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Abstract

The local dependence function (LDF) describes changes in the corre-
lation structure of continuous bivariate random variables along their range.
Bivariate density functions with Beta marginals can be used to model jointly
a wide variety of data with bounded outcomes in the (0,1) range, e.g. propor-
tions. In this paper we obtain expressions for the LDF of bivariate densities
constructed using three di�erent copula models (Frank, Gumbel and Joe)
with Beta marginal distributions, present examples for each, and discuss an
application of these models to analyse data collected in a study of marks
obtained on a statistics exam by postgraduate students.

Key words: Association, Beta distribution, Bivariate distribution, Copula,
Correlation.

Resumen

La función de dependencia local (FDL) describe cambios en la estructura
de la correlación entre dos variables aleatorias continuas sobre su recorrido
conjunto. Funciones bivariadas de densidad de probabilidad con densidades
marginales Beta pueden utilizarse apar modelar conjuntamente una amplia
variedad de variables respuesta acotadas en el intervalo (0, 1), por ejemplo
proporciones.

En este artículo obtenemos expresiones para la FDL de densidades bi-
variadas utilizando tres modelos de cópulas (Frank, Gumbel y Joe) con den-
sidades marginales Beta, presentamos ejemplos para cada una de estas fun-
ciones, y discutimos una aplicación de estos modelos al análisis de datos
recolectados en un estudio de cali�caciones para un examen de estadística
aplicado a estudiantes de postgrado.
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1. Introduction

Interest often lies in studying bivariate bounded distributions, for example
where both random variables (rv's) are rates or proportions limited from 0 to 1
and these can be e�ciently modelled using bivariate Beta distributions. There are
many �elds of application for such joint models, e.g. mathematics and language
exam marks of students, results of psychological tests applied to matched groups of
patients receiving intervention and placebo, the percentiles of height and weight,
or the proportions of household income spent on food and on heating.

There are several models for bivariate Beta distributions: some are derived
from transformations of three standard (Olkin & Liu 2003), non-central and �ve
(Gupta, Orozco-Castañeda & Nagar 2011) Gamma-distributed rv's; others arise
from the relations between the Beta, F and skew-t distributions (Jones 2002),
(El-Bassiouny & Jones 2009).

Sometimes there is no desire to impose constraints on the data-generating
mechanism, such as those driven by transformations of Gamma densities, and al-
ternative processes are required. Thus, another possibility is provided by the class
of bivariate distributions with Beta marginals constructed via copula functions.
Copulae are functions that join univariate cumulative distribution functions (cdf)
into a multivariate cdf (Sklar 1959). Let F1(x1) and F2(x2) denote the univariate
marginals of beta-distributed rv's X1 and X2, respectively. Sklar's theorem es-
tablishes that if H is a two-dimensional cdf with marginals F1 and F2, then there
exists uniquely a copula C : [0, 1] × [0, 1] → [0, 1], such that for all rv's X1 and
X2 in [−∞,∞]:

H (x1, x2; θ) = C (F1(x1), F2(x2)) .

The copula parameter θ de�nes the degree of association between the marginals
and it is well-known that it is directly associated with Kendall's correlation coef-
�cient (Schweizer & Wol� 1981), as follows:

τ = 4

∫ ∞
−∞

∫ ∞
−∞

H (x1, x2; θ) ∂H (x1, x2; θ)− 1.

Moreover, a scalar measure of correlation, e.g. Pearson's r, is often not enough
to adequately describe the dependence structure of bivariate rv's (X1, X2) with
continuous joint density function f . An interesting review paper on copula and
dependence structures is (Escarela & Hernández 2009).

Local dependence measures allow a thorough exploration of the nature of the
joint variation by analysing changes in the strength of the association along the
range of (X1, X2). There are several models and graphical representations of the
notion of local dependence, for example local dependence maps (Jones & Koch
2003), local Gaussian correlation (Tjøstheim & Hufthammer 2013), Kendall plots
(Genest & Boies 2003) and chi-plots (Fisher & Switzer 1985). Here we focus on
the de�nition of the local dependence function (LDF) as given by Holland & Wang
(1987):
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γ (x1, x2) =
∂2 ln f (x1, x2)

∂x1 ∂x2
. (1)

The γ (x1, x2) LDF calculates the rate of change of the natural logarithm of
the bivariate density at every combination of the x1 and x2 values. The LDF
can be seen as a localization of the Pearson correlation coe�cient r for (X1, X2)
(Jones 1996), and measures the strength of the association between X1 and X2

in a neighbourhood of any point (x1, x2) in the domain of f . For independent
rv's γ is uniformly 0, and it is constant only for the few distributions identi�ed by
(Jones 1998), among them the bivariate normal with value γ = r / (1− r2).

The class of bivariate models with Beta marginals provides an interesting
framework in which to explore the role of the LDF in revealing bivariate struc-
tures because the Beta distribution is extremely �exible and can produce proba-
bility density functions (pdf's) in many shapes, e.g. U- and J-shaped, symmet-
ric, and even uniform. Some work on this has been done by (Gupta, Kirmani
& Srivastava 2010); see the LDF formula in equations 11 and 20 for the Farlie�
Gumbel�Morgenstern (FGM) (Morgernstern 1956, Gumbel 1960, Fairlie 1960) and
Ali�Mikhail�Haq (AMH) (Ali, Mikhail & Haq 1978 and Kumar 2010) copulae with
Beta marginals, respectively. We aim to extend these LDF formulae to more bi-
variate copulas with Beta marginals that have not been previously studied. The
LDF, as given in equation (1), is directly related to the density of the bivariate
distribution itself via its moments as shown by Jones (1996), hence it is easy to
construct when the bivariate distribution is fully speci�ed. We hope to improve
research practice in exploring bivariate associations by providing the LDF for three
bivariate distributions obtained via coupling Beta marginals and focusing on the
interpretation of their graphical displays.

The copula models featured in this paper were chosen based on their widespread
usage in the multivariate research �eld, the ease of construction of their LDF as
well as their ability to capture a wide range of dependency structures. We focus on
three models from the Archimedean family (Nelsen 2013): Frank (1979), Gumbel
(1960) and Joe (1993, 1997).

In the next section, we provide expressions of the LDF for the three bivariate
copulas with Beta marginals (as obtained via the computational software Mathe-
matica version 10 (Wolfram Research Inc 2014) using the MathStatica extension
(Rose & Smith 2002)) along with illustrations of the copula density and the LDF
for each with varying parameters (using R Development Core Team (2007), version
3.1.2) to facilitate the reader's understanding and interpretation of the LDF �g-
ures. In section 3, and for the purposes of completeness, we discuss the graphical
interpretation of the results for the FGM and AMH copulas with Beta marginals
as presented by Gupta et al. (2010).

There are very few published applications of the LDF to real data despite its
great potential for its use on non-Normal bivariate associations that researchers
often deal with. Usually analysis of such associations is restricted simply to a
nonparametric scalar correlation coe�cient, such as Spearman's or Kendall's. In
section 4, we �t and compare copula models to obtain the maximum likelihood
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estimates (Yan 2007) of the parameters of the bivariate pdf with Beta marginals to
a dataset from the �eld of statistical education and we demonstrate the usefulness
of the derived LDF formulations as an alternative to scalar correlation coe�cients.

2. Copula-De�ned Bivariate Distributions with Beta

Marginals

Let X1, X2 be univariate random variables each with a univariate Beta distri-
bution with shape parameters ai, bi ≥ 0, i = 1, 2 respectively, i.e.:

fi (xi) =
xi
ai−1 (1− xi)bi−1

B (ai, bi)
and Fi (xi) =

B (xi, ai, bi)

B (ai, bi)

where B (x; a, b) =
∫ x
0
ta−1 (1−t)b−1 ∂ t denotes the incomplete beta function, and

B (a, b) = B (1, a, b). We denote the survival function as F̄ (x) = 1− F (x).

In each copula section below each LDF is followed by two pairs of graphs
displaying the contours of the copula density function on the left and the LDF
on the right for di�erent marginal and dependence parameters. The parameters
of the bivariate distribution (ai, bi, and θ) di�er between each copula for the �rst
pair of graphs (Figures 1, 3 and 5), but are the same for the second set of graphs
(Figures 2, 4 and 6). This illustrates how the same copula function can lead
to markedly di�erent bivariate structures for varying marginal and dependence
parameters as well as how the same parameters can lead to markedly di�erent
bivariate associations for di�ering copula functions. The contours are slices of a
distribution drawn at certain density levels; in these examples the following values
are shown: 0, 0.2, 1, 2, 3, 4, 5, 10, 15 and 100. These represent density levels on
the left hand side graph and local dependence levels on the right hand side graphs.
For both graphs, the x and y axes represent the two rv's, X1 and X2 respectively.

2.1. Frank Copula

A Frank copula is constructed via the following combination of univariate
marginals F1 (x1) and F2 (x2):

F (x1, x2) = −1

θ
ln

(
1 +

(
e−θF1 (x1) − 1

) (
e−θF2 (x2) − 1

)
e−θ − 1

)

where θ ∈ (−∞,∞), θ 6= 0 to ensure absolute continuity; if θ = 0 then X1, X2

are independent (as before).

The density of the copula with Beta marginals can be written as follows and
this corresponds to a �ve-parameter family of bivariate distributions with Beta
marginals (for i = 1, 2):
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f (x1, x2) = θ
(
eθ − 1

) [∏
i

fi (xi; ai, bi)

]
eθ (1+

∑
Fi (xi))(∑

i e
θ (1+Fi (xi)) − eθ

∑
Fi (xi) − eθ

)2
The LDF of this copula is equal to:

γ (x1, x2) = 2 θ2
(
eθ − 1

) [∏
i

fi (xi; ai, bi)

]

× eθ (1+
∑
i Fi (xi))(∑

i e
θ (1+Fi (xi)) − eθ

∑
Fi (xi) − eθ

)2
= 2 θ f (x1, x2)

Notice that the latter has the same sign as θ all over the unit square.

Figure 1 presents the pdf and LDF contours of a Frank copula with given
parameters.

Figure 1: pdf and LDF of Frank copula with marginal and dependence parameters:
a1 = 5, b1 = 2; a2 = 5, b2 = 2, θ = −12.

Both the pdf and the LDF follow the same general pattern with the only
di�erence being the fact that the local dependence function expands more widely
to accommodate for pairs of x1 and x2 that have low bivariate density but are
locally associated with respect to the whole range of values. Notice the negative
values of the LDF contours, as a result of the negative dependence parameter.

The following set of graphs shows a Frank copula with changed marginal and
dependence parameters. Notice that the general shape of the LDF is very similar
to that of the pdf, as in the previous example, i.e. local dependence values mirror
very well the density values around the same areas of the bivariate relationship.
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Figure 2: pdf and LDF of Frank copula with marginal and dependence parameters:
a1 = 0.8, b1 = 3, a2 = 0.8, b2 = 3, θ = 3.

2.2. Gumbel Copula

The Gumbel copula is de�ned as follows, where θ ∈ [1,∞):

F (x1, x2) = exp

(
−
[
(− ln F1 (x1))

θ
+ (− lnF2 (x2))

θ
]1/θ)

The density of the copula when the two marginals are Beta distributions and
its LDF can be written as (for i = 1, 2):

f(x1, x2) =
∏
i

fi (xi; ai, bi)
∏
i

F−1i (xi; ai, bi)
∏
i

(Lxi)
θ−1

×

(
θ − 1 +

∑
i

(Lxi)
θ

) 1
θ
(∑

i

(Lxi)
θ

) 1
θ−2

exp

(
−
∑
i

(Lxi)
θ

) 1
θ

where Lxi = − ln Fi (xi), and

γ (x1, x2) = (θ − 1)
∏
i

fi(xi; ai, bi)
∏
i

F−1i (xi; ai, bi)

×

(∑
i

(Lxi)
θ

) 1
θ−2 ∏

i

(Lxi)
θ−1

×

θ (2 θ − 1)

(θ − 1) (2 + 5 θ (θ − 1)) +

(∑
i

(Lxi)
θ

)2


+
(∑

(Lxi) θ
)3}

In contrast with the previous copula, there is no linear relationship between
the dependence parameter θ and the LDF for this copula.
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The pdf graph of the copula shown in Figure 3 may give the impression of a
similar positive association for most of their joint range. However, the LDF graph
provides a more thorough view of the dependence. The correlation is maximal
across the main positive diagonal whilst it decreases rather quickly o� diagonal
and becomes minimal along the (0, 1) and (1, 0) axes.

Figure 3: pdf and LDF of Gumbel copula with marginal and dependent parameters:
a1 = 5, b1 = 2, a2 = 5, b2 = 2, θ = 2.

Figure 4 shows another example of the density and dependence functions of a
Gumbel copula. The pdf emphasises the high density at the bottom left corner of
the bivariate distribution, whereas the LDF shows a strong correlation along the
central part of the distribution.

Figure 4: pdf and LDF of Gumbel copula with marginal and dependence parameters:
a1 = 0.8, b1 = 3, a2 = 0.8, b2 = 3, θ = 3.

2.3. Joe Copula

The Joe copula with Beta marginals yields the following bivariate distribution,
where θ ∈ (1,∞):
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F (x1, x2) = 1−
[
(1− F1(x1))

θ
+ (1− F2(x2))

θ − (1− F1(x1))θ(1− F2(x2))θ
] 1
θ

The density of the copula when the two marginals are Beta distributions and
its LDF can be written, respectively, as follows:

f (x1, x2) = f (x1) f (x2)
(
F̄ (x1)

)θ−1 (
F̄ (x2)

)θ−1
×

[(
F̄ (x1)

)θ − (F̄ (x2)
)θ ( ¯̄Fx1

)] 1
θ−2 [

θ − ¯̄Fx1

¯̄Fx2

]
,

where ¯̄F(xi) =
(
F̄ (xi)

)θ − 1 for i = 1, 2 and:

γ (x1, x2) = f (x1) f (x2) θ (θ − 1) [F (x1) F (x2)]
θ−1

×
−2 θ2 −

(
¯̄Fx1

)2 (
¯̄Fx2

)2
+ θ ¯̄Fx1

¯̄Fx2

[
3−

(
F̄ (x1)

)θ
+ ¯̄Fx1

¯̄Fx2

]
{[(

F̄ (x1)
)θ − (F̄ (x1)

)θ ¯̄Fx1

] [
θ − ¯̄Fx1

¯̄Fx2

]}2

As with the Gumbel copula, the overall sign of the LDF cannot be determined
directly from the sign of θ.

In Figure 5, density is highest at the top right corner whilst the remaining
corners have lower peaks. The highest levels of local dependence are found in
similar locations on the LDF graph too, i.e. all corners, with the top right corner
having the highest level of local dependence, i.e. large values of both X1 and X2

rv's are most highly correlated.

Figure 5: pdf and LDF of Joe copula with marginal and dependence parameters: a1 =
0.5, b1 = 0.1, a2 = 0.5, b2 = 0.1, θ = 1.5.

The bivariate copula shown in Figure 6 has the same parameters as the sec-
ond example of the previous two copulas, Frank (Figure 2) and Gumbel (Figure
4). This illustrates the �exibility of various copula models to capture changing
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bivariate associations/structures given the same parameters. This is mirrored in
the LDF graphs too, capturing local dependence at all sets of neighbouring points.
The LDF in Figure 6 is an example of how the same amount of local dependence
is found at two di�erent areas of the bivariate plot, i.e. for low values of X1 and
X2 and for values of X1 and X2 within the range of (0.4, 1).

Figure 6: pdf and LDF of Joe copula with marginal and dependence parameters: a1 =
0.8, b1 = 3, a2 = 0.8, b2 = 3, θ = 3.

3. More Examples and Results

For completeness, we present here examples of the FGM and AMH copulas
based on the expressions presented by Gupta et al. (2010) in Figures 7 and 8
respectively. Notice that, although the general shapes of the two densities are
similar, the LDF's are markedly di�erent. The LDF of this FGM model has the
highest correlation for x1 values higher than 0.4 and for low values of x2 and
similarly for x2 values higher than 0.4 for low values of x1, whilst this pattern was
not evident on the density graph. In contrast, the AMH copula reaches its highest
local dependence close to the bottom left corner of the graph, where the highest
density is also observed.

Figure 7: pdf and LDF of FGM copula with marginal and dependence parameters:
a1 = 1, b1 = 2, a2 = 1, b2 = 2, θ = 0.75.
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Figure 8: pdf and LDF of AMH copula with marginal and dependence parameters:
a1 = 1, b1 = 2, a2 = 1, b2 = 2, θ = 0.75.

An interesting result for the FGM copula expresses Pearson's r for this bivari-
ate model as a function of its �ve parameters. Since this bivariate distribution is
constructed as an FGM copula its joint moments reduce to the product of uni-
variate integrals in each variable as shown by D'Este (1981) and Gupta & Wong
(1985), hence

r = θ

2∏
i=1

 2B (2 ai+1,bi)3F2 ({ai, 2 ai+1, 1−bi};{ai+1, 2 ai+bi+1};1)
B (ai,bi)B (ai+1,bi)

− 1√
ai bi

ai+bi+1


where 3F2 is the generalized regularized hypergeometric function (El-Bassiouny &
Jones 2009). It was shown by Schucany, Parr & Boyer (1978) that the absolute
value of the correlation coe�cient for any FGM copula is less than or equal to
1/3 together with examples of particular marginals with correlations smaller than
1/3. It is easy to see that this bound is reached for this bivariate distribution,
e.g. if a1 = b1 = a2 = b2 = 1 then r = θ / 3. If all the four parameters of the
univariate Beta distributions in the copula are equal, r takes values between θ / 4
(all 0) and θ / 3 (all 1) and then decreases very little to stay just above 0.318 θ for
parameter values much larger than 1. We were only able to reach this result for
the FGM copula due to the ease of the calculation of the moments of its bivariate
expression; this was not possible for the other bivariate copulas presented in this
paper.

4. Application

Having calculated the cdfs and LDFs of three copula models with Beta marginals,
we analyse the association between postgraduate students' grades for a practical
SPSS task and a set of multiple-choice questions (MCQ) together comprising a
statistics module exam. The data were collected as part of an MSc Statistics mod-
ule ran at University College London by the �rst two authors in 2013 (n = 116
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students), and are shown in Figure 9. Both variables are expressed as propor-
tions between 0 and 1 and the median grade for the SPSS task is 0.72 and for the
MCQ questions is 0.51, with r̂ = 0.67 and τ̂ = 0.54. Additionally, the estimates
of multivariate skewness (m1) and kurtosis (m2) de�ned by Mardia (1970) have
values of 1.5 and 10.7, respectively, providing evidence of bivariate non-Normal
distribution when compared with the threshold values of 0 and d / (d + 2) = 0.5,
where d is the dimensionality of the dataset, which indicate multivariate Normality
(Mardia 1974).

Figure 9: Scatterplot of students' marks for SPSS and MCQs.

By �tting a bivariate Normal distribution, we obtain bivariate mean =

[
0.70

0.51

]
and bivariate covariance matrix =

[
0.040 0.015

0.015 0.013

]
. However, this distribution is

neither a natural choice for this data set due to the bounded nature of the variables
nor does it provide a good �t (BIC = −266) compared to other models that were
�tted, as shown in Table 1.

For this application, we �tted the Frank, Gumbel and Joe copulas with the use
of univariate Beta marginals for the two related proportions. The use of the AMH
and FGM copulas is not possible for this dataset, as the estimated τ is outside
the allowed bounds of (−0.18,0.33) and (−0.22, 0.22) respectively for each of these
copula models.

Table 1: AIC and BIC of �tted models

Copula AIC BIC

Frank −302.02 −288.26
Gumbel −281.24 −267.47
Joe −263.56 −249.79

According to the BIC and AIC values (Kuha 2004), the Frank copula provides
the best �t to this dataset. The left hand side graph of Figure 10 presents the
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contours of the bivariate copulae based on the maximum likelihood estimates of
the parameters of the each of the Beta marginals and the dependence parameter θ
(all were found signi�cant at 5%). The right hand side graphs show the contours
of the associated LDF.

Contours of Bivariate probability density Contours of LDF 

FRANK (SPSS: �̂�𝟏 = 𝟐. 𝟔𝟖, �̂�𝟏 = 𝟏. 𝟑𝟎 , MCQ: �̂�𝟐 =  𝟕. 𝟗𝟕 , �̂�𝟐 = 𝟕. 𝟗𝟒, �̂� = 𝟔. 𝟕𝟕 ) 

 

 

 

 

GUMBEL (SPSS: �̂�𝟏 = 𝟐. 𝟓𝟎, �̂�𝟏 = 𝟏. 𝟏𝟒 , MCQ: �̂�𝟐 =  𝟖. 𝟒𝟎 , �̂�𝟐 = 𝟖. 𝟎𝟎, �̂� = 𝟏. 𝟖𝟔 ) 

 

 

 

 

JOE (SPSS: �̂�𝟏 = 𝟐. 𝟑𝟎, �̂�𝟏 = 𝟏. 𝟏𝟏 , MCQ: �̂�𝟐 =  𝟖. 𝟑𝟑 , �̂�𝟐 = 𝟖. 𝟎𝟏, �̂� = 𝟐. 𝟎𝟕) 

 

 

 

 
 

Figure 10: Frank, Gumbel and Joe copula bivariate distribution for data on students'
marks.

The �tted pdf evaluates how densely observations occur within a certain area
but does not tell us anything about the association (not necessarily linear) of those
points within the same area, which is what the LDF does. The pdf of the Frank
copula model shows higher density around marks of (0.6,0.9) and (0.4,0.6) as well
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as a wider spread of the values for the lower marks, hence wider contours. This is
additionally emphasised in the LDF where the highest local dependence value is
located at the exact same range of values with lower local dependence values found
for the remaining ranges. The LDF provides a more comprehensive description of
the relationship between the two types of grades, which would have otherwise been
summarised merely via a constant Kendall's correlation coe�cient of τ = 0.54.

Focusing more on the LDF, what we know from years of teaching experience
is apparent in this sample; practical tasks are able to boost up student's overall
marks, where students can mark relatively well on the practical task (achieve
marks between 0.6 and 0.9) whilst they only achieve a pass on average on the
theoretical questions (marks between 0.4 and 0.6).

The Gumbel and Joe copulae fail to capture the evident dependency between
the SPSS and MCQ marks. The Gumbel copula puts more emphasis on the
peripheral points of this graph, the two extreme areas of the bivariate plot, and
entirely misses the strong dependency at the most dense areas of the scatterplot.
The Joe copula adopts a �atter association between the two variables; with marks
for the software-based question between 0.2 and 0.9 being associated with marks
ranging from 0.3 to 0.6 for the non-practical questions, suggesting that students
can perform rather well at the SPSS task whilst their theoretical marks might not
be as high.

5. Discussion

The �exibility of individual copula types to cover a wide range of bivariate
distributions with Beta marginals is emphasised via the use of di�erent parameter
sets (contrast Figures 1 and 2, 3 and 4 and 5 and 6). To show the di�erence between
copula models note that we have used the same parameter sets for Figures 2, 4
and 6. It is important for researchers to realise that correlation coe�cients do not
always convey the relationship between numerical variables in the best possible
way. Summarising the entire correlation structure in a single constant value does
not account for changing the strength of the association across the joint range of
x1 and x2. The local dependence function overcomes this problem by producing a
detailed graphical display of the association between x1 and x2 across all values.
The LDF can produce distinctly di�erent graphs for bivariate density functions
that look very much alike as demonstrated in the contrasting Figures 7 and 8.

We have presented three LDF formulae, which can be easily programmed to
produce LDF graphs for bivariate scenarios where Beta marginals are a relevant
and good choice for the univariate density functions.

Our results could be extended to incorporate covariates, hence LDF could
be then drawn conditional on selected predictor values. Additionally, the same
principles used here could be applied to marginals other than univariate Beta such
as the multivariate skew-normal distribution de�ned by Azzalini & Dalla Valle
(1996). Such extensions would lead to even greater scope for the application of

Revista Colombiana de Estadística 40 (2017) 281�296



294 Eirini Koutoumanou, Angie Wade & Mario Cortina-Borja

LDF in many �elds where bivariate rv's are analysed thus enhancing researchers'
understanding of local dependence structures.

6. Conclusions

We have used a novel approach to explore bivariate associations between rv's
via the combination of the notion of local dependence and copulas. We antici-
pate that this work will facilitate better research within the �eld of multivariate
dependence structures.
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