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Abstract

This article deals with the e�ect of data aggregation, when Poisson pro-
cesses with varying sample sizes, are monitored. These aggregation proce-
dures are necessary or convenient in many applications, and can simplify
monitoring processes. In health surveillance applications it is a common
practice to aggregate the observations during a certain time period and mon-
itor the processes at the end of it. Also, in this type of applications it is very
frequent that the sample size vary over time, which makes that instead of
monitor the mean of the processes, as would be in the case of Poisson obser-
vations with constant sample size, the occurrence rate of an adverse event is
monitored.

Two control charts for monitoring the count Poisson data with time-
varying sample sizes are proposed by Shen, Zou, Tsung & Jiang (2013) and
Dong, Hedayat & Sinha (2008). We use the average run length (ARL) to
study the performance of these control charts when di�erent levels of aggre-
gation, two scenarios of generating of sample size and di�erent out-of-control
states are considered. Simulation studies show the e�ect of data aggregation
in some situations, as well as those in which their use may be appropriate
without signi�cantly compromising the prompt detection of out-of-control
signals. We also show the e�ect of data aggregation with an example of
application in health surveillance.
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Resumen

Este artículo trata sobre el efecto de la agregación de datos cuando se
monitorean procesos Poisson con tamaño de muestra variable. Estos proce-
dimientos de agregación resultan necesarios o convenientes en muchas apli-
caciones y pueden simpli�car los procesos de monitoreo. En aplicaciones
de vigilancia de la salud, es una práctica común agregar las observaciones
durante un cierto período y monitorear el proceso al �nal de éste. También,
en este tipo de aplicaciones es muy frecuente que el tamaño de muestra varíe
sobre el tiempo, lo cual hace que en lugar de monitorear la media del pro-
ceso, como sería en el caso de observaciones Poisson con tamaño de muestra
constante, se monitorio la tasa de ocurrencias de un evento adverso.

Dos cartas de control para monitorear el conteo de datos Poisson con
tamaños de muestra que varían en el tiempo han sido propuestas por Shen
et al. (2013) and Dong et al. (2008). Usamos la longitud de corrida prome-
dio (ARL) para estudiar el desempeño de estas cartas de control cuando se
consideran diferentes niveles de agregación, dos escenarios de generación de
tamaños de muestra, y diferentes estados fuera de control. Estudios de simu-
lación muestran el efecto de la agregación de datos en algunas situaciones,
así como otras en las que su uso puede ser apropiado sin comprometer signi-
�cativamente la pronta detección de situaciones fuera de control. También
mostramos el efecto de la agregación mediante un ejemplo de aplicación en
vigilancia de la salud.

Palabras clave: agregación de datos, cartas EWMAG y EWMAe, vigilan-
cia de la salud, niveles de agregación, tamaños de muestras variables.

1. Introduction

There are situations for which aggregating count events is a recurrent practice.
Dubrawski & Zhang (2010) indicate that in areas such as public health surveil-
lance, the available data for analysis is presented in diverse and increasing volumes,
which can compromise the reliability of models used in the analysis and the im-
portance of statistical conclusions. The authors consider that the suitable use of
data aggregation can be a solution to this problem.
As Schuh, Woodall & Camelio (2013) pointed out, this practice has become com-
mon and necessary in many cases. This is especially true in areas related to health
surveillance. In such situations, the data are frequently aggregated, reported and
monitored after a certain period of time, as for example, the number of surgical
errors in one month or the number of cases of dengue (a tropical disease) reported
monthly in a city. In the last case, it is common to �nd that during some weeks
of the year, because of climatic factors, dengue events are equal to zero. An al-
ternative to handle the large number of zeros obtained during an equal number of
weeks, is often, aggregating the number of events obtained over periods of two or
more weeks.

As Shen et al. (2013) pointed out, when the sample size is a constant, detecting
a change in the rate could be achieved simply by detecting a change in the Poisson
mean. However, in many cases, especially those related to health surveillance, the
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sample size is not constant. In this cases, as in other related to health surveillance,
the purpose is to detect the increase in the rate of occurrence of an adverse event.
For that purpose, and according to Dong et al. (2008), in these cases one must
know not only the number of events recorded, but also the corresponding sample
size.

For many processes of interest in health surveillance, the counts of events
recorded in regular time intervals are strongly related to the product exposure,
i.e., in these processes, the counts of events recorded in regular time intervals are
related to the population at risk, which frequently changes over time, so that these
are not identically distributed. This feature makes many monitoring methods that
assume constant sample sizes, such as Frisén & De Maré (1991) and Gan (1990),
unadequate in this case. According to Dong et al. (2008), surveillance methods
for these processes have not yet been studied thoroughly.

Jiang, Shu & Tsui (2011), pointed out that a simple monitoring scheme for Pois-
son observations when sample size varies over time, is the u chart. As is known,
this chart is part of Shewhart schemes, which only uses the most recent informa-
tion to determine the state of the process, and are not sensitive to small changes.
To overcome these shortcomings of the u chart, CUSUM and EWMA schemes have
been developed for the same purpose. Several proposals have been made within
the CUSUM schemes, related to the monitoring of Poisson counts with variable
sample sizes. Rossi, Lampugnani & Marchi (1999) propose a CUSUM scheme
based on the normal approximation of a Poisson process in order to overcome the
drawback of the standard CUSUM model, when the size, population structure at
risk and reference rate may not be constant during the surveillance. Jiang et al.
(2011) propose a weighted CUSUM chart (WCUSUM) with general weight func-
tions applied to the likelihood-ratio statistic, in order to detect changes e�ciently
in the incidence rate when sample size varies. Shu, Jiang & Tsui (2011) compare
the WCUSUM chart with the conventional CUSUM procedure in the presence
of monotonous changes in population size. The simulation results show that the
WCUSUM method may be more e�cient than the conventional CUSUM methods
in detecting increases in the incidence rate, especially for small shifts.

Within the group of EWMA schemes, Dong et al. (2008) studied the monitoring
of Poisson data with sample sizes varying over time using pre-speci�ed control
limits, and explored three di�erent ways to �nd the control limits of their EWMA
schemes. Ryan & Woodall (2010) studied the ability in detecting increases in
the Poisson rate of various cumulative sum (CUSUM) and exponentially weighted
moving average (EWMA) control charts, recommended to monitor a process with
Poisson count data when the sample size varies. These authors extend the work
of Dong et al. (2008) and propose a modi�cation of this (EWMA-M), adding a
lower re�ecting barrier. Zhou, Zou, Wang & Jiang (2012) proposed a new EWMA
method based on weighted likelihood estimation and testing. However, as Shen
et al. (2013) pointed out, several works have been built on the assumption that the
sample size is assumed to follow a pre-speci�ed random or deterministic model,
which is known a priori when establishing appropriate control limits before the
control charts initiate. In practice, our knowledge about the time-varying sample
sizes is rarely available. To overcome this drawback, Shen et al. (2013) propose
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the use of probability control limits in an EWMA control chart for monitoring
Poisson count data with time-varying sample sizes in Phase II. This chart uses
dynamic control limits that are calculated at each monitoring point. The dynamic
probability control limits (DPCLs) have been used in various applications because
of their advantages over standard control limits. Huan, Shu, Woodall & Tsui
(2016) indicate that DPCLs are more general and able to accommodate more
complex situations than the constant control limits. Shang & Woodall (2015) use
DPCLs in risk-adjusted Bernoulli cumulative sum (CUSUM) chart, for monitoring
the surgical performance in speci�c patient sequences.

If we aggregate data when the sample size varies over time, and the count of
events or non-conformities follows an (conditional) independent Poisson distribu-
tion, given the corresponding sample size, the result is a process with time-varying
sample sizes and with (conditional) Poisson distribution. Given the importance of
determining the e�ect of aggregation of data in process monitoring, and consider-
ing the large number of applications that require or use time-varying sample sizes,
we study the e�ect of aggregating data in situations that involve Poisson count
data and whose sample sizes are not constant over time. If the sample sizes are
constant over time, these surveillance schemes also work properly. For this purpose
we use the schemes proposed by Shen et al. (2013) and Dong et al. (2008).

EWMAG and EWMAe charts, are two EWMA type control charts, that can
be used when there are processes in which the sample size is not constant over
time. However, these are constructed in di�erent ways. The EWMAG chart does
not have a certain structure to �nd the control limits for observations that are
obtained over time. This chart uses dynamic control limits, which are determined
online and depend only on the current and past sample size observations. Sim-
ulation processes are necessary to calculate these control limits. The EWMAe
chart uses a predetermined structure to �nd the control limits. Also, as pointed
out Shen et al. (2013), this chart was built on the assumption that the sample
size follows a prespeci�ed random or deterministic model, which is known a priori
when establishing appropriate control limits before the control chart initiates.

The remainder of this article is organized as follows. In section 2, data ag-
gregation is introduced, and it is done a review of some investigations on this
topic, emphasizing those dealing with Poisson data. In section 3, a description
of the EWMAG chart, proposed by Shen et al. (2013), is done. Also, a adapta-
tion of this chart to case of aggregated data, is done. In section 4, the EWMAe
chart, proposed by Dong et al. (2008), is described and adapted to situations in
which aggregated data is considered. In section 5, the implemented simulation
processes are described and their results are discussed. In section 6, the e�ect of
data aggregation using an application with real data is shown.

2. Aggregated Poisson Data

In many applications, it is frequent to use methodologies and practices that
facilitate the analysis of certain information, allowing to correct or at least atten-
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uate the di�culties that can generate some characteristics in the data, such as the
zero-excess presence. One of these procedures, is the data aggregation.

The e�ect of this practice was studied by Reynolds & Stoumbos (2000). They
considered two CUSUM chart types for monitoring changes in the proportion
of defective items, p. The �rst chart was based on binomial variables that result
from counting the total number of e�ective items in a sample of size n. The second
chart was based on Bernoulli observations which correspond to the individual items
checked in the samples. As result of this procedures, it was concluded that there
is little di�erence between the binomial CUSUM chart and the Bernoulli CUSUM
chart, in terms of the expected time required to detect small and moderate shifts
in p, but the Bernoulli CUSUM chart is better for detecting large shifts in this
parameter.

Reynolds & Stoumbos (2004b) investigated if it is convenient or not to group
observations. In this approach, they investigated whether it is better to use n = 1
or n > 1 as sample size. As a result they found that, combinations of CUSUM
charts for the mean and the variance, in general, produce best statistical perfor-
mance in detecting small and big shifts, sustained or transitories in µ or in σ,
when the sample consists of one observation. Besides, if the Shewhart chart is
used, n = 1 is better when it is required to detect small sustained shifts. Reynolds
& Stoumbos (2004a) investigate whether using n = 1 is better than n > 1 from
the perspective of statistical performance in monitoring the mean and the variance
process. In order to get this, the performance of Shewhart, EWMA and CUSUM
charts are compared. The result shows that it is not reasonable to use the She-
whart control chart when there are individual observations, and the EWMA and
CUSUM charts have a better statistical performance for a wide range of sample
sizes and out-of-control situations like drift processes. In the same way, signi�-
cant di�erences in the statistical performance of the EWMA and CUSUM charts,
were not found. With these charts, using n = 1 produces a better statistical
performance than n > 1.

One of the biggest areas of application of data aggregation is related to all those
situations in which a Poisson type variable is generated, such as in the public health
surveillance. In this area, the use of data aggregation is a common practice. For
example, Burkom, Elbert, Feldman & Lin (2004) explore the data aggregating
by space, time and categories of data, and discuss the impact of this technique
on the e�ciency of alert algorithms relevant to public health surveillance, among
others. The authors concluded that a judicious strategy of data aggregation has
an important function within the improvement of biomonitoring systems.

Gan (1994) compares the performance of two CUSUM charts. In one chart he
considered the time between Poisson events, which has exponential distribution,
and in the other chart he considers aggregate counts, which have Poisson distribu-
tion. He considers aggregation time periods of length 1 and 10 times units. Schuh
et al. (2013) extend Gan (1994) investigation by exploring to a greater extent
the relative performance of the exponential CUSUM and Poisson CUSUM control
charts, considering aggregation time periods of length 1, 7, 14, and 30, taking into
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account that weekly, biweekly, and monthly, are more commonly used aggregation
periods in public health and safety.

3. EWMAG Chart

As indicated earlier, Shen et al. (2013) proposed the EWMAG chart, which
uses probability control limits in the EWMA control chart for monitoring Poisson
count data with time-varying sample sizes in Phase II.

The proposed EWMA chart is called EWMAG chart because its in-control run
length distribution, is theoretically identical to the geometric distribution, i.e.,
the false alarm rate does not depend on the time of the monitoring, nor does the
sample size being monitored.

Let Xt be the count of an adverse event during the �xed time period (t −
1, t] (count of events at time t). Suppose Xt independently follows the Poisson
distribution with the mean θnt conditional on nt, where θ and nt denote the
occurrence rate of the event and sample size at time t respectively. The objective
is to detect an abrupt change in the occurrence rate from θ0 to another unknown
value θ1 > θ0. The EWMAG chart uses

Zi = (1− λ)Zi−1 + λ
Xi

ni
(1)

as the charting statistic, where Z0= θ0, and λ ∈ (0, 1] is a smoothing parameter
which determines the weights of past observations.

The control limit of the EWMAG chart must satisfy the following equations

P (Z1 > h1(α) | n1) = α

P (Zt > ht(α) | Zi < hi(α), 1 ≤ i < t, nt) = α for t > 1
(2)

where ht(α) is the control limit at time t and α is the prespeci�ed false alarm
rate. At time t, the probability control limit is determined right after we observe
the value of nt. Consequently, the EWMAG chart does not need the assumption
of future sample sizes and does not su�er from wrong model assumptions. This
property makes the proposed EWMAG chart signi�cantly di�erent from previous
control charts.

Shen et al. (2013) consider that, because of the intricacy of the conditional
probability (2) it is impossible to solve ht(α) analytically. Thus, computational
procedures are necessary. The procedure in order to �nd the probability control
limits is summarized in the following algorithm:

1. At time t, and under the in-control condition, Xt should follow the Poisson
distribution with mean θ0nt, where nt is exactly known. If there is no out-
of-control signal at time t− 1 (t = 1, 2, ...), X̂t,i (i = 1, . . . ,M) are generated
from the distribution Poisson (θ0nt). Accordingly, M values of the pseudo
charting statistic Zt are obtained through
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Ẑt,i = (1− λ)Ẑt−1,j + λ
X̂t,i

nt
(3)

where i = 1, . . . ,M , j ∈ {1, . . . ,M ′}, with M ′ = bM(1 − α)c, and Ẑt−1,j
is uniformly selected from Ẑ′[t−1]M ′ . Here, bM(1 − α)c denotes the largest
integer less than or equal to M(1 − α), and Ẑ′[t−1]M ′ contains the ranked

values Ẑt−1,(1), . . . , Ẑt−1,(M ′) which are less than or equal to ht−1(α). When

t = 1, Ẑt−1,j = θ0, for all j.

2. Sort the values Ẑt,1, Ẑt,2,. . . ,Ẑt,M in ascending order, and the α upper em-
pirical quantile of theseM values, is used for approximating the control limit
ht(α).

3. Compare the value of Ẑt, which is calculated based on observed Xt and nt,
with ht(α), to decide whether to issue an out-of-control signal or to continue
toward the next time point.

4. If it is decided to continue, the values Ẑt,(M ′+1),...,Ẑt,(M) are removed. Then
go back to step 1.

3.1. EWMAG chart for Aggregated Poisson Data

In this section, the proposal of Shen et al. (2013) is adapted to the scenario in
which data are aggregated. We suppose that X1, X2, . . . , Xi, . . . , Xm,... are the
counts of events during periods of time of equal length (t1−1, t1], (t2−1, t2],. . . ,(ti−
1, ti],. . . ,(tm − 1, tm],... For simplicity, and in accordance to Shen et al. (2013),
we will call these the counts in the times t1, t2, . . . , ti, . . . , tm,... respectively. We
suppose that Xi ∼ P (θ0nti | nti), where θ0 is the occurrence rate of the event, and
nti is the sample size at time ti. If we aggregate the counts from time ti until time
tm, it is obtain Ytim =

∑m
k=iXk, that have distribution P (θ0

∑m
k=i ntk |

∑m
k=i ntk).

Thus, according to Shen et al. (2013), it is possible to implement the EWMAG
chart for the variable Y . We will assume that the periods of aggregation have
the same length, for example, a week, a month, a year, and so on. Let Yt1r the
variable Y observed from t1 until tr (union of the time interval from (t1 − 1, t1]
until (tr − 1, tr] ). Under the in-control condition, Yt1r should follow the Poisson
distribution with mean θ0

∑r
k=1 ntk conditional on

∑r
k=1 ntk , where

∑r
k=1 ntk is

exactly known. Therefore we can obtain the control limits during the �rst time
period of aggregation, by randomly generating Ŷt1r,i, where i = 1, . . . ,M , from the
distribution P (θ0

∑r
k=1 ntk) and correspondingly calculating M values of pseudo

Zt1r from (1) with Z0 = θ0, say Ẑt1r,1,...Ẑt1r,M . Let us store in a vector Ẑ1rM

the values Ẑt1r,1,...Ẑt1r,M , sorted in ascending order. Thus control limit ht1r (α)

can be approximated as the M ′ = bM(1 − α)c largest values in Ẑ1rM . After,
ht1r (α) is compared with Zt1r , which is calculated based on the observed Yt1r and∑r
k=1 ntk . An out-of-control signal is issued if Zt1r > ht1r (α). Otherwise, it is
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possible to move forward to the next time period, from tr+1 until ts (union of the
time interval from (tr+1 − 1, tr+1] until (ts − 1, ts]), s > r + 1.

According to (2) in order to determine the control limit htr+1,s
(α) correspond-

ing to time period indicated above, we should ensure that the value of pseudo Zt1r
is less than or equal to ht1r (α). Hence only the ranked values Ẑt1r,(1), ...Ẑt1r,(M ′)

should be kept to determine htr+1,s
(α). We store the M ′ ranked pseudo Zt1r into

a vector Ẑ′1rM ′ . Let Ytr+1,s
be the variable Y observed for the time period of

aggregation tr+1 y ts. Given
∑s
k=r+1 ntk , a vector Ẑ[r+1]sM with dimension M

can be obtained throughout

Ẑtr+1,s,i = (1− λ)Ẑt1r,j + λ
Ŷtr+1,s,i∑s
k=r+1 ntk

(4)

where i = 1, . . . ,M , Ẑt1r,j is uniformly selected from Ẑ′1rM ′ with j ∈ {1, . . . ,M ′},
and Ŷtr+1,s,i are randomly generated from P (θ0

∑s
k=r+1 ntk). After sorting the M

elements of Ẑ[r+1]sM in ascending order, the control limit htr+1,s
(α) is obtained

by setting it at the (1 − α)-quantile of the M elements. An out-of-control signal

is issued if Ẑtr+1,s > htr+1,s(α). Otherwise, it is possible to move forward to the
next time period, [ts+1, tu], s > r+1. Repeat the above procedures by simulating
M samples of P (θ0

∑u
k=s+1 ntk),...etc.

4. EWMAe Chart

According to Dong et al. (2008), let the discrete time stochastic process un-
der surveillance be denoted by X = {X∗(t), t = 1, 2, ...}, where X∗(t), t ≥ 1 are
assumed to be conditionally independent given a random changepoint τ . They
also assume that X∗(t) is distributed as Poisson (Ntθ0I {t < τ}+Ntθ1I {t ≥ τ}),
where Nt is a constant representing the number of product exposures at time in-
terval t and I {t < τ} and I {t ≥ τ} are the indicator functions. The authors study
three types of EWMA methods based on an exponentially weighted moving aver-
age, Zs, of all accumulated observations. The alarm statistic can be equivalently
represented by the recursive formula

Zs = (1− λ)Zs−1 + λ
X∗(s)

Ns
, Z0 = θ0 (5)

or

Zs = (1− λ)sθ0 + λ

s∑
t=1

(1− λ)s−tX
∗(t)

Nt

where the weight parameter is λ ∈ (0, 1].

When the process is in-control, the mean of Zs, E(Zs), is equal to θ0 and the
variance of Zs is

σ(∞)2

s = λ2
s∑
t=1

(1− λ)2s−2t θ0
Nt

(6)
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Let N0 = min{Nt}. Then

σ(∞)2

s ≤ θ0
N0

λ

2− λ
{1− (1− λ)2s} = σ∗(∞)2

s (7)

and

lim
s→∞

σ∗(∞)2

s =
θ0
N0

λ

2− λ
= σ∗(∞)2 (8)

Hence, σ∗(∞)2 is the asymptotic variance of Zs.

The superscript (∞) represents τ = ∞, which corresponds to the in-control
state of the process. Here, τ represents the occurence time of change.

Dong et al. (2008) de�ne three EWMAmethods. The �rst one, called EWMAe-
type, has the time of an alarm as

tA = min{s; Zs > θ0 + Lσ(∞)
s , s ≥ 1} (9)

The second, designated EWMAa1-type, has the time of an alarm as

tA = min{s; Zs > θ0 + Lσ∗(∞)
s , s ≥ 1} (10)

The third, designated EWMAa2-type, has the time of an alarm as

tA = min{s; Zs > θ0 + Lσ∗(∞), s ≥ 1} (11)

If λ = 1, then just the last observation is used in the alarm statistic and the
EWMAa1-type and EWMAa2-type methods coincide.

As Ryan & Woodall (2010) pointed out, the equations (7) and (8) leads to a
problem when we are in phase II, since they require the knowledge of the minimum
sample size, N0, of the entire set of samples. In practice, this is unlikely since the
samples are taken in real time.

We use (6) when establishing the control limits, since with this expression it is
not necessary to know N0.

4.1. EWMAe chart for Aggregated Poisson Data

Analogous to that described in subsection 3.1, in this section we adapted the
proposal of Dong et al. (2008), which is described in section 4, to the case in which
aggregated information is used.

If in times t1, t2, . . . , ti, . . . , tn,... are observed Poisson data X∗(t1), X
∗(t2), . . . ,

X∗(ti), . . . , X
∗(tn),. . . , with means θ0nti conditional on nti respectively, then in

the time period [ti, tj ], i, j ∈ Z+ the observation Yij =
∑j
k=iX

∗(k) will be ob-

tained, which have Poisson distribution with mean θ0
∑j
k=iNtk conditional on∑j

k=iNtk . Thus, according to Dong et al. (2008), it is possible to implement the
EWMAe chart for the variable Y .
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Analogous to the �rst type of EWMA method described by Dong et al. (2008),
the monitoring statistic in this case is

Zsa = (1− λ)Zsa−1 + λ
Y (sa)∑j
k=iNtk

, Z0 = θ0 (12)

or

Zsa = (1− λ)saθ0 + λ

sa∑
t=1

(1− λ)sa−t Y (t)∑j
k=iNtk

(13)

where sa indicate the times in which the process is monitored after a certain period
of aggregation. When the process is in-control, the mean of Zsa is

E(Zsa) = E

{
(1− λ)saθ0 + λ

sa∑
t=1

(1− λ)sa−t Y (t)∑j
k=iNtk

}

= θ0

{
(1− λ)sa + λ

sa∑
t=1

(1− λ)sa−t
}

= θ0

and the variance of Zsa , σ
(∞)2

sa , is

σ(∞)2

sa = V ar(Zsa)

= V ar

{
(1− λ)saθ0 + λ

sa∑
t=1

(1− λ)sa−t Y (t)∑j
k=iNtk

}

= λ2

{
sa∑
t=1

((1− λ)2(sa−t)) θ0

(
∑j
k=iNtk)

} (14)

The variance σ
(∞)2

sa can be equivalently represented by the recursive formula

V ar(Zsa) = σ(∞)2

sa = λ2
θ0∑j

k=iNtk
+ (1− λ)2V ar(Zsa−1)

The stopping rule of EWMAe chart for aggregated Poisson data, tAa
, is

tAa
= min{sa; Zsa > θ0 + Lσ(∞)

sa , sa ≥ 1}

When aggregated observations are used, the control limits use (14), which is
analogous to (6).

5. Simulation and Results

In this section we study the behavior of ARL1 when we consider di�erent
levels of aggregation, combined with di�erent changes in θ0. The study provides
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information about the e�ect of aggregation on monitoring processes, when the
EWMAG and EWMAe charts are used. Simulation processes are used for this
purpose. Two scenarios of sample size generation, di�erent out-of-control signals
caused by increasing the in-control occurrences rate θ0 = 1, and di�erent levels of
aggregation are considered.

The aggregation level represents the number of registered points whose results
are added to be monitored later. The level of aggregation is associated with the
length of the interval at which the observations are taken, and are added to the
end of this. A larger aggregation interval implies a higher level of aggregation. For
example, if from a process, daily data is taken, an aggregation period of one week
implies a level of aggregation equal to 7.

As in Shen et al. (2013), we consider λ = 0.1, and we assume that the out-
of-control states occur when τ = 1, 5, 10, 20 and 50. The scenarios of sample size
generation, called I and II respectively and considered in Shen et al. (2013), are

nt =
13.8065

8× (0.5 + exp(−(t− 11.8532)/26.4037))

and
nt ∼ U(1, 4)

In each chart, the ARLs are obtained from 30000 replicates. Furthermore,
for the EWMAG chart, we use M = 30000 simulated Poisson observations in
each case. Also a simulation study has been done to determine the e�ect of data
aggregation under the presence of outliers. In this last case, in which we used the
scenario I only, a �xed percentage of all monitored data is contaminated using
data from a di�erent distribution from the one where the data are generated in-
control, and the number of alarms generated by each chart is determined. The
data coming from in-control processes were contamined with outliers from Poisson
distributions with rates of adverse events equal to 1.025, 1.100, 1.250, 1.500, 2.000
and 2.500. In each of these cases, 1000 data were generated, from which, 5% was
contaminated. That is, in each of these cases, 1000 data were monitored, of which
50 were outliers. Then, the total number of detections (nd), and the number of
correctly detected outliers (cd) by the charts, were compared taking into account
aggregated and non aggregated data.

For the EWMAe chart, values L were adjusted for each level of aggregation
and for each scenario related to the sample size, such that, the in-control ARL,
with aggregated and non aggregated information, is approximately equal to 370
in all cases. Then, di�erent changes were introduced in the rate of adverse events
θ, from an in-control value θ0, toward an out-of-control value θ1 > θ0. For the
EWMAG chart, the same scenarios of simulation of sample sizes were used, and
a false alarm probability (α) equal to 0.0027 was used in absence and presence
of aggregation. This value of α ensures an in-control average run length equal to
370.

Table 1 considers sample sizes generated from scenario I, and τ = 1. Here
it can be seen how the out-of-control ARL of the EWMAG and EWMAe charts
decreases, when the aggregation level increases. This behavior indicates the way in
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which the charts increase their sensitivity, by increasing the aggregation level used
in each time point. However, it should be noted that the number of individual
sampling points, used when there are aggregated data, is greater as indicated by
the ARL. For example, when we have data without aggregate in each monitoring
time point, a shift toward 1.1 in rate of adverse events, θ, is detected by the
EWMAe and EWMAG charts, in average, after 100 time points (99.2 and 97.6)
approximately. These charts, however, detect this same change in θ, in average,
after about 62 monitoring points (62.4 and 62.7), when the aggregation level is
equal to two, which is equivalent to, approximately, 124 individual sampling points.
When the level aggregation is equal to three, the charts detect this change, on
average, after about 46 monitoring points (46.4 and 45.9), which is equivalent to
about 138 individual sampling points. This shows that the sensitivity of charts
increases when the aggregation level increases, but also increases the number of
samples to be used.

Table 1: Out-of-control ARL comparison of EWMAG and EWMAe charts for di�erent
levels of aggregation. Scenario I and τ = 1.

EWMAG EWMAe

Aggregation levels Aggregation levels

θ Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

1.000 368.8 369.1 368.3 368.7 368.5 368.4 371.1 369.2 371.4 370.2 369.1 369.8

1.025 243.8 204.3 182.2 164.9 150.2 139.1 245.6 207.1 182.0 165.0 151.2 141.6

1.100 99.2 62.4 46.4 37.8 31.7 27.2 97.6 62.7 45.9 37.1 31.0 26.8

1.250 39.4 22.1 14.7 12.4 10.3 8.7 36.7 21.2 15.8 11.7 9.5 8.1

1.500 18.2 10.1 7.1 5.5 4.5 3.8 16.0 8.9 6.0 4.7 3.7 3.1

2.000 7.5 4.0 2.8 2.1 1.6 1.3 6.1 3.2 2.0 1.5 1.0 0.9

2.500 4.4 2.2 1.5 1.1 0.7 0.6 3.2 1.6 0.9 0.6 0.4 0.3

From Table 1, also can be seen that, for example, a change of 25% in θ, with
respect to its value in control, is detected by the EWMAG chart after monitoring
approximately 39 disaggregate points, while that for data with a level of aggre-
gation equal to 2, is detected after monitoring approximately 22 points, which
are equivalent to 44 individual sampling points. A similar result is obtained for
the EWMAe chart. Depending on the real situation, these di�erences in the total
number of samples used for aggregated and non aggregated data, could be of little
signi�cance. For this same change in θ and great aggregation levels, in general,
there are signi�cant di�erences between aggregated and non aggregated data.

Table 2 considers sample sizes generated from scenario II, and τ = 1. Here,
similar to what is shown in Table 1, the out-of-control ARL of the EWMAG and
EWMAe charts, decreases when the aggregation level increases in each time point
monitored, as well as it also increases the total of samples used. In this case, the
out-of-control ARL is generally smaller than in scenary I for large changes in θ,
and bigger than in scenary I for small changes in θ.

According to Shabbak & Midi (2012), in statistical quality control, a process
changes into an out-of-control situation when outliers appear in two di�erent ways,
namely, outliers that are randomly distributed within a data set and outliers that
sequentially occur after a speci�c observation during a speci�c period of time in
the data set.
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Table 2: Out-of-control ARL comparison of EWMAG and EWMAe charts for di�erent
levels of aggregation. Scenario II and τ = 1.

EWMAG EWMAe

Aggregation levels Aggregation levels

θ Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

1.000 370.1 369.0 369.3 371.1 370.2 369.2 371.3 370.6 368.7 369.2 368.8 370.2

1.025 259.7 218.6 201.9 179.8 168.6 157.1 261.1 223.8 198.6 181.5 166.0 157.6

1.100 105.4 68.7 51.0 42.2 35.3 30.0 106.8 68.2 49.9 39.3 32.9 28.5

1.250 32.7 18.0 12.5 9.9 8.0 6.9 31.3 17.4 11.2 8.6 7.0 5.9

1.500 11.1 5.8 4.0 3.0 2.4 1.9 9.8 4.8 3.2 2.3 1.8 1.5

2.000 3.7 1.7 1.1 0.7 0.5 0.4 2.8 1.2 0.7 0.4 0.3 0.2

2.500 1.8 0.7 0.4 0.2 0.1 0.1 1.2 0.4 0.2 0.05 0.04 0.02

The second case was studied in Tables 1 and 2. Table 3 shows the results of
a simulation study for the �rst case. Here, a process in-control with occurrences
rate θ0 = 1 is contaminated with outliers generated from a process with occur-
rences rate greater than θ0. More speci�cally, �ve Poisson processes in control are
considered, and each of them is contaminated with outliers generated from one of
the �ve out-of-control processes, depending on the considered changes in θ, that is,
1.025, 1.100, 1.500, 2.000 or 2.500. In each case, 1000 observations are monitored, of
which 5% correspond to outliers. Outliers are generated at speci�c points, so that
they can be fully identi�ed . The total number of detections (nd) is determined,
as well as the number of correctly detected outliers (cd) by the charts. All of the
above was done considering aggregated and non aggregated data. For aggregated
data, three aggregation levels were considered: 2, 4 and 5. In order to have more
stable results, all the above was replicated 10,000 times. As an example, of 1000
data monitored individually, with a contamination of 5%, and with an increase
of 50% in the rate of adverse events, the EWMAG chart with disaggregated data
had a total of 16 detections approximately (15.6), and 2 correctly detected outliers
approximately (1.9). However, with the same conditions as the ones above, but
now considering an aggregation level equal to 2, the values corresponding to nd
and cd, are 9.5 and 1.7 respectively. A similar behavior occurs in the EWMAe
chart. Table 3 shows that in general the aggregation level a�ects the total number
of detections, but has very little e�ect on the number of correctly detected outliers.

Table 3: Comparison of the total number of detections and correctly detected outliers,
when we consider aggregated and non aggregated data with 5% contamined.
Scenario I.

EWMAG EWMAe

Aggregation levels Aggregation levels

Level 1 Level 2 Level 4 Level 5 Level 1 Level 2 Level 4 Level 5

θ1 nd cd nd cd nd cd nd cd nd cd nd cd nd cd nd cd

1.025 8.1 0.4 4.1 0.4 2.1 0.4 1.8 0.4 7.8 0.4 4.0 0.4 2.0 0.4 1.8 0.4

1.100 9.0 0.6 4.8 0.6 2.4 0.5 2.0 0.5 8.6 0.6 4.6 0.5 2.4 0.5 2.0 0.5

1.500 15.6 1.9 9.5 1.7 5.8 1.7 4.9 1.8 14.9 1.8 9.3 1.7 5.7 1.7 4.8 1.8

2.000 30.6 5.7 20.4 5.2 15.8 5.7 15.2 6.2 29.5 5.6 19.9 5.1 15.5 5.6 14.8 6.1

2.500 60.0 12.5 43.4 11.6 33.6 12.8 32.2 13.9 58.2 12.3 42.6 11.5 33.1 12.7 31.7 13.7
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Frequently, the performance of a control chart in Phase II, is measured in terms
of its ARL. According to Ryan & Woodall (2010), the measured ARL values can
either be zero state or steady-state ARL values. Zero-state ARL values are based
on sustained shifts in the parameter that occur under the initial startup conditions
of the control chart, while steady-state ARL values are based on delayed shifts in
the parameter.

Table 4 shows the out-of-control ARL of EWMAG and EWMAe charts when
there is an increase of 25% in occurrence rate of the event. Two levels of aggre-
gation and �ve changepoints are considered. In both charts it can be noted that
when the changepoint time increases, so does the ARL1, both in the case of aggre-
gated data as in disaggregated data. The e�ect that the aggregation procedures
have on the values of the ARL1, varies very little for the di�erent changepoints.
This can be observed by comparing, through a quotient, the ARL1 of disaggre-
gated case, with its corresponding of the aggregate case, for each of the values of
τ , and in each chart. For example, by doing the quotient between the values cor-
responding to level 1 of the EWMAe chart, with the corresponding values of level
2, the values 1.7, 1.8, 1.8, 1.8, 1.9 are obtained, which indicates that the proportion
between the ARL1 of two cases, does not change signi�cantly when the value of
τ increases. Something similar occur when it is compared level 1 with level 3. A
similar behavior, have the ARL1 of the EWMAG chart.

Table 4: Out-of-control ARL comparison of EWMAG and EWMAe charts with di�er-
ent τ , and two aggregation levels. Scenario I.

EWMAG EWMAe

Aggregation levels Aggregation levels

τ Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

1 39.4 22.1 14.7 36.7 21.2 15.8

5 42.7 23.7 16.9 42.6 23.9 17.0

10 46.1 25.5 18.1 47.3 25.7 18.8

20 52.8 29.0 20.5 53.5 29.5 21.2

50 77.5 41.1 28.3 78.1 41.5 29.2

6. Example

In this section, the e�ect of aggregation of data is displayed in a real case. The
information analyzed is �led at the Department of Health of New York, from 1976
to 2012. It corresponds to data related to liver cancer in men in the state of New
York in the indicated period. From the available information, one can calculate
the sample size in each year, which, together with the number of registered cases,
allows to do the calculus of the incidence of this disease in the state and periods
indicated. These data is available at www.health.ny.gov1

Figure 1(a) shows the population of New York between 1976 and 2012, esti-
mated from available information at the website above mentioned, 1(b) shows the
behavior of the number of cancer cases throughout the period, and 1(c) shows the

1http://www.health.ny.gov/statistics/cancer/registry/table2/tb2prostatenys.htm
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incidence rate of liver cancer per 100,000 males in New York during the period of
study. The increasing trend in the number of cases and incidence rate, occurs in
almost all the period of study. The interest here is to monitor the incidence rate
of patients with cancer in this period.
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(b) Cases of liver cancer (c) Incidence rate of liver
cancer

Figure 1: Male liver cancer incidence and related population.

According to the pattern described by the incidence rate and taking into ac-
count the signi�cant change between the time point 12 (year 1987) and 13 (year
1988), the period from 1976 to 1987 is chosen as the period reference for estima-
tion of the incidence rate in control of liver cancer, i.e., this period is considered
Phase I of process. This allows to obtain θ0 = 0.73. With this estimated value
for θ0, begins the monitoring in phase II, from the year 1988. According to Shen
et al. (2013), a calibration sample of this size may not be large enough to pre-
cisely determine the true value of θ0, but it su�ces to illustrate the e�ect of data
aggregation in a real-world setting.

From Figure 2 it can be seen that when the EWMAG chart is used with non-
aggregated data, it sends an out-of-control signal at point 10 (year 1997). When
aggregations of length 2, 4 and 6 are used, the out-of-control signals are given
at points 5 (year 1997), 3 (year 1999), and 2 (year 1999) respectively. When the
EWMAe chart is used, as shown in Figure 3, similar results are found. In this
application it can be appreciated that an aggregation level equals to 2, does no
a�ect on the sensibility of control charts to detect a change in θ. Levels aggregation
of length 4 and 6 only a�ect the detection time at two periods. In Figure 2 and
3, the dotted line without markers represents the control limit of each chart, and
the dotted line with markers represents the charting statistics.

From the data of liver cancer, it can be determined that in 1997, year in which
the charts, with disaggregated data, issue a signal, the rate of occurrence is equal
to 1.15, i.e., there is an increase in θ of about 56% with respect to θ0. With this
large change in θ, using data without aggregating, or using an aggregation level
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equal to 2, is unimportant. Similar reasoning can be made when aggregation levels
of 4 and 6 are used.
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Figure 2: Monitoring of cancer liver data with the EWMAG Chart for di�erent levels
of aggregation.
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Figure 3: Monitoring of cancer liver data with the EWMAe Chart for di�erent levels
of aggregation.

This example shows that there are situations in which aggregation data pro-
cesses can be implemented, a�ecting very little the sensitivity of the monitoring
process. However, when we have little knowledge of a particular situation, it is
advisable to use low levels of aggregation.
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7. Conclusions

Data aggregation is a practice used in many cases. Although it is an important
issue, there are few studies to evaluate its impact on the monitoring of processes.
In areas such as health monitoring, the late detection of changes in the rate of
adverse events is of vital importance. Consequently, it is necessary to further
study the e�ects of this practice on the monitoring processes.

Two aspects should be taken into account at the moment of considering data
aggregation: the aggregation level and the maximum magnitude of change in the
parameter of interest that can be tolerated. In this article, we have identi�ed some
cases in which data aggregation does not involve important adverse e�ects, as well
as those in which only low levels of this, are recommended.

Simulation studies allow us to conclude that in monitoring of Poisson count
data, with a sample size not constant over time, data aggregation has some ad-
verse e�ects, especially if it is desired to swiftly detect small changes in the rate
of adverse events, being the e�ect more acentuated, as the level of aggregation
increases. However, this practice which is appropriate and needed in many cases,
properly implemented, can provide good results. In many cases, low levels of
aggregation do not a�ect monitoring processes, or do very little.

We found out that data aggregation does not signi�cantly a�ect the early
detection of out-of-control states when changes in the parameter of interest of
about 25% are tolerated, even for large levels of aggregation. For changes of
50% or more, data aggregation practically has no adverse e�ects on the e�ciency
of monitoring procedures, regardless of the level of aggregation. More detailed
simulation studies could reveal more precisely the magnitudes of changes in the
rate of adverse events, for which it could be considered workable data aggregation,
without signi�cantly a�ecting the e�ciency of monitoring processes. The little
e�ect of data aggregation in the detection of outliers should be noted. It can also
be concluded that the e�ect that the aggregation procedures have on the values
of the ARL1, varies very little for di�erent changepoints.

The EWMAG and EWMAe charts, designed to monitor the rate of adverse
events in Poisson count data, when sample sizes are not constant over time, show a
similar behavior in the presence of aggregated data, observing a better performance
of the EWMAG chart, only when small changes in the rate of adverse events
are detected, and there are low levels of aggregation. In other situations, the
EWMAe chart usually shows lower values of out-of-control ARL. Even though in
studies related to health surveillance, is essential to detect as soon as possible
small changes in the rate of adverse events, there may be some situations in which
moderate changes can be tolerated. In these cases, the data aggregation could be
considered feasible without causing major problems, even for various aggregation
levels.

Though there are sophisticated procedures for the proper handling of data with
zeros excess in the context of control charts, data aggregation can be a simple and
convenient alternative in this and many other cases.
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