is the Kullback-
Leibler (KL) discriminant information (Kullback & Leibler 1951, Kullback 1978),
defined as

I(1 : 2) = EH1

{
ln
pΠ1

pΠ2

}
(6)

where pΠi is the probability density of Xt,T , under Hi, (i = 1, 2).

Another criterion for measuring the discrepancy between two densities, pro-
posed in Parzen (1990), is Chernoff information based, which is on Chernoff dis-
tance (see Chernoff 1952) and given by

Qh(1 : 2) = −1

2
lnEH1

{(pΠ2

pΠ1

)h}
(7)

where h ∈ (0, 1).

Using (4) and (5), KL criterion and Chernoff criterion can be obtained as

I(1 : 2) =
1

T
EH1
{LLR} =

1

2

−J∑
j=−1

Nj∑
k=1

[
|w0

1,j,k;T |2

|w0
2,j,k;T |2

+
1

2
ln
|w0

2,j,k;T |2

w0
1,j,k;T |2

− 1

]
(8)

and

Q(1 : 2) = −
1

T
ln{EH1

{(LLR)
h}

= −
1

T

ln

[∏
j

∏
k |w

0
1,j,k;T |

2∏
j

∏
k |w0

2,j,k;T |2

]h
2

+ ln

 −J∏
j=−1

Nj∏
k=1

(
1− h

(
1−
|w0

1,j,k;T |
2

|w0
2,j,k:T |2

)) 1
2


=

1

2T


−J∑

j=−1

Nj∑
k=1

[
ln

[
(1− h)|w0

2,j,k;T |
2 + h|w0

1,j,k;T |
2

|w0
2,j,k;T |2

]
− h ln

[
|w0

1,j,k;T |
2

w0
2,j,k;T

]]
(9)
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3.2. Discrimination Based on Using Non-Decimated Wavelet
Basis

In an LSWmodel based on using non-decimated wavelet basis ψjk(t) = 2j/2ψ(2j(t−
k)) :

d′j,k;T =

T∑
t=1

Xt,Tψj,k(t)

=

T∑
t=1

{∑
l

∑
m

w0
l,m;Tψl,m

}
ψj,k(t) =

∑
l

∑
m

w0
l,m;T ξl,m

{
T∑
t=1

ψl,m(t)ψj,k(t)

}

=
∑
l

∑
n

w0
l,n+k:T ξl,n+k

{
T∑
t=1

ψl,n+k−tψj,k−t

}
.

Let ξj,k be a Gaussian process, then

Cov(d′j,k;T , d
′
j′,k′;T ) =

∑
l

∑
m

w0
l,n+k;T

{
T∑
t=1

ψl,n−tψj,−t

}

×
∑
v

∑
m

w0
v,m+k;T

{
T∑
s=1

ψv,m−sψj,−s

}
Cov(ξl,n+k, ξl,m+k′).

Let l = v and n+ k = m+ k′. Using Remark 1 we have

Cov(d′j,k;T , d
′
j′,k′;T ) =

∑
l

∑
m

|w0
l,n+k;T |2

∑
t

∑
s

ψl,n−tψj,−tψl,n+(k−k′)−sψj′,−s

=
∑
l

Sl(k/T )
∑
n

∑
t

∑
s

ψl,n−tψj,−tψl,n+(k−k′)−sψj′,−s +O(T−1)

let v = s− t, then

Cov(d′j,k:T , d
′
j′,k′:T ) =

∑
l

Sl(k/T )
∑
v

Ψl(v + (k′ − k))
∑
t

ψj,−tψj′,−v−t +O(T−1) (10)

In (10) if j′ = j and k = k′ then

V ar(d′j,k;T ) =
∑
l

Sl(k/T )
∑

Ψl(v)Ψj(v) +O(T−1)

=
∑
t

Aj,lSl′(z) +O(T−1) (11)

where

Aj,l =
∑
τ

Ψj(τ)Ψl(τ). (12)

The covariance between two empirical wavelet coefficients d′j,k;T and d′j′,k′;T decays
with an increasing distance between the two relative positions of the location k on
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scale j and k′ on scale j′. For example, when j′ = j and k′ 6= k, we have

Cov(d′j,k;T , d
′
j′,k′;T ) =

∑
l

Sl(k/T )
∑
v

Ψl(v + (k′ − k))Ψj(v) +O(T−1).

Note that Ψi(v+(k′−k)) is zero as v+|k′−k| exceeds the supports of the wavelets.
Therefore, the correlation between d′j,k:T and d′j,k′:T vanishes as |k′ − k| → ∞.

As noted in Remark 1, |w0
j,2j [zT ];T |

2 = Sj(z) +O(T−1). By replacing |w0
i,j,k;T |

by Sij(k/T ) ( for i = 1, 2), in the KL criterion in (8) and CH criterion in (9), we
have:

Î(1 : 2) =
1

2

−J∑
j=−1

T∑
k=1

[
S1
j (k/T )

S2
j (k/T )

+ ln
S2
j (k/T )

S1
j (k/T )

− 1

]
(13)

and

Q̂(1 : 2) =
1

2T


−J∑

j=−1

T∑
k=1

[
ln

[
(1− h)S2

j (k/T ) + hS1
j (k/T )

S2
j (k/T )

]
− h ln

[
S1
j (k/T )

S2
j (k/T )

]] (14)

In practice the true wavelet spectra Sij(z) are unknown, and should be esti-
mated. Let Ijk,T = |d′j,k;T |2 be the wavelet periodogram of {Xt,T }. From (11),
Ijk,T is a biased estimator of the evolutionary wavelet spectrum (EWS). (Nason
et al. 2000) have shown that the J-dimensional matrix Aj = (Aj,l)j,l=−1,...,−J
is positive-definite and has a bounded inverse. Formula (11) suggests that the
natural unbiased estimator of Sj(k/T ) is an empirical wavelet spectrum given by

Ljk,T =
∑

(A−1)i,jI
i
k,T (15)

4. Discrimination Based on KL and CH Measures

Suppose that the observed vector of time series W = {Wt,T }t=1,...,T .T ≥ 1
has to be assigned to one of two available groups {X1, . . . ,Xn1

} or {Y1, . . . ,Yn2
}

with evolutionary wavelet spectra S1
j (z) and S2

j (z), respectively. The classification
algorithm proceeds as follows.

1. Choice of the Discriminating Set Θ. The important wavelet coefficients
for classification are identified using the method proposed by Fryzlewicz & Ombao
(2009): For each timescale (j, k), the divergence index

∆(j, k) =
[
S1
j (k/T )− S2

j (k/T )
]2
,

measures the ability to separate the groups. These divergence values are then
ordered and only the top pre-specified proportion of the coefficients need to be
chosen.
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2. Discrimination based on Kullback-Leibler (KL) discriminant crite-
rion. According to the KL criterion, W = {Wt,T }t=1,...,T , T ≥ 1}, is assigned to
the first group if

Î(W : 2)− Î(W : 1) ≥ 0 (16)

where

Î(W : i) =
1

2

∑
j,k∈Θ

[
SWj (k/T )

Sij(k/T )
+

Sij(k/T )

SWj (k/T )
− 1

]
for i = 1, 2

3. Discrimination based on Chernoff (CH) criterion. According to the
CH criterion, W = {Wt,T }t=1,...,T , T ≥ 1} , is assigned to first group if

Q̂(W : 2)− Q̂(W : 1) ≥ 0 (17)

where

Q̂(W : i) =
1

2T

 ∑
(j,k)∈Θ

[
ln

[
(1− h)Sij(k/T ) + hSWj (k/T )

Sij(k/T )

]
− h ln

[
SWj (k/T )

Sij(k/T )

]]
for i = 1, 2.

In practice, the spectra Sij(z) in (16) and (17 )are replaced by the empirical
wavelet spectra, and are averaged across time series replicates. The empirical
wavelet periodogram for r-th series in group i is denoted by Li,rj (k/T ). We then

replace Sij(z) in (16) and (17) by its estimate Ŝij(k/T ) = 1
ni

ni∑
r=1

Li,rj (k/T ). As

in the stationary case the empirical wavelet periodogram is an asymptotically
unbiased but inconsistent estimator for wavelet spectra and needs to be smoothed.
In practice, a smoothed version of periodogram is used. According to the KL
criterion, W is assigned to the first group if

∑
(j,k)∈Θ

{
LWj (k/T )

[
1

Ŝ2
j (k/T )

− 1

Ŝ1
j (k/T )

]
+ ln

[
Ŝ2
j (k/T )

Ŝ1
j (k/T )

]}
≥ 0 (18)

and to second group otherwise. According to the CH criterion, W is assigned to
first group if

∑
(j,k)∈Θ

[
ln

(1− h)Ŝ2
j (k/T ) + hLWj (k/T )

(1− h)Ŝ1
j (k/T ) + hLWj (k/T )

]
+ (1− h) ln

[
Ŝ1
j (k/T )

Ŝ2
j (k/T )

]
≥ 0, (19)

and to second group otherwise.
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5. Numerical Study

In this section in order to check the performance of the discriminant criteria
obtained in the previous section, a numerical study is conducted. Various kinds of
time series including the stationary and different kinds of non-stationary time se-
ries were investigated. The results approve the ability of the discriminant criteria
(16) and (17). Nevertheless, the simulation study done by Fryzlewicz & Ombao
(2009) is repeated in order to compare the results. This helps in comparing the
discriminate criterions with the other advanced and useful methods in discriminat-
ing time series which were proposed by other researchers. These methods are: the
SST method, which is proposed by Shumway (2003) and Sakiyama & Taniguchi
(2004); the SLEX method, which is proposed by Huang et al. (2004); and the LSW
method, which is proposed by Fryzlewicz & Ombao (2009). Fryzlewicz & Ombao
(2009) considered four cases:

Case 1 for abruptly changing parameters and relatively large disparity between
groups.

Case 2 for abruptly changing parameters and small disparity between groups.
Case 3 for smoothly changing parameters and relatively large disparity between

groups.
Case 4 for abruptly changing parameters and small disparity between groups.
The n-th time series from group g(g = 1, 2), denoted by Xg

n,t, is generated
from the process defined by

Xg
t,T = φg1(t)Xg

n,t−1 + φg2X
g
n,t−2 + εgn,t

where
εgn,t ∼iid N(0, 1)

In Case 1, φ1
1(t) =


0.8 t=1,. . . , 53
−0.9 t=54,. . . , 128
0.8 t=129,. . . ,256

and φ2
1(t) =


0.8 t=1,. . . , 53
0.6 t=54,. . . , 128
0.8 t=129,. . . ,256

and φg2(t) = −0.81, t = 1, . . . , 256 for both groups g = 1, 2.

In Case 2, φ1
1(t) =


0.8 t=1,. . . , 53
−0.9 t=54,. . . , 128
0.8 t=129,. . . ,256

and φ2
1(t) =


0.8 t=1,. . . , 53
0.6 t=54,. . . , 128
0.8 t=129,. . . ,256

and φg2(t) = −0.81, t = 1, . . . , 256 for both groups g = 1, 2.

In Case 3, φ1
1(t) = −0.8[1−0.7 cos(πt/T )] and φ2

1(t) = −0.8[1−0.001 cos(πt/T )],
and φg2(t) = −0.81, t = 1, . . . , 256 for both groups g = 1, 2.

In Case 4, φ1
1(t) = −0.8[1− 0.7 cos(πt/T )] and φ2

1(t) = −0.8[1− 0.1 cos(πt/T )]
and φg2(t) = −0.81, t = 1, . . . , 256 for both groups g = 1, 2.

One sample of each case is shown in Figure 1.
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Figure 1: Plot of a simulated time series for each of the cases in both groups, g = 1, 2.

In all cases, each of the two groups consisted ofN = 8 time series, and each time
series has length T = 256. Fifty test time series each of length T = 256 were then
simulated from each group 1 and group 2. The testing time series were independent
of the training data. The subset Θ of coefficients, were selected according to the top
p = 10% of the timescale coefficients. Then each test time series was allocated to
group 1 or 2 according to discriminant criterions (18) and (19). Daubechies (1992)
identifies the Extremal Phase family: a collection of orthonormal wavelet bases
possessing different degrees of smoothness and number of vanishing moments. This
family of bases is indexed by the number of vanishing moments and the Haar basis
is its zeroth member (Fryzlewicz 2003). Nason et al. (2000) have shown that, the
J-dimensional matrix, in (12), becomes ’more’ diagonal as the number of vanishing
moments of the underlying wavelet increases. In all the simulations, we use the
Daubechies’ Extremal Phase wavelet No. 4 from the wavethresh software package
for R. However, our investigations showed that, various amounts of vanishing
moments have a negligible effect on the classification problem. We also eliminated
the coarest scale in all calculations.

Within the Chernoff discriminate criterion, different amounts of the h param-
eter were examined and it was shown that small amounts lead to better results.
Therefore, the amount 0.1 was chosen for the h parameter. In practice however,
there would be rare cases in which the inputs of the logarithm statement became
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negative in the discriminate criterions (16) and (17). These aspects were omit-
ted from the calculations. The results are compared with three other approaches
which include: the ST method, the SLEX method and the LSW method. The
results are presented in Table 1.

Table 1: The corrected classification rate for four case models using different criterions.

Method Case 1 Case 2 Case 3 Case 4
CH 99.5 84 95 92
KL 97 87 91 92
SST 100 69 100 96
SLEX 92 65 74 64
LSW 100 89 100 92

As can be seen in Table 1, in case 1, the SLEX method, with either finest level
J = 3 or 4, and the LSW method, applied with the top p = 25% of timescale
coefficients, perform perfectly. Other methods also work well. In case 2, the best
performance was achieved by the LSW method (89%). Also, it was often the case
that the CH and KL methods have accepted results with KL having slightly better
result than the CH. In this case SST and the SLEX methods are not so good as
other methods. It should be mentioned that case 3 is results are good, except for
the SLEX method, which has a 74% correct classification rate. In this case SST
and LSW have perfect performance. The CH method has slightly better results
than KL method.

The results of KL, CH and LSW in case 4 are the same (92% correct classifi-
cation). The best result belonged to the SST method, which has a 96% corrected
classification rate. The SLEX method is the worst.

It should be mentioned that in all four methods, the conditions considered for
the two groups including the number group members, the length of the time series
and their models, were difficult and had complicated conditions. In general, KL
and CH have shown a relatively good performance in all four cases. Meanwhile,
it is been noticed that when the face the real data, the Kullback - Leibler and
Chernoff criterion act much better than the LSW method.

6. Discrimination of Real Data

6.1. Discrimination of Seismic Signals

Discriminating between nuclear explosions and earthquakes is a problem of
critical importance to monitor a comprehensive test-ban treaty. A dataset con-
structed by Blandford (1993) that comprises regional (100-2,000 km) recordings of
several typical Scandinavia is used in this study. A list of these events, including
eight earthquakes and eight explosions and an event of uncertain origin located
in the Novaya Zemlya region of Russia, was given by Kakizawa et al. (1998).
The problem was discussed in detail by (Shumway & Stoffer 2011, chap. 5) and
the data is available online at http://lib.stat.cmu.edu/general/tsa2/. Each
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Earthquake and Explosion record is actually composed of two phases: P-phase
and S-phase, with 1024 points in each phase. (see Figure 2, for an earthquake, an
explosion and the Novaya Zemlya (NZ) event.)
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Figure 2: An earthquake, an explosion and the NZ event.

The results for discrimination are seen in Table 2. It should be noted that
in the CH method we use h = 0.05 since it became obvious that a small value
gave better results. To determine the rate of correct classification, we used the
leave-One-Out method. The discrimination results are good, in that, in the KL
method, 14 out of the 16 seismic signals were correctly classified for p = 10% and
in he CH method, 13 out of the 16 seismic signals were correctly classified for
p = 10% and h = 0.05. In our investigation, it became obvious that, for seismic
data, KL discriminant criteria, when finest scale, eliminated leads to get a better
result. By eliminating finest scale, 15 out of the 16 seismic signals were correctly
classified in the KL method. In the LSW method, when applied with the top
p = 0.1k, k = 1, . . . , 10, of timescale coefficients, only 14 out of the 16 seismic
signals were correctly classified.

Moreover, in both te KL and CH methods, the Novaya Zemlya event is classified
as an explosion, which is consistent with the findings in Huang et al. (2004) and
Fryzlewicz & Ombao (2009).

Table 2: The number of misclassifications using a leave-one-out cross validation proce-
dure in the discrimination of seismic signals based on criterion (16) and (17).

Θ −→ scale 1-10 scale 1-9
Kullback - Leibler 2 1
Chernoff (h = 0.05 ) 3 3
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6.2. Discrimination of Population Data

The population dataset was a collection of time-series representing the popula-
tion estimates from 1900-1999 in 20 us states, and the data is available online from
http://www.census.gov/population/www/estimates/ststts.html. Some of these
time-series had an exponentially increasing trend while others had a stabilizing
trend. The 20 states were partitioned into two groups based on their trends:
group 1 consisted of CA, CO, FL, GA, MD, NC, SC, TN, TX, VA, and WA and
had the exponentially increasing trend, while group 2 consisted of IL, MA, MI,
NJ, NY, OK, PA, ND, and SD and had a stabilizing trend (Kalpakis, Gada &
Puttagunta 2001).

Since the time series length is 99, we use a novel approach to use the information
as much as possible. We partitioning the time series into 3 parts: the first part
with a length of 64, consists of 1900-1963, the second part with a length of 32,
consists of 1964-1995 and finally the third part with a length of 4 consists of 1996-
1999, which was eliminated. We then standardized the first and second parts of the
data sets. In order to under take discrimination of this data set, we used the sum
of our proposed KL and CH criteria and Euclidian distance (which is proposed
by Fryzlewicz & Ombao (2009)) in two parts. All three methods applied with
the top p = 10% of timescale coefficients and the coarsest scale were eliminated.
Once again within the CH criterion, different amounts of the h parameter were
examined and it was shown that small amounts lead to better results. Therefore,
the amount 0.1 was chosen for the h parameter. In the leave-One-Out method, all
time series were correctly classified by the CH and KL criterions. However, in the
LSW method, 18 out of 20 time series were correctly classified, the NC and MI
were misclassified.[
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