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Abstract

Early detection combined with e�ective treatment are the only ways
to �ght against cancer, and cancer screening is the primary technique for
early detection. Although mass cancer screening has been carried out for
decades, there are many unsolved problems, and the statistical theory of
cancer screening is still under developed. Screening sensitivity, time du-
ration in the preclinical state, and time duration in the disease free state
are the three key parameters, which are critical in cancer screening, since
all other estimates are functions of the three key parameters. Lead time is
the diagnosis time advanced by screening, and it serves as a measurement
of e�ectiveness of screening programs. In this article, we provide a review
for major probability models and statistical methodologies that have been
developed on the estimation of the three key parameters and the lead time
distributions. These methods can be applied to screening of other chronic
diseases after slight modi�cations.

Key words: Cancer, Lead time, Sensitivity, Sojourn time, Transition
density.

Resumen

Detección temprana combinada con la efectividad de los tratamientos son
las únicas formas de combatir en contra del cáncer, y el examen de búsqueda
temprana es la técnica principal para detección temprana. A pesar de que
la búsqueda temprana de la masa cancerígena se ha realizado pro décadas,
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hay muchos problemas sin resolver, y la teoría estadística de la búsqueda del
cáncer está todavía en desarrollo. Los tres parámetros claves: sensibilidad
de la búsqueda, la duración en tiempo en el estado pre-clínico, y la duración
en tiempo de la enfermedad en estado libre, son críticos en la búsqueda de
cáncer; esto es porque todos los otros estimadores son funciones de estos
tres parámetros claves. El tiempo de ventaja es el tiempo de diagnóstico
avanzado por la búsqueda, y sirve como una medida de la efectividad de
los programas de búsqueda. En este artículo, presentamos una revisión de
los modelos de probabilidad principales y las metodologías estadísticas que
han sido desarrolladas en la estimación de los tres parámetros claves y las
distribuciones del tiempo de ventaja. Estos métodos pueden ser aplicados a
la búsqueda de otras enfermedades crónicas con modi�caciones menores.

Palabras clave: búsqueda de cáncer, densidad de transición, sensibilidad,
tiempo de estadía, tiempo de ventaja.

1. Introduction

Cancer screening, as the primary technique for early detection, has been car-
ried out since 1960s. The goal of screening is to catch the disease early before
symptoms appear. The United States Preventive Services Task Force (USPSTF)
has recommended screening schedules for almost all of the most prevalent cancers
(USPSTF 2016), such as breast, lung, colon, cervical cancer, etc. Although di�er-
ent cancer sites have their speci�c characteristics and developmental stages, they
all share some common features as well.

The commonly followed progressive model used in cancer screening and its
parameters are outlined below. A cohort of apparently healthy individuals are
enrolled in a screening program to detect the presence of a speci�c disease. The
disease progression stochastic model was �rst proposed by Zelen & Feinleib (1969)
and has been used since then. In this model, the disease progresses through 3
states: S0 → Sp → Sc (See Figure 1). S0 refers to the disease-free state or the
state in which the disease can not be detected; Sp refers to the preclinical disease
state, in which an asymptomatic individual unknowingly has the disease that a
screening exam can detect; and Sc refers to the state at which the disease manifests
itself in clinical symptoms. The progressive disease model describes the natural
history of lesions detected by screening for cancer. The goal of screening programs
is to detect the cancer in the preclinical state (Sp), so that it may be treated before
adverse symptoms arise.
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Figure 1: Disease progressive states and the lead time.

Sensitivity is the probability that an screening exam result is positive, given
that an individual is in the preclinical state Sp. More speci�cally, a binary variable
D represents the true disease status of an individual; that is, D takes value one

Revista Colombiana de Estadística 40 (2017) 263�278



Key Parameters and Lead Time in Cancer Screening 265

when an individual has the disease and zero otherwise. The binary variable X
represents test result from a screening exam with X = 1 indicating that the test
is positive. The sensitivity is the probability of correctly identifying those who
have the disease, that is, β = P (X = 1 | D = 1). Speci�city is the probability of
correctly identifying those who do not have the disease, that is, α = P (X = 0 |
D = 0). Ideally, we desire the test to have both a sensitivity and speci�city of
100%, but in reality this is unachievable. In fact, both sensitivity and speci�city
cannot be estimated directly from data summary in a mass screening. To see why,
suppose there are n people take part in one screening exam, according to their true
disease status and the screening results, they can be classi�ed into four categories
as in Table 1.

Table 1: True disease status and test result in one mass screening.

Disease Status

Diseased: D = 1 Not diseased: D = 0

Test + True positive (n11) False positive (n12)

Result − False negative (n21) True negative (n22)

From Table 1, the sensitivity is β = n11/(n11 + n21), and the speci�city is
α = n22/(n12 + n22), where n11 and n12 can be obtained by a follow-up exam,
such as a biopsy after a positive screening result to con�rm either the �nding is
cancerous or not. However, for those screened negative individuals (who are the
majority in a mass screening), con�rmation of the true disease status is not cost
e�ective, nor ethical. Therefore, n21 and n22 are usually unknown, although their
sum is observed. Hence, β and α cannot be obtained from data directly. Also,
a screened negative individual who has been followed and found to be positive
later may fall into one of two cases: either it was a false negative on the previous
screening exams, or it is a newly developed case. However, the sensitivity can
be estimated by likelihood-based estimation from mass screening data (Shen &
Zelen 1999, Wu, Rosner & Broemeling 2005, Wu, Wu, Banicescu & Cariño 2005).

Sojourn time is the time from when the disease �rst develops to the mani-
festation of clinical symptoms. If one enters the preclinical state (Sp) at age t1,
and becomes clinically incident (Sc) later at age t2, then (t2 − t1) is the sojourn
time (see Figure 1). The nature of data collection in a screening program make
the exact observation of time of onset of either Sp or Sc impossible. Therefore,
estimation of the sojourn time distribution is di�cult. However, this information
can be obtained under model assumptions. For example, previous analyses have
shown that the preclinical state of breast cancer may last from 1 to 4 years (Shen
& Zelen 1999, Shen, Wu & Zelen 2001, Wu, Rosner & Broemeling 2005, Wu, Wu,
Banicescu & Cariño 2005), and sojourn time may last longer for colorectal cancer
(Wu, Erwin & Rosner 2009b). Hence, cancers with longer sojourn time are more
likely to be detected in its preclinical stage, which is the goal of implementing a
screening program.

The transition density from the disease free state (S0) to the preclinical state
(Sp) is the probability density function (PDF) of the time duration in the disease-
free state S0, i.e., t1 in Figure 1. It is commonly assumed that the sojourn time
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and the transition time are independent (Wu, Rosner & Broemeling 2005, Wu, Wu,
Banicescu & Cariño 2005). Due to the imperfect sensitivity of the test and the
interval-censored nature of the data, the transition density is typically estimated
by relying on common parametric models or interval-constant assumptions.

Lead time is the length of time that the diagnosis is advanced by screening.
In Figure 1, if one is o�ered a screening exam at time t within the time interval
(t1, t2), and cancer is diagnosed, then the length of the time (t2 − t) is the lead

time. An individual with a longer lead time usually has a better prognosis than
one with a shorter lead time. For a particular case detected by the screening, the
lead time is unobservable, due to the fact that once cancer was diagnosed, it will
be treated immediately, making it impossible to observe the onset of clinical state
Sc.

The three key parameters in screening are the sensitivity, the sojourn time and
the transition density. They are the key parameters due to the fact that all other
estimates are functions of these three key parameters, including the lead time.
In the next few sections, we will review the existing statistical methods used to
estimate the three key parameters in cancer screening, as well as the methods for
estimating the lead time. Finally, we close the article with a brief discussion of
the variations of these methods as applied to di�erent cancer sites, such as breast,
colon, and lung cancer.

2. Estimation of the Three Key Parameters

We �rst introduce some notation used in the remainder of the article. Consider
a group of initially asymptomatic individuals scheduled with K ordered screening
exams t0 < t1 < . . . < tK−1, where ti−1 represents a person's age when receiving
the ith screen, i = 1, . . . ,K. For an annual screening program, ti = t0 + i. We
de�ne β as the sensitivity of the screening exam, β = β(ti) if it is age-dependent.
The function w(t) describes the time duration in S0; note that it is often modeled
as a sub-PDF due to the fact that someone may stay in the state S0 during their
lifetime. Finally, q(·) is the probability density function of the sojourn time in Sp,
with the survival function Q(z) =

∫∞
z
q(x) dx.

The mass screening data used in these methods usually consist of three pieces
of information from each screening cycle: ni is the total number of individuals
examined at ith screening (at age ti−1); si denotes the number of individuals
diagnosed by the ith screening exam, that is, the number of screen-detected cases;
ri is the number of individuals found in the clinical state (Sc) within the ith
screening interval (ti−1, ti), that is, the number of interval cases. Table 2 shows
the data format for a mass screening program with K scheduled exams, where t0
is the age at the �rst exam, and the triplets (ni, si, ri) strati�ed by the initial age
are the data we use.
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Table 2: A sample of mass cancer screening data.

Age (t0) n1 s1 r1 n2 s2 r2 . . . nK sK rK
...

60 1946 16 3 1847 13 1 . . . 1797 17 0

61 1786 18 0 1678 14 1 . . . 1659 11 3

62 1548 11 1 1452 8 2 . . . 1408 12 0
...

2.1. Likelihood Function in Stable and Nonstable Disease

Models

Shen & Zelen (1999) proposed a likelihood function to estimate the screening
sensitivity and the mean sojourn time under the assumptions of a stable and
nonstable disease model. The stable model means that the transition density
w(t) = w is uniformly distributed over all ages, and the nonstable model allows
the probability of transitioning w(t) to depend on t. In their approach, they
take w(t) to be a step function of age with discontinuities every �ve years. The
sojourn time was assumed to follow an exponential(µ) distribution in both stable
and nonstable models, i.e., Q(x) = exp(−x/µ). The estimated parameters are the
sensitivity β, the mean sojourn time µ and the transition density w.

Consider the ith screening interval [ti−1, ti) of a �xed age strata. Let Di be the
probability of an preclinical individual diagnosed at the ith screening given at age
ti−1. For an individual who is diagnosed at the ith screening (i > 1), the person
has to be tested as negative at all previous (i − 1) screening exams and stay in
preclinical state at least till ti−1. It can be calculated by

Di =

{
βwµ

[
1− β

∑i−1
j=1(1− β)i−j−1Q(ti−1 − tj−1)

]
(i > 1)

βwµ (i = 1)

Let Ii be the probability of an individual being incident in the ith interval. The
person has failed to be detected at i previous exams (true negative or false nega-
tive), and develops clinical cancer at time point t after ti−1. The person can enter
the preclinical state at anytime before t. It is given by

Ii = wµ

 ti − ti−1
µ

− β
i−1∑
j=0

(1− β)i−j−1{Q(ti−1 − tj)−Q(ti − tj)}


Thus, the full likelihood function was derived as

Li = Di
siIi

ri{1−Di − Ii}ni−si−ri
3∏
j=1

(
αj
β

)sij
where the likelihood functions only depend on sensitivities for di�erent modali-
ties αj and the parameter vector of the sojourn time distribution. The overall
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sensitivity, β = α1 + α2 + α3, is applied to the case of using two screening modal-
ities simultaneous in each exam, such as using mammogram and physical exam
in breast cancer, or using chest X-ray and sputum cytology in lung cancer, with
β1 = α1 + α3 and β2 = α2 + α3 represent sensitivity of each modality (See Shen
et al. (2001) for details). And si1 + si2 + si3 = si denotes the number of cases
detected by modality 1 only, by modality 2 only and by both.

By treating ri and si as approximately Poisson, they develop a simpli�ed con-
ditional likelihood function

Li =
Ii
riDi

si

{Ii +Di}(ri+si)
3∏
j=1

(
αj
β

)sij

In both papers (Shen & Zelen 1999, Shen et al. 2001), the data was not strati�ed
by age, which means Table 2 could be collapsed into a vector. Two breast cancer
screening datasets, the Health Insurance Plan (HIP) study and the Canadian
National Breast Screening study were used in both stable and nonstable model. In
the nonstable model, estimates of the transition rate w for each �ve year interval
can be achieved by using the incidence data from the SEERs database. The
innovation of this study is that a likelihood function was developed to estimate
the sensitivity and the mean sojourn time.

2.2. Estimation of age-dependent sensitivity and transition

probability

Wu, Rosner & Broemeling (2005) developed statistical inference procedures to
estimate the sojourn time, the age-dependent sensitivity, and the age-dependent
transition density from the disease-free state to the preclinical state. Both max-
imum likelihood estimate (MLE) and Bayesian posterior estimates were used to
estimate the parameters. The age was considered to be a covariate of the sensi-
tivity and the transition probability density.

Consider a cohort of initially asymptomatic individuals who enter the screening
program at age t0. There are K ordered screening exams that will occur at age
t0 < t1 · · · < tK−1. T = tK is the follow-up time after the last exam, during
which incident case may be detected. Let (ni,t0 , si,t0 , ri,t0) be the data for the ith
screening for the strata with starting age t0. Then the likelihood for the individuals
aged t0 at study entry is proportional to

L(· | t0) =

K∏
k=1

D
sk,t0

k,t0
I
rk,t0

k,t0
(1−Dk,t0 − Ik,t0)nk,t0

−sk,t0
−rk,t0 (1)

where Dk,t0 is the probability that an individual will be detected by the kth
screening exam (at age tk−1) given this person is in the state Sp. Here, we work
with a single testing modality, so there are no α terms as in the previous section.
When k = 1, 2, . . . ,K, Dk,t0 can be calculated by
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D1,t0 =β(t0)

∫ t0

0

w(x)Q(t0 − x) dx

Dk,t0 =β(tk−1)

{
k−2∑
i=1

{
[1− β(ti)] · · · [1− β(tk−2)]

∫ ti

ti−1

w(x)Q(tk−1 − x) dx

}

+

∫ tk−1

tk−2

w(x)Q(tk−1 − x) dx

}
, for k = 2, . . . ,K

The likelihood also depends on Ik,t0 , the probability of an individual being incident
during the kth interval (tk−1, tk), it can be calculated by

Ik,t0 =

k−1∑
i=0

{
[1− β(ti)] · · · [1− β(tk−1)]

∫ ti

ti−1

w(x)[Q(tk−1 − x)−Q(tk − x)] dx

}

+

∫ tk

tk−1

w(x)[1−Q(tk − x)] dx, for k = 1, . . . ,K

For one screening study, the likelihood for all age groups is proportional to

L =
∏
t0

L(· | t0)

We can clearly see the likelihood is a function of the three key parameters β(t),
w(t) and q(x). The parametric models for the three key parameters were carefully
chosen as following:

β(t) =
1

1 + exp{−b0 − b1(t− t̄)}

w(t) = wmax ·
1√

2πσt
exp{−(log t− µ)2/(2σ2)}, t > 0

q(x) =
κxκ−1ρκ

(1 + (xρ)κ)2

where t̄ is the average age at entry in the study group. The sensitivity β(t) was
associated with age t by a logistic link. The log-normal distribution was used
for the transition probability w(t). As the integral of w(t) over all ages is the
lifetime risk of developing a cancer and should always be less than 1, w(t) is in
fact a sub-PDF. Hence, the upper limit was set to wmax =

∫
w(t)dt. For breast

cancer, the upper limit was set to be 0.2, and for heavy smokers in lung cancer,
it was 0.3 (Wu, Rosner & Broemeling 2005, Liu, Levitt, Riley & Wu 2015). For
the sojourn time, the log-logistic distribution was adopted, in part due to its
convenient survival function Q(x) = [1 + (ρx)κ]−1. The unknown parameters
θ = (b0, b1, µ, σ

2, κ, ρ) were estimated from the likelihood function described above.
Note that although the integrals in Dk,t0 and Ik,t0 are not available in closed-form,
methods for numerical integration can be applied. Simulations were carried to
evaluate the reliability of the proposed likelihood, and the detailed procedure can
be found in Wu, Wu, Banicescu & Cariño (2005). Both Markov Chain Monte
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Carlo (MCMC) estimates and MLEs were obtained. They applied their model
to the HIP female breast cancer study and obtained estimates for age-dependent
sensitivity and transition probability along with the sojourn time.

2.3. Key Parameters Estimation When Sensitivity Depends

on Sojourn Time

Wu, Cariño & Wu (2008) argued that the screening sensitivity should be a
function of both age at diagnosis and the amount of time spent in the preclinical
state, rather than only depend on the age at diagnosis. Intuitively, as the cancer
gets closer to progressing from the preclinical state to the clinical state, it should
be easier to catch by a screening exam than it was previously.

In this way, the sensitivity is modeled as β = β(t, s | S), where t represents
an individual's age at the screening exam, s is the time duration a person has
already spent in the preclinical state, and S is the sojourn time in Sp (s < S).
The probability that an individual will be diagnosed by the kth screening exam
(at age tk−1) given that this person is in the state Sp with initial age t0 becomes

D1,t0 =

∫ t0

0

w(x)

∫ ∞
t0−x

q(t)β(t0, t0 − x | t) dt dx (2)

Dk,t0 =

k−2∑
i=0


∫ ti

ti−1

w(x)

∫ ∞
tk−1−x

q(t)

k−2∏
j=i

[1− β(tj , tj − x | t)]

β(tk−1, tk−1 − x | t) dt dx


+

∫ tk−1

tk−2

w(x)

∫ ∞
tk−1−x

q(t)β(tk−1, tk−1 − x | t) dt dx, for k = 2, . . . ,K

(3)

The probability that an individual is an incident case during the kth interval
(tk−1, tk) with initial age t0 becomes

Ik,t0 =

k−1∑
i=0


∫ ti

ti−1

w(x)

∫ tk−x

tk−1−x
q(t)

k−1∏
j=i

[1− β(tj , tj − x | t)]

 dt dx


+

∫ tk

tk−1

w(x)[1−Q(tk − x)] dx, for k = 2, . . . ,K

(4)

The sensitivity associated with age, time spent in Sp and sojourn time is

β(t, s | S) =
1

1 + exp[−b0 − b1(t− t̄)]
× s

S

where t̄ is the average age at entry for the entire study group, S is the sojourn
time, and s is the time a person already spent in preclinical state Sp, s ∈ [0, S].
Clearly, the sensitivity is increasing in s where the maximum sensitivity is achieved
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at s = S, that is, the moment the cancer transitions from preclinical to clinical.
When b1 > 0, the sensitivity is a monotonic increasing function of age t. This
method was applied to breast cancer data, such as HIP (Wu et al. 2008).

Motivated by the fact that age seems to have little e�ect on the screening
sensitivity in lung cancer, Kim & Wu (2016) treated the sensitivity as a function
of time spent in the preclinical state and the sojourn time for further inference.
The sensitivity was modeled as a ratio of time spent in the preclinical state s to
the sojourn time S, given by

β(s | S) =
1

1 + τ

( s
S

)γ
, τ, γ ≥ 0

where τ is a parameter added to control the overall sensitivity. The parameter γ
re�ects the changing rate of sensitivity: when s/S is close to zero, the sensitivity
increases rapidly if γ < 1, while it increases slowly if γ > 1.

The probabilities Dk,t0 and Ik,t0 are the same with Equations 2, 3 and 4. This
method combined with the likelihood in Equation 1 was applied to the Johns
Hopkins Lung Project data in Kim & Wu (2016).

3. Estimation Of the Lead Time Distribution

Lead time is the length of time that the diagnosis is advanced by screening. It
can serve as a surrogate measurement on how e�ective a screening program is. In
the case of cancer, survival time is typically measured from the time of diagnosis.
Hence, an earlier detection of the tumor due to screening will cause the patient's
survival to appear long, even if there is no real e�ect on mortality. When survival
bene�t is compared between the screened group and the control group, the lead
time must be adjusted for the screened group, so accurate estimation of the lead
time is necessary.

Many researchers have proposed methods to estimate the lead time (Kafadar
& Prorok 1994, Kafadar & Prorok 1996, Kafadar & Prorok 2003, Straatman, Peer
& Verbeek 1997). Most of these methods assume that the sojourn time follows an
exponential distribution. Due to the memoryless nature of the exponential random
variable, the lead time will follow the same exponential distribution as well. These
publications have provided estimates of the mean and variance of the lead time
under the exponential assumption. We will focus on three major methods in this
section.

3.1. Local Lead Time Distribution for the Screen-Detected

Cases

Prorok (1982) made a major contribution by deriving the conditional probabil-
ity distribution of the lead time, given that one was detected at the ith screening
exam.
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Consider a screening program with a total of K screening exams. If an in-
dividual enters the preclinical state Sp during the time interval (ti−1, ti], i =
0, 1, . . . ,K−1, this person is a member of the ith generation, where t−1 = 0. Pro-
rok (1982) argued that the lead time distribution at a given screening, say (j+1)th
screening, is a weighted average of the lead time distributions for all generations
potentially detectable at it. The local lead time PDF for individuals detected in
Sp by the (j + 1)th screening (at time tj) can be de�ned by

fDj
(l) =

∑j
i=0Dijfij(l)∑j

i=0Dij

, l ≥ 0, j = 0, 1, . . . ,K − 1

where fij(l) is the lead time distribution for ith generation who are detected at
(j+1)th screening but not before. This fDj (l) distribution can be interpreted as a
weighted-average of the lead time distributions for each generation i, with mixing
weights Dij . The ith generation lead time distribution can be calculated by

fij(l) =

∫ ti−ti−1

0
wi(ti − u)Qi(l + u+ tj − ti) du∫ ti−ti−1

0
wi(ti − u)Qi(u+ tj − ti) du

, l ≥ 0, i = 0, 1, . . . ,K − 1, j ≥ i

where wi(·) and Qi(·) are the transition density from S0 to Sp and survival function
of sojourn time for the ith generation, respectively. The u represents the length
of time from entering Sp to being detected at screening ti, which is a random
variable.

The weighting factor Dij is the probability that an individual is detected at
(j + 1)th screening given the person belongs to the ith generation. It can be
obtained by

Dij = P (Ei)P (ti)Qvi(tj − ti)f(βij), j ≥ i

where P (Ei) is the probability that an individual belongs to the ith generation.
P (ti) is the probability that an ith generation individual is in Sp at time ti.
Qvi(tj − ti) is the probability that the time length of (τ − ti) for an ith-generation
individual is not less than tj− ti, where τ represents the time point this individual
enters Sc. The term f(βij) takes account of the sensitivities of screening exams.
The derivation of these probabilities can be found in Prorok (1982) and Prorok
(1976).

Simulations were conducted to explore the lead time properties based on the
derived lead time distribution. In the simulation, the sojourn time is assumed to
follow the generalized gamma distribution, with the same mean at 2 years, and
three di�erent variances, corresponding to the cases of the coe�cient of variation
to be larger, smaller and equal to one. Simulation results showed that the local lead
time for the ith screen-detected cases will not change after a certain number (four
or �ve) of screening exams, given the screening interval was �xed at 1 year. This
suggested a possible stopping rule when designing the screening programs, since
continued screenings are not expected to yield any additional bene�t. However,
this study only focuses on the analysis of screen-detected cases whose lead time is
positive, and ignored the interval cases whose lead time is zero.
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3.2. Global Lead Time Distribution When Lifetime is Fixed

Wu, Rosner & Broemeling (2007) rigorously evaluated the lead time distribu-
tion based on model parameters for the whole cohort participating in the screening
program, including both the screen-detected and the interval incident cases. In
this way, the proportion of patients whose lead time is zero can be estimated,
together with the distribution of time of those patients who were detected early
by screening. Thus, the lead time distribution is a mixture of a point mass at zero
and a probability density function of a positive continuous random variable.

Let us consider an initially asymptomatic individual with no history of cancer,
he or she is assumed to take K screening exams at ages t0 < t1 < · · · < tK−1,
and T represents the lifetime, a �xed value. Let D represent true disease status,
with D = 1 indicating having cancer and D = 0 indicating no clinical disease in
one's lifetime. Let L represent the lead time of an individual. The distribution of
lead time is a mixture of the conditional probability P (L = 0 | D = 1) and the
conditional density function fL(z | D = 1), for z ∈ (0, T − t0):

P (L = 0 | D = 1) =
P (L = 0, D = 1)

P (D = 1)
(5)

fL(z | D = 1) =
fL(z,D = 1)

P (D = 1)
(6)

Where P (D = 1) is the probability of developing (clinical) cancer after age t0, and

P (D = 1) =

∫ t0

0

w(x)[Q(t0 − x)−Q(T − x)] dx+

∫ T

t0

w(x)[1−Q(T − x)] dx

P (L = 0, D = 1) is the probability that the lead time is zero, i.e., the collective
probability of being an interval case,

P (L = 0, D = 1)

=

K∑
j=1

{
j−1∑
i=0

(1− β(ti)) · · · (1− β(tj−1))

∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)] dx

+

∫ tj

tj−1

w(x)[1−Q(tj − x)] dx

}

The joint probability density function fL(z,D = 1) when z ∈ (0, T − t0) is:

fL(z,D = 1) = β(t0)

∫ t0

0

w(x)q(t0 + z − x) dx, if T − t1 < z ≤ T − t0
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fL(z,D = 1) =

j−1∑
i=1

β(ti)

{
i−1∑
r=0

(1− β(tr)) · · · (1− β(ti−1))

∫ tr

tr−1

w(x)q(ti + z − x) dx

+

∫ ti

ti−1

w(x)q(ti + z − x) dx

}
+ β(t0)

∫ t0

0

w(x)q(t0 + z − x) dx,

if T − tj < z ≤ T − tj−1, for j = 2, 3, . . . ,K

The validity of the probability calculation can be proved by

P (L = 0 | D = 1) +

∫ T−t0

0

fL(z | D = 1)dz = 1

It is clear that the lead time distribution depends on the three key parameters:
the sensitivity β(·), the transition probability w(·) and the distribution of sojourn
time q(·). The method was applied to the HIP study and the posterior predic-
tive distribution of the lead time was estimated using MCMC posterior samples.
Bayesian inference was performed to explore the lead time properties with di�er-
ent screening intervals (6, 9, 12, 18 and 24 months), given the initial screening age
t0 = 50 and lifetime T = 80. Later, this method was applied to various cancer
screening studies, including breast, lung, and colon cancer (Wu et al. 2007, Wu,
Erwin & Rosner 2011, Wu, Erwin & Rosner 2009a).

3.3. Global Lead Time Distribution When Lifetime Is a

Random Variable

Wu, Kafadar, Rosner & Broemeling (2012) extended the lead time distribution
by allowing the lifetime T to be a random variable, which is more realistic. The
lead time distribution when T is a random variable can be obtained by

P (L = 0 | D = 1, T ≥ t0) =

∫ ∞
t0

P (L = 0 | D = 1, T = t)fT (t | T ≥ t0) dt

fL(z | D = 1, T ≥ t0) =

∫ ∞
t0+z

fL(z | D = 1, T = t)fT (t | T ≥ t0) dt, z ∈ (0,∞)

where P (L = 0 | D = 1, T = t) and fL(z | D = 1, T = t) can be calculated
by Equations 5 and 6, and fT (t | T ≥ t0) = fT (t)/P (T ≥ t0) is the conditional
lifetime distribution. The validity of this mixed probability distribution can be
proved by

P (L = 0 | D = 1, T ≥ t0) +

∫ ∞
0

fL(z | D = 1, T ≥ t0)dz = 1

The actuarial life table from the United States Social Security Administration was
used to estimate the lifetime distribution fT (t | T ≥ t0) (see http://ssa.gov/OACT/
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STATS/table4c6.html). The life table provides the conditional probability of death
within one year from age 0 to age 119, denoted as bN = P (T < N + 1 | T ≥
N), N = 0, 1, . . . , 119. The conditional density can be approximated by

fT (t = t0 +N | T ≥ t0) = bt0+N

N∏
i=1

(1− bt0+i−1)

The �nal lifetime distribution was approximated by a step function, fT (t | T ≥
t0) ≈ fT (N | T ≥ t0), for any t ∈ (N,N + 1).

Because the lifetime T is random, the number of screening exams K = d(T −
t0)/∆e is a function of T , hence it is also a random variable, with ∆ as the
screening interval. Hence, the distribution of the lead time is a weighted average
across di�erent lengths of lifetimes. Additional simulations were done in Kendrick,
Rai & Wu (2015).

4. Discussion

Accurate estimation of the three key parameters in cancer screening lays a
foundation for evaluating the e�ectiveness of a screening protocol. In particular,
all the interesting terms (lead time, rate of over diagnosis, survival bene�ts, etc.)
can be expressed as a function of the sensitivity, sojourn time distribution, and
transition density. Estimation of the unobserved lead time is another important
topic in cancer screening, as lead time is essential in evaluating the survival bene�t
of cancer screenings.

In this paper, we reviewed three existing methods for estimating the three key
parameters. The stable and nonstable models proposed by Shen & Zelen (1999)
provide a way to estimate the key parameters using likelihood-based methods. Un-
der the nonstable model, the transition probability is not constant across di�erent
age groups, but assumed the same within each age group. Conversely, the stable
model treated the transition probability as a constant over ages. In this approach,
the sensitivity was �xed over di�erent age groups and sojourn time was estimated
using an exponential distribution. To perform inference allowing sensitivity to
vary by age, Wu, Rosner & Broemeling (2005) model sensitivity using a logistic
function of age, while assuming a log-normal density for the transition time from
S0 to Sp. While it has been argued that the sensitivity is negatively correlated
with the sojourn time (Walter & Day 1983), Wu et al. (2008) extend the sensitiv-
ity model in Wu, Rosner & Broemeling (2005) by modeling the sensitivity using
both age and the ratio of the time already spent in the preclinical state to the full
sojourn time.

Since breast cancer screening programs began before screening of other cancer
sites, the earliest developed models are known to be quite accurate for breast
cancer. It is now commonly known that sensitivity of mammogram increases
as a woman's age increases. The medical explanation is that the breast tissue of
younger women is denser and more �brous compared to that of older women, whose
breast tissue is relatively softer and fattier. The previous probability models also
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showed the trend (Wu, Rosner & Broemeling 2005, Wu, Wu, Banicescu & Cariño
2005, Chen, Brock & Wu 2010). This may not be generally true for screenings of
other cancer sites, such as the widely recommended lung cancer screening using
low-dose computed tomography (Liu et al. 2015). With this screening method,
the sensitivity does not seem to be a�ected by age. Whether the sensitivity of the
fecal occult blood test for colorectal cancer depends on age is currently uncertain
(Prevost, Launoy, Du�y & Chen 1998, Wu et al. 2009b).

We also reviewed three methods for estimating the lead time distribution in
cancer screening. Prorok (1982) derived the lead time distribution for those de-
tected at the ith exam and used it to determine the stopping rules when designing
the screening program. However, the method only considers the screen-detected
cases when the lead time is positive. Wu et al. (2007) derived the lead time distri-
bution for the whole cohort, by considering both screen-detected cases and interval
cases when the lifetime is �xed. The distribution of the lead time is a mixture of
a point mass at zero (for the interval cases) and a piece-wise continuous density
function (for the screen-detected cases); the probability calculation was dramat-
ically simpli�ed in this model, and it includes the result of Prorok's as a special
case. Wu et al. (2012) extended the model in Wu et al. (2007) to consider life-
time as a random variable. In this circumstance, the lead time distribution is a
weighted average of the lead time distribution under di�erent lifetimes. This is
the �rst prospective study: for people at current age and based on the existing
data, one can make predictive inference on the distribution of the lead time under
di�erent future screening schedules. Thus, one can use this method to infer future
outcomes, such as the possibility of early detection, and how early it could be if it
is a screen-detected case, and the possibility of no-bene�t if it is an interval case,
under various future screening schedules. These methods have been applied to es-
timate the lead time distribution of breast cancer screening (Wu et al. 2007, Shows
& Wu 2011, Wu et al. 2012), lung cancer screening (Wu et al. 2011, Jang, Kim &
Wu 2013) and colorectal cancer (Wu et al. 2009a).

E�ectiveness of screening is constantly debated. Questions regarding the e�-
cient design of cancer screening programs have arisen, such as at what age to start
a screening exam and how frequently patients should be re-screened. For example,
there has been recent controversy about whether mammography in breast cancer
screening bene�ts women in their 40s. Here, we reviewed several statistical meth-
ods and hope e�ective and novel statistical evaluation of screening protocols will
be an integral part of this debate.
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