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Abstract
This study deals with the cumulative charting technique based on a sim-

ple and a mixture of Rayleigh models. The respective charting schemes are
referred as the SRCQC-chart and the MRCQC-chart. These are stimulated
from existing statistical control charts in this direction i.e. the cumulative
quantity control (CQC) chart, based on exponential and Weibull models,
and the cumulative count control (CCC) chart, based on the simple geo-
metric model. Another motivation for this study is the mixture cumulative
count control (MCCC) chart based on the two component geometric model.
The use of mixture cumulative quantity is an attractive approach for process
monitoring. The design structure of the proposed control chart is derived by
using the cumulative distribution function of simple, and two components of
mixture distribution(s). We observed that the proposed charting structure
is efficient in detecting the changes in process parameters. The application
of the proposed scheme is illustrated using a real dataset.
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Resumen

Este estudio trata con cartas de control acumuladas basadas en distribu-
ciones Rayleigh y en mixturas de estas mismas. Las cartas se denominan
SRCQC y MRCQC, respectivamente. Estas se fundamentan en cartas exis-
tentes como la carta de control de cantidades acumuladas (CQC), basada en
modelos exponencial y Weibull en la carta de control de conteos acumulados
(CCC), soportada en un modelo geométrico. Otra propuesta del estudio es
la carta de control de mixtura de conteos acumulados (MCCC). Esta última
es muy atractiva en procesos de monitoreo. La estructura de diseño de las
cartas propuestas se deriva usando la función de distribución acumulada sim-
ple y la mixtura de dos distribuciones acumuladas. Se observa que las cartas
propuestas son eficientes para detectar cambios en los parámetros del pro-
ceso. La aplicación del esquema propuesto es ilustrada usando un conjunto
de datos reales.

Palabras clave: control de calidad, método de la transformación, función
de pérdida, estimador bayesiano, carta MRCQC, carta SRCQC.

1. Introduction

Mixture distributions are quite popular when modelling populations contain-
ing two or more subgroups. These probability models represent non-homogenous
behavoiurs and may be utilized in manufacturing and non-manufacturing appli-
cations for the characteristic(s) of interest that exhibit mixture patterns. These
types of mixtures offer a more valuable analysis that leads to more meaningful re-
sults. It is important to properly model the variable of interest by using simple or
mixture models and to estimate their parameters with the assistance of accessible
information. The estimation of parameters may be carried out using classical and
Bayesian methods of estimation.

Control charts are popular process monitoring tools that may be categorized
mainly into variable and attribute control charts. The most commonly used at-
tribute charts are p chart or np chart (binomial data), and the c charts or u chart
(Poisson data). These two types of traditional attribute charts have been replaced
by other types of charts such as the cumulative count control chart (CCC-chart)
and the cumulative quantity control charts (CQC-chart). These charts are much
more effective than the traditional charts for high yield processes when the non-
conforming rate is low. In addition, these types of charts require no rational
sub grouping of samples, and the issue of increased false alarm may be avoided.
Please see Calvin (1983), Xie & Goh (1992), Xie, Goh & Kuralmani (2000) and
Xie, Goh & Tang (2000). The cumulative types CCC and CQC charts use geomet-
ric and exponential models. We can also find the application of other probability
distributions with these types of charts such as weibull (cf. Chan, Xie & Goh
2000, Banjevic, Jardine, Makis & Ennis 2001, Sun, Yang, del Rosario & Mur-
phy 2001 and Xie, Goh & Ranjan 2002). Chan, Lin, Xie & Goh (2002) designed
the cumulative probability control charts for geometric and exponential process
characteristic(s). Majeed, Aslam & Riaz (2012) suggests that mixture cumulative

Revista Colombiana de Estadística 39 (2016) 185–204



A Study of Cumulative Quantity Control Chart 187

count control charts be used for mixture geometric process characteristics, when
a population of defective items can be split into various sub populations.

There are varying dimensions to be considered when developing different types
of charts for time between events situations. Different statistical models are used
to model processes with constant or variable occurrence rate of event. The time-
between events data is generally modeled by an exponential distribution, assuming
that the event occurrence rate is constant. In reliability applications this assump-
tion is usually violated because of wear and tear and other usage factors. In such
situations, Rayleigh distribution (in simple or mixture form depending upon the
situation) may be a more appropriate choice to model the failure times. This study
enlightens the Bayesian estimation of the mixture Rayleigh model(s) and proposes
a new control, chart namely the mixture of cumulative quantity control chart for
Rayleigh process characteristic(s) (MRCQC-chart). It is designed by using the
distribution function of two component Rayleigh model. The case of the simple
Rayleigh cumulative quantity control chart (SRCQC-chart) is also dicussed throng
along the paper.

The rest of the article is organized as follows: Section 2 provides details of
mixture Rayleigh distribution and its Bayesian estimation; Section 3 shows the
development of a new of mixture charting structures and its performance and
methodology evaluation; Section 4 presents an applied example; Section 5 con-
cludes the study.

2. Mixture Rayleigh Model and Bayes Estimation

Rayleigh is a commonly used distribution to analyze lifetime data; it has at-
tractive properties and nice physical interpretations. In this study we use it in
a mixture setup for process monitoring purposes. Let us suppose that a pop-
ulation of nonconformities is postulated to be composed of two subpopulations
with specified parameters. The fractions of nonconformities produced by Poisson
process from both sub-populations are denoted by λ1 and λ2, respectively. The
subpopulations are mixed are have the proportions p1 and p2. In this is situation
happening, the total quantity Q’ examined until an event of interest occurs (with
a non-constant event occurrence rate) and follows a two component mixture of
Rayleigh distribution. The following a finite mixture distribution function with
the two component densities of specified parametric form (but with unknown rate
parameters, λ1 and λ2) and with unknown mixing weights, p1 and p2:

F (q) = p1F1 (q) + p2F2 (q) , where Fi (qij) = 1− exp
[
−q2

ijλ
2
i

]
. (1)

The corresponding finite mixture density function’s pdf is:

f (qij ; Θ) = p1f1 (q1j ;λ1) + p2f2 (q2j ;λ2) , λi > 0, i = 1, 2; 0 < qij <∞, (2)

where Θ = (λ1, λ2, p1), fi (qij) = 2qijλ
2
i exp

[
−λ2

i q
2
ij

]
, j = 1, 2, . . . , ri and p1

+ p2 = 1.

Revista Colombiana de Estadística 39 (2016) 185–204



188 Tabassum Naz Sindhu, Muhammad Riaz, Muhammad Aslam & Zaheer Ahmed

A random sample of n units of quantity from the above cited mixture model
is operating to a life testing experiment. The test is terminated at a fixed time Q.
When the the test is performed, it is observed that out of n, r units of quantity
failed when the test termination time Q and (n− r) units when still functioning
(conformities). Hence (n− r) units of quantity that have not failed (conformities)
by the time Q are censored objects and yield no information. We suppose that,
soon after, failure occurs, we can identify r1 and r2 units of quantity as members
of the first and second subpopulation, respectively. Obviously r = r1 + r2 and
remaining (n− r) units provide no information about to which they belong. Fur-
thermore, let qij be the failure time of the jth unit to the ith subpopulation, where
j = 1, 2, . . . , ri, i = 1, 2 0 < q1j , q2j < Q. This sampling plan was introduced by
Mendenhall & Hadar (1958). The likelihood function for a two-component mixture
with n items is the obtained of this study. The probability that r1 will fail due to
cause 1, r2 will fail due to cause 2 and the remaining (n− r1 − r2) will survive at
time Q when test is terminated is given as

L (Θ | q) ∝ Πr1
j=1p1f1 (q1j) Πr2

j=1p2f2 (q2j) {1− F (Q)}n−r ,

L (Θ | q) ∝
{

Πr1
j=1p12q1jλ

2
1 exp

(
−λ2

1q
2
1j

)} {
Πr2
j=1p22q2jλ

2
2 exp

(
−λ2

2q
2
2j

)}[
1−

{
p1

(
1− exp

(
−λ2

1Q
2
))

+ p2 exp
(
1− exp

(
−λ2

2Q
2
))}]n−r

,

L (Θ | q) ∝
n−r∑
k=0

(
n− r
k

)
pn−k−r21 pr2+k

2 λ2r1
1 λ2r2

2 exp
[
−λ2

1 (ξ1j (q1j))
]

× exp
[
−λ2

2 (ξ2j (q2j))
]
, (3)

where ξ1j (q1j) =
∑r1
j=1 q

2
1j + (n− r − k)Q2 and ξ2j (q2j) =

∑r2
j=1 q

2
2j + kQ2.

The parameters of mixture model Θ = (λ1, λ2, p1) can be estimated by using
different methods. In this article, we utilize a Bayesian approach in order to obtain
the estimators of the mixture model. The elegant closed-form expressions of Bayes
estimates and their risks are proposed in following section.

2.1. Bayes Estimation

Bayesian estimation theory requires independent priors to be specified for a
model’s parameters. The prior model is assumed to represent the subjective in-
formation available concerning the parameter vector prior to the realization of the
sample vector. Let us assume that the rate parameters λi and p1 i = 1, 2 are
independent random variables. We can consider that the following informative
priors for different parameters provide the Bayes estimates.
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2.2. Bayesian Estimation using Nakagami Prior

The prior for the rate parameters λi for i = 1, 2, is the Nakagami distribution.
The hyperparameters ai and bi are given by:

fλi (λi) =
2aaii

Γ (ai) b
ai
i

λ2ai−1
i exp

(
−aiλ2

i

bi

)
, ai, bi > 0. (4)

The prior for p1 is the beta distribution, the density of which is given by

fp (p1) =
Γ (c1 + d1)

Γ (c1) Γ (d1)
pc1−1

1 (1− p1)
d1−1

, c1, d1 > 0. (5)

Based of equation (4)-(5), we recommend the following joint prior density of the
vector Θ = (λ1, λ2, p1)

g (Θ) ∝ λ2ai−1
i exp

(
−λ2

i ai
bi

)
pc1−1

1 (1− p1)
d1−1

, (6)

where 0 < p1 < 1, ai > 0, bi > 0, c1 > 0, d1 > 1.
By multiplying equation (6) with equation (3), the joint posterior density for

the vector Θ given the data becomes

L (Θ | q) ∝
n−r∑
k=0

(
n− r
k

)
pn−k−r2+c1−1

1 (1− p1)
r2+k+d1−1

λ
2(ai+ri)−1
i

× exp

{
−λ2

i

(
ai
bi

+ ξij (qij)

)}
. (7)

Marginal distributions of λi and p1 i = 1, 2 can be obtained by integrating the
nuisance parameters.

2.3. Bayesian Estimation Using Square Root Gamma Prior

The prior for the rate parameters λi for i = 1, 2 is the square root gamma
distribution. The hyperparameters αi and βi, given by:

fλi (λi) =
2βαii
Γ (αi)

λ2αi−1
i exp

(
−λ2

iβi
)
, αi, βi > 0. (8)

The prior for p1 is the beta distribution, the density of which is given by

fp (p1) =
Γ (c2 + d2)

Γ (c2) Γ (d2)
pc2−1

1 (1− p1)
d2−1

, c2, d2 > 0. (9)

Based of equation (8)-(9), we present the following joint prior density of the vector
Θ = (λ1, λ2, p1)

g (Θ) ∝ λ2αi−1
i exp

(
−λ2

iβi
)
pc2−1

1 (1− p1)
d2−1

, (10)

Revista Colombiana de Estadística 39 (2016) 185–204



190 Tabassum Naz Sindhu, Muhammad Riaz, Muhammad Aslam & Zaheer Ahmed

where 0 < p1 < 1, αi > 0, βi > 0,c2 > 0, d2 > 0.
By multiplying equation (10) with equation (3), the joint posterior density for

the vector Θ given the data becomes

L (Θ | q) ∝
n−r∑
k=0

(
n− r
k

)
pn−k−r2+c2−1

1 (1− p1)
r2+k+d2−1

λ
2(αi+ri)−1
i

× exp
{
−λ2

i (βi + ξij (qij))
}
. (11)

Marginal distributions λi and p1 i = 1, 2 of can be obtained by integrating the
nuisance parameters.

2.4. Bayes Estimation of the Vector of Parameters Θ

The Bayesian point estimation is generally associated with a loss function. It
adds up the loss induced when the estimate λ̂ deviates from true parameter λ.
In this article, have used weighted balanced loss function (WBLF) and precau-

tionary loss function (PLF). The WBLF is particularized as l
(
θ̂, θ
)

=

[
(θ−θ̂)
θ̂

]2

,

Degroot (1970). Bayes estimator and posterior risk under WBLF are θ̂ =
E(θ2|q)
E(θ|q) ,

and ρ
(
θ̂
)

= 1 − {E(θ|q)}2
E(θ2|q) . The other loss function PLF is defined as l

(
θ̂, θ
)

=

(θ−θ̂)
2

θ̂
, Norstrom (1996). Bayes estimator and posterior risk under PLF are

θ̂ =
[
E
(
θ2 | q

)]1/2 and ρ
(
θ̂
)

= 2
[{
E
(
θ2 | q

)}1/2 − E (θ | q)
]
respectively.

In this section, the respective marginal distribution of each parameter is used
to derive the Bayes estimators and posterior risks of λ1, λ2 and p1 under different
loss functions. The Bayes estimators and their posterior risks of the parameters
λ1, λ2 and p1 using Nakagamiandbeta under WBLF are given in Appendix:

The expressions for the Bayes estimators and their posterior risks under PLF
and the Bayes estimators, and their posterior risks using square root prior under
two loss functions can be obtained in similar ways.

The Bayes estimators and their post risks are derived from a simple Rayleigh
model (SRM) using Nakagami distribution under both loss functions. These are
given in Aappendix:

2.5. Elicitation of Hyperparameters

In Bayesian estimation, the elicitation of hyperparameters plays a consequential
role and hence their estimation is additionally concerned. We consider a proba-
bility elicitation method: prior predictive elicitation. Predictive elicitation is a
method used to estimate hyperparameters of prior distributions. Elicitation of hy-
perparameters from the prior p (λ) is a conceptually arduous task because we first
have to identify prior distribution and then its hyperparameters. The prior pre-
dictive distribution is utilized to elicit of the hyperparameters which a compared
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to the experts’ judgment about this distribution. after this, the hyperparameters
are culled in such a way so as to make the judgment to be close as possible to the
given distribution (cf. Grimshaw, Collings, Larsen & Hurt 2001, O’Hagan, Buck,
Daneshkhah, Eiser, Garthwaite, Jenkinson, Oakley & Rakow 2006, Jenkinson and
Leon, Vazquez-Polo & Gonzalez).

According to Aslam (2003), the assessment method is to compare the predictive
distribution with experts’ assessments on this distribution and then to operate the
hyperparameters that make the assessment accede proximately with the member
of the family. The hyperparameters involved in the evaluation of Bayes estimates
and Posterior risks have been elicited yb applying the prior predictive approach;
the prior predictive distribution under all the priors are derived by using the
following formula p (y) =

∫
Θ
p (y | Θ) p (Θ) dΘ. The prior predictive distribution

using Nakagami prior is:

p (y) = 2

(
a1

b1

)a1 ya1c1

(c1 + d1)
(
y2 + a1

b1

)(a1+1)

+ 2

(
a2

b2

)a2 ya2d1

(c1 + d1)
(
y2 + a2

b2

)(a2+1)
, y > 0.

(12)

To the six hyperparameters, six different intervals are considered. From equa-
tion (12), the experts’ assessments are supposed to be 0.15, 0.10, 0.10, 0.10, 0.15
and 0.20; which are related to the intervals of the values of the random variable Y :
(0, 5), (6, 9), (7, 10), (20, 23), (30, 35) and (30, 40) respectively. For elicitation of six
hyperparameters a1, a2, b1, b2, c1, and d1. These six equations are solved simulta-
neously through a computer program developed in SAS package using the PROC
SYSLIN command. Thus the values of hyperparameters obtained by applying this
methodology are 0.45231, 0.012109, 0.52114, 4.99325, 2.52130, and 1.6259.

The prior predictive distribution using square root gamma prior is:

p (y) = 2 (β1)
α1

yα1c1

(c2 + d2) (y2 + β1)
(α1+1)

+ 2 (β2)
α2

yα2d2

(c2 + d2) (y2 + β2)
(α2+1)

, y > 0.
(13)

By applying the similar principle that was defined for the Nakagami prior, we
obtained the following values of hyperparameters: α1 = 1.32156, α2 = 0.96856,
β1 = 0.52114, β2 = 2.36916, c2 = 1.25698 and d2 = 0.96845.

The simulation study for the Bayes estimators (BEs) and their corresponding
posterior risks are given under different priors for the mixture (cf. Table 1) and
simple (cf. Table 2) models. We have observed that the Bayes estimators under
Nakagami are more efficient and have a clear edge are its competitor informative
prior fort he mixture as well as simple models.
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Table 1: Bayes estimates (and their posterior risks in parentheses) for parametric points
(λ1,λ2, p1) = (0.1, 0.15, 0.45). Bayes estimates (and their posterior risks in
parentheses) for parametric point λ = 0.15.

LF WBLF PLF
Priors λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

Nakagami 0.103179 0.149154 0.447361 0.102746 0.148945 0.444672
(0.005957) (0.004839 (0.007797) (0.000628) (0.000713) (0.003453)

Square root 0.104053 0.149865 0.444932 0.103538 0.149374 0.44924
gamma (0.006131) (0.004921) (0.008114) (0.000646) (0.000726) (0.003557)

Table 2: Bayes estimates (and their posterior risks in parentheses) for parametric point
λ = 0.15.

LF WBLF PLF
Priors λ̂ λ̂

Nakagami 0.152801 0.152497
(0.000805) (0.000123)

Square root gamma 0.151678 0.149865
(0.000818) (0.000124)

3. Control Structure of the MRCQC-Chart

There is variety of literature available on developing variants of control charts
for time between events situations. Based on the information presented in the pre-
vious section, we present the control structure of the suggested chart by utilizing
the distribution function of the mixture distribution, i.e. F (Q) = p1F1 (Q) +

p2F2 (Q) ,
∑2
i=1 pi = 1. Let ψ1 = exp

(
−Q2λ2

1

)
the and ψ2 = exp

(
−Q2λ2

2

)
.

We establish a logarithmic relationship between the densities of two nonconfor-
mities in order to obtain simplified expression for the control limits, i.e., ψ1 =
(1− log (1− τ)) exp

(
−Q2λ2

2

)
, where τ is some specified constant i.e. 0 ≤ τ < 1.

This implies that: F (Q) = p1 (1− (1− log (1− τ))ψ2) + p2 (1− ψ2) , after some
simplification we obtained the following:

F (Q) = 1− ψ2 (1− p1 log (1− τ)) . (14)

The selected value of missing information depends upon the fraction of noncon-
formities produced by each sub population. We construct a two-sided MRCQC-
chart (by fixing the probability of false alarm rate α), and set F (Q) in equation
(13) equal to (1− α/2) , 1/2 and α/2 for upper control limit (UCL), central line
(CL) and lower control limit (LCL) respectively. Hence, the control structure of
the suggested scheme is given by:

1− exp
(
−Q2

Uλ
2
2

)
[1− p1 log (1− τ)] = 1− α/2, (i)

1− exp
(
−Q2

Cλ
2
2

)
[1− p1 log (1− τ)] = 1/2, (ii)

1− exp
(
−Q2

Lλ
2
2

)
[1− p1 log (1− τ)] = α/2. (iii)

In order to find the expressions for UCL, CL and LCL, the previous expressions
can be further reduced to the following forms:
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UCL : QU =
1

λ2

{
ln

(
1− p1 log (1− τ)

α/2

)}1/2

,

CL : Qc =
1

λ2

{
ln

(
1− p1 log (1− τ)

1/2

)}1/2

,

LCL : QL =
1

λ2

{
ln

(
1− p1 log (1− τ)

1− α/2

)}1/2

.

(15)

In the MRCQC-chart, Q (cumulative quantity between two nonconformities)
is plotted on the chart against the corresponding sample numbers. When the
cumulative quantity below the LCL sets off an alarm that the rate of occurrence
of defects in the process may have shifted upward, that is, the process may have
deteriorated, these unnatural variations should be explored in order to undertake a
safety measure. If the plotted point above the UCL shifts downwards, the process
may have improved. The lower and upper sided MRCQC-chart can be designed
by equating F (Q) in (13) by α and (1− α), respectively; obtaining the following:

QL = 1
λ2

{
ln
(

1−p1 log(1−τ)
1−α

)}1/2

and QU = 1
λ2

{
ln
(

1−p1 log(1−τ)
α

)}1/2

. Should be
mentioned that, the value of λ2 in a process is usually unknown; we can obtained
an estimate by using the methodology discussed above in Section 2.

3.1. The SRCQC-Chart as a Special Case of the MRCQC
-Chart

It is worth noting that the MRCQC-chart converges to the SRCQC-chart,
which is established on a single component or simple Rayleigh distribution pro-
vided that τ = 0. It is obvious that for τ = 0, λ1 (the rate of nonconformities from
first sub population) λ2 (the rate of nonconformities from second sub population)
becomes equal, which leads to a simple Rayleigh distribution with a fraction of non-
conformities λ1 = λ2 = λ. In a similar manner, τ = 0 implies that F (Q) = 1−ψ2.
Hence, it becomes a simple case of Rayleigh distribution, and the double control
limits are designed as follows.

UCL : QU =
1

λ2

{
ln
(α

2

)−1
}1/2

,

CL : Qc =
1

λ2

{
ln

(
1

2

)−1
}1/2

,

LCL : QL =
1

λ2

{
ln
(

1− α

2

)−1
}1/2

.

(16)

If our concern is to determine the shift in the downfall or improvement di-
rection, we only set a lower or upper limit for a one sided SRCQC-chart, e.g.

QL = 1
λ2

[
ln (1− α)

−1
]1/2

.
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3.2. Estimation of Average Run Length

The run length of the control chart is defined as the sample number until a
signal is delivered by the chart; the expectation of the run length is commonly
known as average run length (ARL). The ARL is extensively used as a measure
of performance in a control chart and it works as a random variable because of its
probabilistic nature (cf. Quesenberry 2007 and Montgomery 2009). Ideally, the
ARL should be large when the process is in control and small when the process
is out of control. The algebraic expression for ALRL, ARLU and ARLL&U are
obtained in simplified form (cf. Chan et al. 2002 and Majeed et al. 2012).

ARLL =
1

1− (1− αL)
ϕ {1− p1 ln (1− τ)}1−ϕ

,

ARLU =
1

(αU )
ϕ {1− p1 ln (1− τ)}1−ϕ

and

ARLL&U =
1

1− {1− p1 ln (1− τ)}1−ϕ {(1− αL)
ϕ − (αU )

ϕ}
.

where ϕ = δ̂
δ and δ = λ2

2 is the magnitude of shift to be detected according to
Chan et al. (2002, Proposition B of Appendix), and αL and αU are the probabilities
of false alarms for LCL and UCL respectively. The performance measure ALRL
is used to examine the shift in deterioration, ALRU is used to detect the shift
in improvement, and performance measure ARLL&U is used to simultaneously
determine the shift in downfall and progression. The computations of ARL are
presented in pictorial form (cf. Figures 1-3) for different choices of false alarm
rates as well as for different amounts of shift. Figures 1 (a − d) represent the
graphical display of ARL for the process progression, and show that the proposed
control chart is not capable of early detection compared with a simple Rayleigh
control chart. From this pictorial representation it can be see that the proposed
scheme has an issue of non-maximal and upward biased ARL behavior for process
progression. Figures 2 (e− h) show a graphical representation of ARL for process
downfall, and Figures 3 (i − l) for process downfall and progression at the same
time. From the later two pictorial descriptions, we conclude that the proposed
control chart performs better in terms of early detection of shifts in downfall
and downfall and progression simultaneously in comparison with simple Rayleigh
control chart. It is also worth mentioning that the later two pictorial descriptions
provide maximal and unbiased ARL behaviors for both progression and downfall.

3.3. Estimation of Average Length of Inspection

Average length of inspection (ALI) is another performance measure for control
charts. The ALI required to observe a signal is E(Q)

α = E (Q)×ARL, Chan et al.
(2002). The analogous ALIs for signal to appear on MRCQC-chart below the LCL,
above the UCL, and either below the LCL or above the UCL, when the rate of
occurrence of nonconformities in sample is λ2 are as follows:
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(a) (b)

(c) (d)

Figure 1: Average run length plot lnARLU against Exp (ϕ) for the MRCQC-chart to
detect the shift in improvement when aU = 0.0005, 0.005, 0.05, and 0.00135,
respectively, with corresponding weight= 0.375.

ARIL =
1

λ̂2

√
π

2
ARLL,

%ARIU =
1

λ̂2

√
π

2
ARLU and

ARIL&U =
1

λ̂2

√
π

2
ARLL&U .

The simulation study shows that the Bayes estimates assuming informative
(Nakagami) has a clear edge over square root gamma prior. This is because pos-
terior risks are smaller under Nakagami prior. The ALIs are obtained using the
Nakagami prior under two loss functions for the MRCQC-chart and the SRCQC-
chart. They are represented graphically in Figures 4-6.

The comparisons are made using τ = 0.01, p1 = 0.375, ϕ = 1.5, αL =
αU = 0.0027, 0.005 and 0.05 These results reveal that PLF is dominant for both
MRCQC-charts and SRCQC-charts. Moreover, the MRCQC-chart outperforms
the usual SRCQC-chart in the early detection of shifts.
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(a) (b)

(c) (d)

Figure 2: Average run length plot lnARLL against exp(ϕ) for MRCQC to identify the
shift in deterioration under αL = 0.0005, 0.005, 0.05, and 0.00135, respec-
tively, with corresponding weight= 0.375.

4. Illustrative Example (Compartive Study)

In this section, we analyze an example to illustrate the methodology discussed
in the previous sections. In a high-quality process, defects occur at a rate of
λ2 = 0.0002 defect per unit quantity of produced products. The probability of
false alarm is set at α = 0.0027, and the mixing weights are set as p1 = 0.375
and p2 = 0.625. The value of the constant is τ = 0.01. The lower and upper
control limits and the central limit are calculated for the CQC, MCQC, SRCQC
and MRCQC charts are as follows.

Double-limit CQC-Chart:

UCL:QU =
−1

0.0002
ln

(
0.0027

2

)
= 33038.25

LCL:QL =
−1

0.0002
ln

(
1− 0.0027

2

)
= 6.76

CL:QC =
−1

0.0002
ln

(
1

2

)
= 3465.74
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(a) (b)

(c) (d)

Figure 3: Average run length plot lnARLL&U against exp(ϕ) for MRCQC to iden-
tify the shift in depreciation and development under aU = aL =
0.0005, 0.005, 0.05, and 0.00135, respectively, with corresponding weight
p1=0.375.

Figure 4: Average length of inspections (ALIs) displays for the MRCQC-chart to detect
the shift in downfall aL = 0.0027, 0.005, and 0.05, while τ = 0.01, p1 =
0.375, ϕ = 1.5.

Double-limit MCQC-Chart:

UCL:QU =
−1

0.0002
ln

( 0.0027
2

0.375 (2− 1) + 1

)
= 34630.52

LCL:QL =
−1

0.0002
ln

(
1− 0.0027

2

0.375 (2− 1) + 1

)
= 1599.02

CL:QC =
−1

0.0002
ln

( 1
2

0.375 (2− 1) + 1

)
= 5058.00
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Figure 5: Average length of inspections (ALIs) displays for the MRCQC-chart to detect
the shift in improvement aU = 0.0027, 0.005 and 0.05 while τ = 0.01, p1 =
0.375, ϕ = 1.5.

Figure 6: Average length of inspections (ALIs) displays for the MRCQC-chart to detect
the shift in improvement aU = 0.0027, 0.005 and 0.05 while τ = 0.01, p1 =
0.375, ϕ = 1.5.

Double-limit SRCQC-Chart:

UC L:QU =
1

0.0002

{
ln

(
0.0027

2

)−1
}1/2

= 12852.7

LCL:QL =
1

0.0002

{
ln

(
1− 0.0027

2

)−1
}1/2

= 183.774

CL:QC =
1

0.0002

{
ln

(
1

2

)−1
}1/2

= 4162.77.

Double-limit MRCQC-Chart:

UCL:QU =
1

0.0002

{
ln

(
1− 0.375 log (1− 0.01)

0.0027
2

)}1/2

= 12856.3

LCL:QL =
1

0.0002

{
ln

(
1− p1 log (1− 0.01)

1− 0.0027
2

)}1/2

= 357.516

CL:QC =
1

0.0002

{
ln

(
1− 0.375 log (1− 0.01)

1
2

)}1/2

= 4174.05
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The raw data from the process are codified in Table 3. The size of each sample
is 400 units. In Table 3, the number 199.4 in sample 5 is the remainder of the
sample after the defect is observed. The same is true for the number 154.0 in
sample 56. In this Table, ‘i.c.’, ‘n.d.’, ‘o.c.’ and ‘im.’ mean ‘in control’, ‘no
decision’, ‘out of control’ and ‘has been improved’, respectively. A double-limit
CQC, MCQC, SRCQC-chart and MRCQC-chart is provided in Figure 7.

Table 3: Inspection results for raw data from a process.

Sample number Defect Observed? Cumulative Value of Q Signal? Reset Q to zero?
since last reset

1 No 400 ≥ LCL i.c No
2 No 800 ≥ LCL i.c No
3 No 1200 ≥ LCL i.c No
4 No 1600 ≥ LCL i.c No
5 Yes 1800.6 ≥ LCL i.c Yes
5 No 199.4∗ n.d. No
6 Yes 250 < LCL o.c. Yes

1 No 400 ≥ LCL i.c No
2 No 800 i.c No
: : : :
: : : :
32 No 12800 i.c No
33 No 13200 > UCL im No
34 No 13600 im No

55 No 22000 im No
56 Yes 22246 > UCL im Yes
56 No 154∗ n.d. No
57 No 554 ≥ LCL i.c No
58 No 954 i.c :
59 No 1354 i.c :
: : : : :
: : : : :
77 No 8554 i.c No
78 Yes 8773.4 ≥ LCL i.c Yes
: : : : :
: : : : :

From Table 3, it is noted that an asterisk “*” appears when a non-conformity
has been observed and process is resetting and quantity with an asterisk “*” sign is
added to next sample quantity when process is resetting in improved region. It is
also noted that “N” sign seems in the pictorial description (given in Figure 7) of the
hypothetical data set with the quantity having an asterisk “*” sign and whenever a
defect is observed and cumulative quantity at that time above the LCL. It is also
worth mentioning that whenever a defect is observed and cumulative quantity is,
at that time, below the LCL, then the whole process is restarted and “+” shows
a pictorial description of the tabular data set when observed cumulative quantity
above the UCL. Figure 7 shows the charting structure of the CQC, MCQC, SR-
CQC and MRCQC charts in light of aforementioned data set where specific lines
represent the control structure of the CQC, MCQC, SRCQC and MRCQC charts,
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respectively. In the MCQC-chart, the “N” at sample 6 is clearly shown to be the
above the ln(LCL-MCQC), which does not indicate the process is out of control.
In terms of corresponding CQC, SRCQC and MRCQC charts, however, this point
is below the LCL, which indicates the process is out of control. According to the
MCQC-chart, this appears above the LCL unjustly, which signifies an in control
situation, when the process is really out of control. Thus MRCQC-chart outper-
forms in the deterioration region in comparison with its competitors, i.e. the CQC,
SRCQC and MCQC charts. At this stage Q is reset to zero and a new quantity is
considered for analysis. On both charts the sign “�” for sample number 32 is very
close to UCL, which makes it much harder to see that it is above the UCL of both
the SRCQC amd MRCQC charts. When an inspection of sample numbers 33 and
34 has been completed, the cumulative quantity of items inspected are 13200 and
3600 > UCL of SRCQC and MRCQC charts. Also, the “+” is an indication that
the process may have improved.If however ln(cumulative quantity) is below the
UCL of CQC and MCQC charts the process has no improvement. According to
the MRCQC-chart, the sign “*” for the remainders of the sample numbers 5 and
56 show doubtful state, whereas the RCQC-chart gives the wrong signal of an in
control situation at sample number 5. On MRCQC-chart, the sign “+” appears
beyond the UCL, which is an indication that the process may have improved and
hence MRCQC perform better in comparison to its competitor(s).

Figure 7: Comparison of MRCQC and SRCQC with existing CQC and MCQC control
charts.

5. Concluding Remarks

This study has investigated Bayesian estimation for the mixture Rayleigh
model and proposed its application in process monitoring. A new MRCQC chart
was developed for industrial applications and a SRCQC chart is discussed as a spe-
cial case for single component distribution. We have examined the performance of
the proposal for different rates of defective units. It was observed that the MR-
CQC chart is quite efficient at early detection of shifts. In some situations, the
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single component SRCQC-chart may not perform well and the mixture MRCQC-
chart serves is more effective in terms of early shift detection in deterioration and
improvement regions. Moreover, a Bayesian technique enhanced the performance
of estimates of mixture models in terms of being precise.

This scope of this study may be extended to other lifetime distributions such
as Gumbel, Power, Lognormal and Gamma models. Memory structures such as
cumulative sum (CUSUM) and exponentially weighted moving average (EWMA)
control charts may also be developed along these lines. Furthermore, multivari-
ate generalization of MRCQC-charts may be an interesting topic for additional
research in this sector.[

Received: November 2014 — Accepted: July 2015
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Appendix

λ̂1(WBLF ) =∑n−r
k=0
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.
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λ̂2(WBLF )
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Where Ω is formulized as:
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