A Bivariate Model based on Compound Negative Binomial Distribution

Un modelo basado en bivariadas compuesto distribución binomial negativa

Maha Omair ${ }^{1, \mathrm{a}}$, Fatimah Almuhayfith ${ }^{2, \mathrm{~b}}$, Abdulhamid Alzaid ${ }^{1, c}$
${ }^{1}$ Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh, Saudi Arabia
${ }^{2}$ Department of Mathematics and Statistics, College of Sciences, King Faisal University, Alahsa, Saudi Arabia

Abstract

A new bivariate model is introduced by compounding negative binomial and geometric distributions. Distributional properties, including joint, marginal and conditional distributions are discussed. Expressions for the product moments, covariance and correlation coefficient are obtained. Some properties such as ordering, unimodality, monotonicity and self-decomposability are studied. Parameter estimators using the method of moments and maximum likelihood are derived. Applications to traffic accidents data are illustrated.

Key words: Bivariate distribution; Compound distribution; Correlation coefficient; Divisibility; Geometric distribution; Moments; Negative binomial distribution;Total positivity.

Resumen

Un nuevo modelo de dos variables se introduce mediante la composición distribuciones binomiales negativos y geométricos. propiedades distributivas, incluyendo distribuciones conjuntas, marginales y condicionales se discuten. se obtienen las expresiones para los momentos de productos, la covarianza y el coeficiente de correlación. Se estudian algunas propiedades tales como pedidos, unimodalidad, monotonía y la auto-decomposability. estimadores de parámetros utilizando el método de los momentos y de máxima verosimilitud se derivan. Aplicaciones a los datos de accidentes de tráfico se ilustran.

Palabras clave: coeficiente de correlación; distribución binomial negativa; distribución bivariada; distribución compuesto; distribución geométrica; divisibilidad; momentos; positividad total.

[^0]
1. Introduction

Let Y_{1} be a negative binomial random variable with parameters $0<p_{1}<1$, $r>0$, and probability mass function (pmf)

$$
\begin{equation*}
f_{Y_{1}}\left(y_{1}\right)=\binom{y_{1}+r-1}{y_{1}} p_{1}^{r}\left(1-p_{1}\right)^{y_{1}}, y_{1}=0,1, \ldots \tag{1}
\end{equation*}
$$

and let $W_{i}, i=1,2, \ldots$ be independent identically distributed (i.i.d.) non-negative, integer-valued random variables distributed as Q-distribution, independent of Y_{1}. The random sum $Y_{2}=\sum_{i=0}^{Y_{1}} W_{i}$ has a compound negative binomial distribution (CQNB) with compounding distribution Q , where $W_{0}=0$ with probability 1.

The univariate compound negative binomial models arise naturally in insurance and actuarial sciences and were studied by several authors (see Drekic \& Willmot (2005)). Panjer \& Willmot (1981) studied compound negative binomial with exponential distribution. Subrahmaniam (1966) derived the Pascal-Poisson distribution (compound negative binomial with Poisson distributions) as a limiting case of a more general contagious distribution (see Johnson, Kemp \& Kotz (2005)). Subrahmaniam (1978) investigated the parameters estimates for the Pascal-Poisson distribution by method of moments and maximum likelihood procedures. Jewell \& Milidiu (1986) suggested three methods to approximate the evaluation of the compound Pascal distribution where the compounding distribution is defined on both negative and positive integers. Ramsay (2009) derived expression for the cumulative distribution function of compound negative binomial where the compounding distribution is Pareto distribution. Wang (2011) presented recursion on the pdf of compound beta negative binomial distribution. Willmot \& Lin (1997) constructed upper bound for the tail of the compound negative binomial distribution. Cai \& Garrido (2000) derived two sided-bounds for tails of compound negative binomial distributions. Vellaisamy \& Upadhye (2009b) studied convolutions of compound negative binomial distributions. Gerber (1984), dhaene (1991), Vellaisamy \& Upadhye (2009a) and Upadhye \& Vellaisamy (2014) considered the problem of approximating a compound negative binomial distribution by a compound Poisson distribution. Hanagal \& Dabade (2013) introduced compound negative binomial frailty model with three baseline distributions.

Joint modeling of the bivariate random vector $\left(Y_{1}, Y_{2}\right)$ has been studied by several authors. A variety of bivariate models such as Poisson-Bernoulli, PoissonPoisson and Poisson-Geometric are discussed by Leiter \& Hamdan (1973), Cacoullos \& Papageorgiou (1980), Papageorgiou (1985) and Papageorgiou (1995). Cacoullos \& Papageorgiou (1982) introduced and studied a three parameter bivariate discrete distribution, which they called the negative binomial-Poisson, to analyze traffic accidents. Papageorgiou \& Loukas (1988) derived maximum likelihood estimators for the parameters of the bivariate negative binomial-Poisson distribution. Recently, Alzaid, Almuhayfith \& Omair (2017) obtained some general forms for density, cumulative distribution, moments, cumulants and correlation coefficient of $\left(Y_{1}, Y_{2}\right)$, when Y_{1} has a Poisson distribution, and different assumptions for the compounding distribution, namely Poisson, binomial and negative binomial distributions, denoted by BPPM, BBPM and BNBPM, respectively. Özel (2011b)
proposed a bivariate compound Poisson distribution and introduced bivariate versions of the Neyman Type A, Neyman type B, geometric-Poisson and Thomas distributions. Earthquake data was used to illustrate the application of these distributions. Özel (2011a) defined a bivariate compound Poisson distribution to model the occurences of forshock and aftershock sequences in Turkey.

In this paper, we study the random vector $\left(Y_{1}, Y_{2}\right)$ where $Y_{1} \sim N B\left(r, p_{1}\right)$ and $W_{i} \sim g e o\left(p_{2}\right)$. We refer to this distribution as BGNBD, which stands for bivariate geometric-negative binomial distribution. The BGNBD distribution can be used as appropriate model for many problems of social, income and physical nature. For instance, the number of purchased order and the number of total soled items per day, the total number of insurance claimed and the number of claimants per unit time, the total number of injury accidents and number of fatalities and the number of visits and number of drugs prescribed.

Our paper is organized as follows. In Section 2, the bivariate geometric-negative binomial distribution is derived and distributional properties are discussed. Pa rameter estimators of BGNBD are derived using the methods of moment and maximum likelihood in Section 3. Applications on real data sets are presented in Section 4 to illustrate the BGNBD. Finally, some conclusions are drawn in Section 5.

2. Bivariate Geometric Negative Binomial Distribution

Definition 1. A random vector $\left(Y_{1}, Y_{2}\right)$ with the stochastic representation $\left(Y_{1}, Y_{2}\right)={ }^{d}$ $\left(Y_{1}, \sum_{i=0}^{Y_{1}} W_{i}\right)$ where Y_{1} is a negative binomial variable given in (1) and the W_{i} 's are i.i.d. geometric variables $\left(p_{2}\right)$, independent of the Y_{1}, is said to have a bivariate geometric-negative binomial distribution with parameters r, p_{1} and p_{2}. This distribution is denoted by $\operatorname{BGNBD}\left(r, p_{1}, p_{2}\right)$.

The random variable Y_{2} is distributed according to the compound geometricnegative binomial distribution (CGNB) with parameters r, p_{1} and p_{2}, denoted by $C G N B\left(r, p_{1}, p_{2}\right)$.

2.1. General Properties of Compound Geometric-Negative Binomial Distribution

- The probability mass function

By using conditional argument on Y_{1}, it is easy to show that the pmf of $Y_{2} \sim C G N B\left(r, p_{1}, p_{2}\right)$ is given by

$$
\begin{equation*}
f_{Y_{2}}\left(y_{2}\right)=r p_{2} q_{1} p_{1}^{r} q_{2}^{y_{2}}{ }_{2} F_{1}\left(y_{2}+1, r+1 ; 2 ; p_{2} q_{1}\right), y_{2}=0,1, \ldots, \tag{2}
\end{equation*}
$$

where ${ }_{2} F_{1}$ is the Gaussian hypergeometric function (see Abramowitz \& Stegun (1972), chapter 15). Recurrence for the pmf in (2) can be derived using
the recurrence relation of the Gaussian hypergoemetric function,

$$
\begin{aligned}
& (c-a)_{2} F_{1}(a-1, b ; c ; z)+(2 a-c-(a-b) z)_{2} F_{1}(a, b ; c ; z)+ \\
& a(z-1)_{2} F_{1}(a+1, b ; c ; z)=0
\end{aligned}
$$

Thus, we have:

$$
\begin{aligned}
f_{Y_{2}}(0) & =\left[\frac{p_{1}}{1-p_{2} q_{1}}\right]^{r} \\
f_{Y_{2}}(1) & =\frac{r p_{1}^{r} p_{2} q_{2} q_{1}}{\left(1-p_{2} q_{1}\right)^{r+1}}
\end{aligned}
$$

and, $\forall y_{2} \geq 2$

$$
\begin{align*}
& \quad f_{Y_{2}}\left(y_{2}+1\right)= \\
& \frac{q_{2}}{\left(y_{2}+1\right)\left(p_{2} q_{1}-1\right)}\left\{\left(y_{2}\left(p_{2} q_{1}-2\right)-r p_{2} q_{1}\right) f_{Y_{2}}\left(y_{2}\right)+q_{2}\left(y_{2}-1\right) f_{Y_{2}}\left(y_{2}-1\right)\right\} \tag{3}
\end{align*}
$$

- Moments properties

Using properties of compound distribution, the moment generating function (mgf) can be derived as

$$
\begin{equation*}
M_{Y_{2}}(t)=\left[\frac{p_{1}}{1-q_{1} M_{W}(t)}\right]^{r}=\left[\frac{p_{1}\left(1-q_{2} e^{t}\right)}{1-q_{2} e^{t}-p_{2} q_{1}}\right]^{r} \tag{4}
\end{equation*}
$$

The mean and variance of CGNBD are obtained as follows:

$$
\begin{gather*}
E\left(Y_{2}\right)=r \frac{q_{1}}{p_{1}} E(W)=r \frac{q_{1} q_{2}}{p_{1} p_{2}} \tag{5}\\
\operatorname{Var}\left(Y_{2}\right)=r \frac{q_{1}}{p_{1}} \operatorname{Var}(W)+r \frac{q_{1}}{p_{1}^{2}} E^{2}(W)=r \frac{q_{1} q_{2}\left(p_{1}+q_{2}\right)}{p_{1}^{2} p_{2}^{2}} \tag{6}
\end{gather*}
$$

The Skewness of $Y_{2} \sim C G N B\left(r, p_{1}, p_{2}\right)$ is given by

$$
\begin{equation*}
\operatorname{Skew}\left(Y_{2}\right)=E\left(\frac{Y_{2}-r \frac{q_{1}}{p_{1}} E(W)}{\sigma_{Y_{2}}}\right)^{3}=\frac{1}{\sigma_{Y_{2}^{\frac{3}{2}}}}\left[3 r \frac{q_{1}^{2}}{p_{1}^{2}} \mu_{1}^{\prime} \mu_{2}^{\prime}+2 r \frac{q_{1}^{3}}{p_{1}^{3}} \mu_{1}^{\prime 3}+r \frac{q_{1}}{p_{1}} \mu_{3}^{\prime}\right] \tag{7}
\end{equation*}
$$

where $\mu_{i}^{\prime}, i=1,2,3$ are the first three moments about zero of W. As r and p_{1} and the moments of W are positive, it follows that the compound geometric negative binomial distribution is positively skewed.

Proposition 1. If $r=1$ then $C G N B D$ random variable has the representation $Y_{2}=I U$ where $I \sim \operatorname{Bernoulli}\left(p_{1}\right)$ independent of $U \sim G e o\left(\frac{p_{1} p_{2}}{1-p_{2} q_{1}}\right)$ i.e. Y_{2} has zero inflated geometric distribution.

Proof. From equation (4), the pgf of Y_{2} when $r=1$ is

$$
G_{Y_{2}}(t)=\frac{p_{1}\left(1-q_{2} t\right)}{1-q_{2} t-p_{2} q_{1}}=\frac{p_{1}\left(1-q_{2} t-p_{2} q_{1}\right)+p_{1} p_{2} q_{1}}{1-q_{2} t-p_{2} q_{1}}=p_{1}+q_{1} \frac{\frac{p_{1} p_{2}}{1-p_{2} q_{1}}}{1-\frac{q_{2}}{1-p_{2} q_{1}} t}
$$

which is a mixture of degenerate distribution at 1 with probability p_{1} and $G e o\left(\frac{p_{1} p_{2}}{1-p_{2} q_{1}}\right)$ with probability q_{1}. Hence, the proof is complete.

Since the negative binomial distribution can be represented as a compound Poisson distribution with logarithmic compounding distribution. Then, the compound negative binomial distribution is a compound Poisson distribution with a compound logarithmic distribution as the compounding distribution. This is stated in the following proposition.

Proposition 2. The compound negative binomial distribution with parameters r and p_{1}, and compounding distribution with pgf G_{W}, can be regarded as compound Poisson distribution with mean $\lambda=-r \log p_{1}$ and compounding distribution with pgf of the form

$$
G_{W^{*}}(t)=\frac{\log \left(1-q_{1} G_{W}(t)\right)}{\log p_{1}}
$$

- Monotonicity Properties.

Proposition 3. The pmf of $Y_{2} \sim C G N B\left(r, p_{1}, p_{2}\right)$ is log-concave for $r>1$ and log-convex for $r<1$.

Proof. The relation

$$
f_{Y_{2}}^{2}\left(y_{2}+1\right) \geq f_{Y_{2}}\left(y_{2}\right) f_{Y_{2}}\left(y_{2}+2\right)
$$

is equivalent to
${ }_{2} F_{1}\left(y_{2}+1, r+1 ; 2 ; p_{2} q_{1}\right)^{2} \geq{ }_{2} F_{1}\left(y_{2}, r+1 ; 2 ; p_{2} q_{1}\right){ }_{2} F_{1}\left(y_{2}+2, r+1 ; 2 ; p_{2} q_{1}\right)$,
Using the fact that ${ }_{2} F_{1}(a, b ; c ; x)$ is log-concave in a for $0<x<1, b>c>0$ and log-convex in a for $-\infty<x<1, c>b>0$ (Theorem 6 and 7 of Karp \& Sitnik 2010), we get the result.

Note that the log-concavity is equivalent to strongly unimodal, and it implies that the distribution is unimodal and has increasing hazard (failure) rate.

- Divisibility and Self-decomposability

Useful theorems from Steutel \& van Harn (2004) regarding the representation of infinitely divisible and self-decomposable for distributions on the set of nonnegative integers are quoted here. The results of these theorems enable us to prove the self-decomposability of the compound negative binomial distribution.

Theorem 1 (Theorem 3.2 of Steutel \& van Harn (2004), Chapter II, Section 3). A pgf G is infinitely divisible iff it is compound Poisson, i.e., if it has the form

$$
G(t)=e^{-\lambda(1-Q(t))}
$$

with $\lambda>0$ and Q a pgf with $Q(0)=0$.
Theorem 2 (4.13 of Steutel \& van Harn (2004), Chapter V, Section 4). Let $\left(p_{n}\right)_{0}^{\infty}$ and $\left(r_{n}\right)_{0}^{\infty}$ be sequences of real numbers with $p_{n} \geq 0, p_{0}>0$, and let p_{n} and r_{n} be related by

$$
(n+1) p_{n+1}=\sum_{k=0}^{n} r_{n-k} p_{k}, n=0,1,2, \ldots,
$$

where the r's satisfy $r_{n} \geq 0$, and necessarily $\sum_{n=0}^{\infty} \frac{r_{n}}{n+1}<\infty$. Then $\left(p_{n}\right)_{0}^{\infty}$ is self-decomposable iff it is infinitely divisible and has a canonical sequence r_{n} that is non-increasing.

- Remark.

Note that the probability generating function of the compound negative binomial distribution is given by

$$
\begin{aligned}
G(t) & =\left(\frac{p_{1}}{1-q_{1} G_{W}(t)}\right)^{r} \\
& =e^{-r \log \frac{p_{1}}{1-q_{1} G_{W}(t)}} \\
& =e^{-r \log p_{1}\left(1-\frac{\log \left(1-q_{1} G_{W}(t)\right)}{\log p_{1}}\right)} \\
& =e^{-r \log p_{1}\left(1-G_{W^{*}}(t)\right)} \\
& =e^{-\lambda(1-Q(t))}
\end{aligned}
$$

Therefore by Theorem 1 and Proposition 2, the compound negative binomial distribution is infinitely divisible.

Proposition 4. The compound negative binomial distribution has canonical sequence representation of the form

$$
\begin{equation*}
r_{k}=r(k+1) \sum_{i=1}^{\infty} \frac{q_{1}^{i}}{i} f_{W}^{* i}(k+1) \tag{8}
\end{equation*}
$$

Proof. From Proposition 2, the compound negative binomial distribution can be regarded as compound Poisson distribution with $\lambda=-r \log p_{1}$ and compounding distribution with pgf of the form

$$
G_{W^{*}}(t)=\frac{\log \left(1-q_{1} G_{W}(t)\right)}{\log p_{1}}=-\frac{1}{\log p_{1}} \sum_{i=1}^{\infty} \frac{q_{1}^{i}}{i} G_{W}^{i}(t)
$$

Since $f_{W}^{* i}$ is the probability mass function of G_{W}^{i}, we get

$$
\begin{equation*}
f_{W^{*}}(k+1)=-\frac{1}{\log p_{1}} \sum_{i=1}^{\infty} \frac{q_{1}^{i}}{i} f_{W}^{* i}(k+1) \tag{9}
\end{equation*}
$$

It is easily seen that the canonical representation of the compound Poisson distribution is given by

$$
\begin{equation*}
r_{k}=\lambda(k+1) f_{W}(k+1) \tag{10}
\end{equation*}
$$

Substituting $\lambda=-r \log p_{1}$ and (9) in (10), we get the relation (8).
Corollary 1. The compound negative binomial distribution is self-decomposable iff the canonical sequence in (8) is non-increasing in k.

Proof. Follows directly from Theorem 2.
Example 1. In case of compound geometric-negative binomial distribution, we have

$$
\begin{aligned}
r_{k} & =r(k+1) \sum_{i=1}^{\infty} \frac{q_{1}^{i}}{i} f_{W}^{* i}(k+1) \\
& =r(k+1) \sum_{i=1}^{\infty} \frac{q_{1}^{i}}{i}\binom{k+i}{k+1} p_{2}^{i} q_{2}^{k+1} \\
& =r\left(\frac{q_{2}}{1-q_{1} p_{2}}\right)^{k+1}
\end{aligned}
$$

which is non-increasing function. Hence, the compound geometric-negative binomial distribution is self-decomposable.

Definition 2. If X_{1} and X_{2} are two rv's with pmf's $f_{1}(x)$ and $f_{2}(x)$, respectively. Then X_{1} is less than X_{2} in likelihood ratio order (denoted by $X_{1} \leq_{l r} X_{2}$) if $\frac{f_{2}(x)}{f_{1}(x)}$ is increasing in x.

Proposition 5. Let $\left\{W_{i}: i=1,2, \ldots\right\}$ be sequence of independent geo $\left(p_{2}\right)$ random variables, and let $Y_{1} \sim N B\left(r, p_{1}\right)$ and $Y_{1}^{*} \sim N B\left(r^{*}, p_{1}^{*}\right)$ be two random variables which are independent of the W_{i} 's. Then

$$
\sum_{i=1}^{Y_{1}} W_{i} \leq_{l r} \sum_{i=1}^{Y_{1}^{*}} W_{i}
$$

if and only if $r \geq r^{*}$ and $r\left(1-p_{1}\right) \leq r^{*}\left(1-p_{1}^{*}\right)$.
Proof. The result follows from application of Theorem 1.C. 11 of Shaked \& Shanthikumar (2007), and likelihood ordering of negative binomial distribution and log-concavity of geometric distribution.

2.2. Basic Properties of $\left(Y_{1}, Y_{2}\right) \sim B G N B D\left(r, p_{1}, p_{2}\right)$

Using conditional argument on Y_{1} we can obtain the followings;

- The joint pmf of $\left(Y_{1}, Y_{2}\right)$ is given by

$$
\begin{equation*}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\binom{y_{1}+r-1}{y_{1}}\binom{y_{1}+y_{2}-1}{y_{2}} p_{1}^{r}\left(1-p_{1}\right)^{y_{1}} p_{2}^{y_{1}}\left(1-p_{2}\right)^{y_{2}} \tag{11}
\end{equation*}
$$

$y_{1} \geq 1, y_{2}=0,1, \ldots, f_{Y_{1}, Y_{2}}\left(0, y_{2}\right)=0$ for $y_{2}=1,2, \ldots$, and $f_{Y_{1}, Y_{2}}(0,0)=p_{1}^{r}$.

- The Moment generating function of $\left(Y_{1}, Y_{2}\right)$ is

$$
\begin{equation*}
M_{Y_{1}, Y_{2}}(u, v)=\left[\frac{p_{1}}{1-q_{1} e^{u} M_{W}(v)}\right]^{r} ; M_{W}(v)=\frac{p_{2}}{1-q_{2} e^{v}} \tag{12}
\end{equation*}
$$

- Covariance structure of $\left(Y_{1}, Y_{2}\right) \sim B G N B D\left(r, p_{1}, p_{2}\right)$.

The covariance matrix of $\left(Y_{1}, Y_{2}\right)$ takes the form

$$
\left[\begin{array}{cc}
r \frac{\left(1-p_{1}\right)}{p_{1}^{2}} & r \frac{\left(1-p_{1}\right)\left(1-p_{2}\right)}{p_{1}^{2} p_{2}^{2}} \tag{13}\\
r \frac{\left(1-p_{1}\right)\left(1-p_{2}\right)}{p_{1}^{2} p_{2}^{2}} & r \frac{\left(1-p_{1}\right)\left(1-p_{2}\right.}{p_{1}^{2} p_{2}^{2}\left(p_{1}+q_{2}\right)}
\end{array}\right]
$$

and the correlation coefficient of Y_{1} and Y_{2} is

$$
\begin{align*}
\operatorname{Corr}\left(Y_{1}, Y_{2}\right) & =E(W) \sqrt{\frac{\operatorname{Var}\left(Y_{1}\right)}{\operatorname{Var}\left(Y_{2}\right)}}=\sqrt{\frac{1}{1+\frac{C \cdot V^{2}(W)}{E\left(Y_{1}\right) C \cdot V^{2}\left(Y_{1}\right)}}} \tag{14}\\
& =\sqrt{\frac{1-p_{2}}{1-p_{2}+p_{1}}} .
\end{align*}
$$

where $C . V(W)$ denotes the coefficient of variation of W. It is interesting to note that the correlation does not depend on r. This gives more flexibilty in modeling as one can let the mean and the variance varies without affecting the correlation. Also, One can see that the correlation coefficient is a decreasing function of p_{1} and p_{2} and assumes only positive values. Obviously, the correlation is bounded by 0 and 1 , where the lower bound is attained if $p_{2}=0$ and the upper bound is attained when $p_{2}=1$ which correspond to the trivial cases $Y_{2}=0$ and $Y_{1}=Y_{2}$, respectively.

- Product moments and joint cumulants.

The (r, s)-th product moment of $\left(Y_{1}, Y_{2}\right) \sim B G N B D\left(r, p_{1}, p_{2}\right)$ are given by

$$
\begin{aligned}
\mu_{1,1}^{\prime} & =r \frac{1-p_{1}}{p_{1}^{2}}\left(1+r\left(1-p_{1}\right)\right) E(W), \\
\mu_{2,1}^{\prime} & =r \frac{1-p_{1}}{p_{1}^{3}}\left(1+q_{1}\left(1+3 r+r^{2} q_{1}^{2}\right)\right) E(W), \\
\mu_{1,2}^{\prime} & =r \frac{1-p_{1}}{p_{1}^{3}}\left[\left(1-q_{1}\right)\left(1+r q_{1}\right) E\left(W^{2}\right)+q_{1}(r+1)\left(2+r q_{1}\right) E^{2}(W)\right], \\
\mu_{2,2}^{\prime} & =r \frac{1-p_{1}}{p_{1}^{4}}\left[p_{1}\left(1+q_{1}\left(1+3 r+r^{2} q_{1}\right)\right) E\left(W^{2}\right)\right. \\
& \left.+q_{1}\left(r+3+r^{2} q_{1}\left(2+q_{1}+r q_{1}\right)+(3 r+1)\left(1+2 q_{1}+r q_{1}\right)\right) E^{2}(W)\right] .
\end{aligned}
$$

and the three first cumulants of $\left(Y_{1}, Y_{2}\right) \sim B G N B D\left(r, p_{1}, p_{2}\right)$ are as follows

$$
\begin{aligned}
& k_{1,1}=r \frac{1-p_{1}}{p_{1}^{2}} E(W), \\
& k_{1,2}=r \frac{1-p_{1}}{p_{1}^{3}}\left[p_{1} E\left(W^{2}\right)+2 q_{1} E^{2}(W)\right], \\
& k_{2,1}=r \frac{1-p_{1}}{p_{1}^{3}}\left(1+q_{1}\right) E(W), \\
& k_{2,2}=r \frac{1-p_{1}}{p_{1}^{4}}\left[\left(1-q_{1}^{2}\right) E\left(W^{2}\right)+2 q_{1}\left(2+q_{1}\right) E^{2}(W)\right], \\
& k_{1,3}=r \frac{1-p_{1}}{p_{1}^{4}}\left[p_{1}^{2} E\left(W^{3}\right)+6 p_{1} q_{1} E^{2}(W) E\left(W^{2}\right)+6 q_{1}^{2} E^{3}(W)\right], \\
& k_{3,1}=r \frac{1-p_{1}}{p_{1}^{4}}\left(1+2 q_{1}\right)^{2} E(W) .
\end{aligned}
$$

- Conditional distribution and regression functions

1. It is obvious that the conditional distribution of Y_{2} given Y_{1} is a negative binomial random variable with parameters y_{1} and p_{1}. Thus

$$
\begin{equation*}
E\left(Y_{2} \mid Y_{1}=y_{1}\right)=y_{1} \frac{1-p_{2}}{p_{2}} \tag{15}
\end{equation*}
$$

which is a linear in y_{1} with regression coefficient $\frac{1-p_{2}}{p_{2}}$. As the coefficient is non-negative we have the conditional mean of Y_{2} increases with the increase in y_{1}. Also the conditional variance is

$$
\begin{equation*}
\operatorname{Var}\left(Y_{2} \mid Y_{1}=y_{1}\right)=y_{1} \frac{1-p_{2}}{p_{2}^{2}} \tag{16}
\end{equation*}
$$

which has similar properties as the conditional mean.
2. The conditional pmf of Y_{1} given $Y_{2}=y_{2}$ has the form

$$
\begin{equation*}
f_{Y_{1} \mid Y_{2}}\left(Y_{1} \mid Y_{2}=y_{2}\right)=\frac{\theta^{y_{1}}}{r \theta} \frac{\binom{y_{1}+r-1}{y_{1}}\binom{y_{1}+y_{2}-1}{y_{2}}}{{ }_{2} F_{1}\left(y_{2}+1, r+1 ; 2 ; \theta\right)} \tag{17}
\end{equation*}
$$

$\theta=p_{2} q_{1}, y_{1}=0,1, \ldots$
As a direct consequence of (17), we have the pgf of the conditional distribution as

$$
\begin{equation*}
G_{Y_{1} \mid Y_{2}=y_{2}}\left(t \mid y_{2}\right)=t \frac{{ }_{2} F_{1}\left(y_{2}+1, r+1 ; 2 ; \theta t\right)}{{ }_{2} F_{1}\left(y_{2}+1, r+1 ; 2 ; \theta\right)}, \tag{18}
\end{equation*}
$$

i.e. the conditional distribution of Y_{1} given $Y_{2}=y_{2}$ is shifted (by 1) generalized hypergeometric probability distribution (GHPD) (see Kemp 1968). The first and second derivative of the pgf in (18) yield the following results:

$$
\begin{gathered}
E\left(Y_{1} \mid Y_{2}=y_{2}\right)= \\
1+\frac{(r+1)\left(y_{2}+1\right)}{2} p_{2} q_{1} \frac{{ }_{2} F_{1}\left(y_{2}+2, r+2 ; 3 ; \theta\right)}{{ }_{2} F_{1}\left(y_{2}+1, r+1 ; 2 ; \theta\right)} \\
E\left(Y_{1}^{2} \mid Y_{2}=y_{2}\right)=1+3 \frac{(r+1)\left(y_{2}+1\right)}{2} p_{2} q_{1} \frac{{ }_{2} F_{1}\left(y_{2}+2, r+2 ; 3 ; \theta\right)}{{ }_{2} F_{1}\left(y_{2}+1, r+1 ; 2 ; \theta\right)} \\
+\frac{(r+1)(r+2)\left(y_{2}+1\right)\left(y_{2}+2\right)}{6}\left(p_{2} q_{1}\right)^{2} \frac{{ }_{2} F_{1}\left(y_{2}+3, r+3 ; 4 ; \theta\right)}{{ }_{2} F_{1}\left(y_{2}+1, r+1 ; 2 ; \theta\right)}
\end{gathered}
$$

The following proposition gives the distribution of the random sum $S=$ $Y_{1}+Y_{2}$.

Proposition 6. The random variable $S=Y_{1}+Y_{2}$ has compound negative binomial distribution with shifted geometric distribution.

Proof.

$$
\begin{aligned}
G_{S}(t) & =E\left(e^{t S}\right)=E\left(t^{Y_{1}+Y_{2}}\right)=E\left(E\left(t^{Y_{1}+\sum_{i=1}^{Y_{1}} W_{i}}\right) \mid Y_{1}\right) \\
& =E\left(t^{Y_{1}} E\left(t^{\sum_{i=1}^{Y_{1}} W_{i}}\right) \mid Y_{1}\right)=E\left(\left(t G_{W}(t)\right)^{Y_{1}}\right) \\
& =G_{Y_{1}}\left(t G_{W}(t)\right)=\left[\frac{p_{1}}{1-q_{1} t G_{W}(t)}\right]^{r}=\left[\frac{p_{1}}{1-q_{1} \frac{t p_{2}}{1-q_{2} t}}\right]^{r} .
\end{aligned}
$$

and, the proof is complete.

- Convolutions of BGNBD

Proposition 7. Let $\left(Y_{1 i}, Y_{2 i}\right)={ }^{d}\left(Y_{1 i}, \sum_{i=0}^{Y_{1 i}} W_{i}\right)$ be mutually independent $B G N B D$ for $i=1,2 \cdots, n, Y_{1 i}$ is a negative binomial random variable with parameters r_{i}, p_{1}, and W_{i} 's are iid random variables distributed as geometric with parameter p_{2}, and independent of the $Y_{1 i}$'s, then the distribution of $\sum_{i=1}^{n}\left(Y_{1 i}, Y_{2 i}\right)$ is BGNBD with parameters $r=\sum_{i=1}^{n} r_{i}, p_{1}$ and p_{2}.

Proof. The mgf of the random vector $\left(Y_{1 i}, Y_{2 i}\right)$ is given by

$$
M_{Y_{1 i}, Y_{2 i}}(u, v)=\left[\frac{p_{1}}{1-q_{1} e^{u} M_{W}(v)}\right]^{r_{i}} .
$$

Then, the mgf of the sum of the n random vectors $\left(Y_{1 i}, Y_{2 i}\right)$ is

$$
\begin{aligned}
E\left(e^{t \sum_{i=1}^{n}\left(Y_{1 i}, Y_{2 i}\right)}\right) & =\prod_{i=1}^{n} E\left(e^{t\left(Y_{1 i}, Y_{2 i}\right)}\right) \\
& =\prod_{i=1}^{n}\left[\frac{p_{1}}{1-q_{1} e^{u} M_{W}(v)}\right]^{r_{i}} \\
& =\left[\frac{p_{1}}{1-q_{1} e^{u} M_{W}(v)}\right]^{\sum_{i=1}^{n} r_{i}}
\end{aligned}
$$

which is the mgf of BGNBD with parameters $r=\sum_{i=1}^{n} r_{i}, p_{1}$ and p_{2}.
Example 2. Let $\left(Y_{11}, Y_{21}\right) \sim B G N B D\left(r_{1}, p_{1}, p_{2}\right)$ independent of $\left(Y_{12}, Y_{22}\right) \sim$ $B G N B D\left(r_{2}, p_{1}, p_{2}\right)$. Then according to Proposition 7, we have $\left(Y_{11}+\right.$ $\left.Y_{12}, Y_{21}+Y_{22}\right) \sim B G N B D\left(r_{1}+r_{2}, p_{1}, p_{2}\right)$. Hence, the conditional distribution is given by

$$
\begin{aligned}
& \operatorname{Pr}\left(Y_{11}=y_{1}, Y_{21}=y_{2} \mid Y_{11}+Y_{12}=z_{1}, Y_{21}+Y_{22}=z_{2}\right) \\
& =\frac{f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2} ; r_{1}, p_{1}, p_{2}\right) f_{Z_{1}-Y_{1}, Z_{2}-Y_{2}\left(z_{1}-y_{1}, z_{2}-y_{2} ; r_{2}, p_{1}, p_{2}\right)}^{f_{Z_{1}, Z_{2}}\left(z_{1}, z_{2} ; r_{1}+r_{2}, p_{1}, p_{2}\right)}}{=\frac{\binom{y_{1}+r_{1}-1}{y_{1}}\binom{z_{1}-y_{1}+r_{2}-1}{z_{1}-y_{1}}}{\binom{z_{1}+r_{1}+r_{2}-1}{z_{1}}} \frac{\binom{y_{1}+y_{2}-1}{y_{2}}\binom{z_{1}+z_{2}-y_{1}-y_{2}-1}{z_{2}-y_{2}}}{\binom{z_{1}+z_{2}-1}{z_{2}}} .}
\end{aligned}
$$

i.e. the conditional distribution is the product of two negative hypergeometric distribution, $N H G\left(r_{1}, z_{1}, r_{1}+r_{2}\right)$ and $\operatorname{NHG}\left(y_{1}, z_{2}, z_{1}\right)$.

- Limiting Distribution.

Since the negative binomial distribution with parameters r and p_{1} converges to the Poisson distribution with parameter $\lambda=r(p-1)$ where $r \rightarrow \infty$ and $p_{1} \rightarrow 1$. Thus, we have the following proposition.

Proposition 8. Under the limiting conditions $r \rightarrow \infty$ and $p_{1} \rightarrow 1$ such that $r\left(1-p_{1}\right)=\lambda$, the following relation is true

$$
\lim _{r \rightarrow \infty} \lim _{p_{1} \rightarrow 1} M_{Y_{1}, Y_{2}}(u, v)=e^{\lambda\left(e^{u} M_{W}(v)-1\right)}
$$

where $e^{\lambda\left(e^{u} M_{W}(v)-1\right)}$ is the mgf of bivariate Poisson-geometric distribution. Hence, the bivariate geometric-negative binomial distribution converges to that of the bivariate geometric-Poisson distribution

- Monotonicity

Definition 3. A function $p(x, y)$ defined for $x \in X$ and $y \in Y$ is totally positive of order $2\left(T P_{2}\right)$ if and only if $p(x, y) \geq 0$ for all $x \in X, y \in Y$ and

$$
\left|\begin{array}{ll}
p\left(x_{1}, y_{1}\right) & p\left(x_{1}, y_{2}\right) \\
p\left(x_{2}, y_{1}\right) & p\left(x_{2}, y_{2}\right)
\end{array}\right| \geq 0
$$

whenever $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$.

Proposition 9. If $\left(Y_{1}, Y_{2}\right) \sim B G N B D\left(r, p_{1}, p_{2}\right)$, then the function $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ defined in (11) is $T P_{2}$.

Proof. For $z_{1}<z_{2}$, we have

$$
\begin{aligned}
\frac{f_{Y_{1}, Y_{2}}\left(y_{1}, z_{1}\right)}{f_{Y_{1}, Y_{2}}\left(y_{1}, z_{2}\right)} & =\left(1-p_{2}\right)^{z_{1}-z_{2}} \frac{z_{2}!\left(y_{1}+z_{1}-1\right)!}{z_{1}!\left(y_{1}+z_{2}-1\right)!} \\
& =\left(1-p_{2}\right)^{z_{1}-z_{2}} \frac{z_{2}!}{z_{1}!\left(y_{1}+z_{2}-1\right) \ldots\left(y_{1}+z_{2}-z_{1}\right) \ldots\left(y_{1}+z_{1}\right)}
\end{aligned}
$$

which is decreasing function in y_{1}, hence $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ defined in (11) is $T P_{2}$.

The $T P_{2}$ is very strong positive dependence between random variables in particular it implies association and positive quadrant dependence and hence a nonnegative covariance (see for example Barlow \& Proschan (1975)).

Proposition 10.

i For $r<1$ and $y_{2}=0$, the joint pmf of $B G N B D$ given in (11) is logconvex in y_{1}, otherwise it is log-concave.
ii The joint pmf of $B G N B D$ given in (11) is log-concave in y_{2}.

Proof.

i In order to prove that the joint pmf of BGNBD given in (11) is logconcave in y_{1}, we need to show that $\frac{f_{Y_{1}, Y_{2}}\left(y_{1}+1, y_{2}\right)}{f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)}$ is decreasing in y_{1} for every y_{2}.
But

$$
\frac{f_{Y_{1}, Y_{2}}\left(y_{1}+1, y_{2}\right)}{f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)}=\left(1-p_{1}\right) p_{2}\left(1+\frac{y_{2}+r-1}{y_{1}+1}+\frac{r y_{2}}{y_{1}\left(y_{1}+1\right)}\right)
$$

Thus, the ratio is decreasing in y_{1} for $r \geq 1$. For $r<1$, we have two cases, the first is that $y_{2}=0$ then the ratio increasing and the second case where $y_{2}>0$ which is clearly decreasing in y_{1}.
ii The log-concavity of BGNBD in y_{2} follows from the fact that the $y_{1}-$ th convolution of geometric distribution with parameter p_{2} is negative binomial distribution with parameters y_{1} and p_{2} which is a log-concave.

- Stochastic Order

Proposition 11. Let $\left\{W_{i}: i=1,2, \ldots\right\}$ and $\left\{W_{i}^{*}: i=1,2, \ldots\right\}$ be two sequences of independent geo $\left(p_{2}\right)$ and geo $\left(p_{2}^{*}\right)$ random variables, respectively, such that $p_{2} \geq p_{2}^{*}$. Let $Y_{1} \sim N B\left(r, p_{1}\right)$ and $Y_{1}^{*} \sim N B\left(r^{*}, p_{1}^{*}\right)$ be two random variables which are independent of $W_{i} s^{\prime}$ and W_{i}^{*} 's, respectively, where $r \geq r^{*}$ and $r\left(1-p_{1}\right) \leq r^{*}\left(1-p_{1}^{*}\right)$, then $\left(Y_{1}, \sum_{i=1}^{Y_{1}} W_{i}\right) \leq_{s t}\left(Y_{1}^{*}, \sum_{i=1}^{Y_{1}^{*}} W_{i}^{*}\right)$.

Proof. The result follows from an application of Theorem 6.B.3 of Shaked \& Shanthikumar (2007) and Proposition 5.

3. Estimation

Assume that we have n pairs of observations $\left(y_{1 i}, y_{2 i}\right) ; i=1,2, \ldots, n$ from BGNBD with parameters r, p_{1} and p_{2}.

- Method of moments

The moment estimates $\hat{p}_{1 M M}, \hat{p}_{2 M M}$ and $\hat{r}_{M M}$ of p_{1}, p_{2} and r are obtained from solving the moments equations. Using the moments

$$
\begin{gathered}
E\left(Y_{1}\right)=r \frac{q_{1}}{p_{1}} \\
\operatorname{Var}\left(Y_{1}\right)=r \frac{q_{1}}{p_{1}^{2}} \\
E\left(Y_{2}\right)=r \frac{q_{1} q_{2}}{p_{1} p_{2}}
\end{gathered}
$$

we get

$$
\begin{aligned}
\hat{p}_{1 M M} & =\frac{\hat{r}_{M M}}{\hat{r}_{M M}+\bar{y}_{1}} \\
\hat{p}_{2 M M} & =\frac{\bar{y}_{1}}{\bar{y}_{1}+\bar{y}_{2}} \\
\hat{r}_{M M} & =\frac{\bar{y}_{1}^{2}}{s_{1}^{2}-\bar{y}_{1}}
\end{aligned}
$$

As the value of r is non-negative, then the estimate $\hat{r}_{M M}$ has meaning only when $s_{1}^{2}>\bar{y}_{1}$.

- Maximum Likelihood

Maximum likelihood estimates (MLE) for the parameters p_{1}, p_{2} and r can be derived by considering the likelihood function given by

$$
L=\prod_{i=1}^{n}\binom{y_{1 i}+r-1}{y_{1 i}}\binom{y_{1 i}+y_{2 i}-1}{y_{2 i}} p_{1}^{r}\left(1-p_{1}\right)^{y_{1 i}} p_{2}^{y_{1 i}}\left(1-p_{2}\right)^{y_{2 i}}
$$

Then it can be seen that the MLE satisfy

$$
\begin{gathered}
\hat{p}_{1 M L E}=\frac{\hat{r}_{M L E}}{\hat{r}_{M L E}+\overline{y_{1}}} \\
\hat{p}_{2 M L E}=\frac{\bar{y}_{1}}{\bar{y}_{1}+\bar{y}_{2}}
\end{gathered}
$$

and

$$
\frac{\partial \log L}{\partial r}=\sum_{i=1}^{n}\left[\log \left(p_{1}\right)+\psi\left(y_{1 i}+r\right)-\psi(r)\right]=0, \psi(x)=\frac{d \log \Gamma(x)}{d x}
$$

Note that MLE and MM estimate of p_{2} are identical. Under mild regularity condition the maximum likelihood estimator $\hat{\Theta}=\left(\hat{r}, \hat{p_{1}}, \hat{p_{2}}\right)$ for large sample
has approximately a multivariate normal distribution $N_{3}\left(\Theta, I^{-1}(\Theta)\right)$ where $I(\Theta)=-E\left(\frac{\partial^{2} \log L}{\partial \Theta \partial \dot{\Theta}}\right)$.
In order to obtain the asymptotic variance-covariance matrix of p_{1}, p_{2} and r, we need the second partial derivatives of the \log likelihood function. These are given by

$$
\begin{gathered}
\frac{\partial^{2} \log L}{\partial p_{1}^{2}}=-\frac{n r}{p_{1}^{2}}-\frac{\sum_{i=1}^{n} y_{1 i}}{\left(1-p_{1}\right)^{2}} \\
\frac{\partial^{2} \log L}{\partial p_{2}^{2}}=-\frac{\sum_{i=1}^{n} y_{1 i}}{p_{2}^{2}}-\frac{\sum_{i=1}^{n} y_{2 i}}{\left(1-p_{2}\right)^{2}} \\
\frac{\partial^{2} \log L}{\partial r^{2}}=\sum_{i=1}^{n} \psi^{\prime}\left(y_{1 i}+r\right)-n \psi^{\prime}(r) \\
\frac{\partial^{2} \log L}{\partial p_{1} \partial r}=\frac{n}{p_{1}}
\end{gathered}
$$

and

$$
\frac{\partial^{2} \log L}{\partial p_{1} \partial p_{2}}=\frac{\partial^{2} \log L}{\partial p_{2} \partial r}=0
$$

Hence,

$$
\operatorname{Cov}\left(\hat{p}_{2}, \hat{r}\right)=\operatorname{Cov}\left(\hat{p}_{1}, \hat{p}_{2}\right)=0
$$

4. Numerical Example

For comparison purposes, the BGNBD was fitted to the same sets of accident data used by Leiter \& Hamdan (1973) and Cacoullos \& Papageorgiou (1980), i.e., the total number of injury accidents recorded during 639 days (in 1969 and 1970) in a 50 -mile stretch of highway in eastern Virginia $\left(Y_{1}\right)$, and the corresponding number of fatalities $\left(Y_{2}\right)$ for individual years. We look at the data as three sets of data. The first data is the entire study, the second and third set of data representing the total number of injury accidents in 1969 and 1970, respectively. Descriptive statistics of the considered data are presented in Table 1.

As the estimation criterion holds $\left(s_{1}^{2}>\bar{y}_{1}\right)$, hence we considered estimating the parameters using both methods the moments and the maximum likelihood. The results are reported in Table 2. Comparing the MM and MLE of the parameters show that they are quite similar. The estimated variance-covariance matrix of the maximum likelihood estimators are computed for each data set.

$$
\Sigma_{\text {entire }}=\left(\begin{array}{ccc}
7.397 & 0.138 & 0 \\
0.138 & 0.003 & 0 \\
0 & 0 & 0.0001
\end{array}\right)
$$

Table 1: Descriptive Statistics for accident data.

Data	Variable	Size	Mean	Variance	Min	Max	SkewCorr (p- value)	
entire study	Y_{1}	639	0.862	0.984	0	5	1.21	$0.205(0)$
	Y_{2}	639	0.058	0.061	0	2	4.41	
Year 1969	Y_{1}	349	0.880	1.014	0	5	1.21	$0.206(0)$
	Y_{2}	349	0.066	0.067	0	2	4.00	
Year 1970	Y_{1}	290	0.841	0.951	0	4	1.20	$0.204(0)$
	Y_{2}	290	0.048	0.053	0	2	5.06	

Table 2: Parameter estimates for BGNBD.

Data	Method	$\hat{p_{1}}$	$\hat{p_{2}}$	\hat{r}	$\hat{\rho}$	Log-lik	AIC
entire study	MLE	0.873	0.937	5.925	0.259	-919.154	1842.307
	MM	0.876	0.937	6.102	0.259		
year 1969	MLE	0.865	0.930	5.649	0.273	-513.839	1031.677
	MM	0.867	0.930	5.751	0.273		
Year 1970	MLE	0.884	0.946	6.383	0.241	-404.892	813.7831
	MM	0.885	0.946	6.486	0.240		

$$
\begin{aligned}
\Sigma_{1969} & =\left(\begin{array}{ccc}
19.11 & 0.396 & 0 \\
0.396 & 0.008 & 0 \\
0 & 0 & 0.0002
\end{array}\right) \\
\Sigma_{1970} & =\left(\begin{array}{ccc}
11.978 & 0.192 & 0 \\
0.192 & 0.003 & 0 \\
0 & 0 & 0.0002
\end{array}\right)
\end{aligned}
$$

In order to investigate the performance of the BGNBD, we compared the fitting of this model with the results of fitting the bivariate Poisson-Poisson (BPPD), bivariate binomial-Poisson (BBPD), bivariate geometric-Poisson (BGPD), and bivariate negative binomial-Poisson (BNBPD) distributions to the data (For more information about these distributions, see Alzaid et al. (2017)). The BBPD is fitted assuming different values of the parameter m, the BNBPD assuming different values of the parameter r for the first two data sets, in this case the moments estimates coincide with the maximum likelihood estimates. The fit of each model was measured using the Akaike information criterion AIC, SSE values and chi-square goodness-offit criterion, where the SSE is defined by $S S E=\sum_{a l l y_{1}, y_{2}}(\text { observed }- \text { expected })^{2}$. The observed and expected values for the bivariate models along with the loglikelihood, AIC, χ^{2} values, degrees of freedom (d.f.), corresponding p-values and SSE are given in Tables 3-5. Figure 1 demonstrates the fitted distributions. The values of χ^{2}, were computed after the grouping of bolded cells in the table. The results show that the log-likelihood and AIC values of all the bivariate models
are essentially the same. Note that the fit of the models BPPD, BBPD, BGPD and BNBPD is much better for the individual years, than it is for the entire 639 days. It is obvious from the χ^{2} and SSE values in Table 3 that the models BPPD, BBPD, BGPD and BNBPD could not give a satisfactory fit for the data. The fit by BGNBD yields a smaller χ^{2} and SSE values as compared with the other models, which implies that this model fits the data well, this is also reflected by the p-value. Same conclusion is reached from Table 4. The p-values of the models in Table 5, suggest acceptable with the superiority of BGNBD as judged by larger p-value and smaller SSE.

Table 3: Bivariate models fitted to accident data entire study (639 days).

$\begin{gathered} \hline \text { Cell } \\ \text { no. } \end{gathered}$	y_{1}	y_{2}	Observed	Expected BPPD	Expected BBPD $(m=5)$	Expected BGPD	Expected BNBPD $(r=20)$	Expected BGNBD MM	Expected BGNBD MLE
1	0	0	286	269.78	269.78	269.78	269.78	285.25	285.68
2	1	0	198	217.52	217.42	217.99	217.55	201.95	201.51
3	2	0	82	87.69	87.61	88.07	87.71	83.2	83.06
4	3	0	24	23.57	23.54	23.72	23.58	26.07	26.12
5	4	0	13	4.75	4.74	4.79	4.75	6.88	6.94
6	5	0	1	0.77	0.76	0.77	0.77	1.61	1.64
7	1	1	17	14.61	14.8	13.72	14.56	12.71	12.68
8	2	1	10	11.78	11.93	11.08	11.74	10.47	10.45
9	3	1	5	4.75	4.81	4.48	4.73	4.92	4.93
10	4	1	1	1.28	1.29	1.21	1.27	1.73	1.75
11	5	1	0	0.26	0.26	0.24	0.26	0.51	0.52
12	1	2	1	0.49	0.4	0.86	0.51	0.8	0.8
13	2	2	0	0.79	0.73	1.05	0.81	0.99	0.99
14	3	2	1	0.48	0.46	0.56	0.48	0.62	0.62
15	4	2	0	0.17	0.17	0.19	0.17	0.27	0.27
16	5	2	0	0.04	0.04	0.05	0.04	0.1	0.1
			Log-like	-921.753	-921.795	-921.987	-921.749	-	-919.154
			AIC	1847.505	1847.59	1847.974	1847.498	-	1842.307
			χ^{2}-value	16.896	16.863	17.284	16.907	5.984	6.088
			p-value	0.0097	0.0098	0.0083	0.0096	0.4249	0.4134
			d.f.	6	6	6	6	6	6
			SSE	755.05	750.16	780.69	756.36	80.38	76.15

Table 4: Bivariate models fitted to accident data for year 1969 (349 days).

Table 5: Bivariate models fitted to accident data for year 1970 (290 days).

Cell no.	y_{1}	y_{2}	Observed	Expected BPPD	$\begin{aligned} & \text { Expected } \\ & \text { BBPD } \\ & (m=5) \\ & \hline \end{aligned}$	Expected BGPD	Expected BNBPD	Expected BGNBD MM	Expected BGNBD MLE
1	0	0	132	125.02	122.44	122.44	125.02	131.47	131.57
2	1	0	91	99.33	99.66	99.85	99.56	92.60	92.50
3	2	0	39	39.46	40.56	40.71	39.64	37.64	37.61
4	3	0	9	10.45	11.00	11.07	10.52	11.56	11.58
5	4	0	6	2.08	2.24	2.26	2.09	2.98	2.99
6	1	1	5	5.70	5.78	5.42	5.26	5.02	5.02
7	2	1	4	4.53	4.71	4.42	4.19	4.08	4.08
8	3	1	2	1.80	1.92	1.80	1.67	1.88	1.88
9	4	1	1	0.48	0.52	0.49	0.44	0.65	0.65
10	1	2	1	0.16	0.13	0.29	0.35	0.27	0.27
11	2	2	0	0.26	0.25	0.36	0.39	0.33	0.33
12	3	2	0	0.15	0.16	0.20	0.20	0.20	0.20
13	4	2	0	0.05	0.06	0.07	0.06	0.09	0.09
			log-like	-406.2536	-406.3961	-405.9546	-405.9235	-	-404.892
			AIC	816.5071	816.7921	815.9091	817.8469	-	813.7831
			χ^{2}-value	2.1398	2.3157	2.0818	1.8648	0.19169	0.1862
			df	4	4	4	3	3	3
			P -value	0.710063	0.677909	0.72071	0.60093	0.97892	0.979785
			SSE	137.5873	189.1432	192.2528	141.008	21.228	20.8874

Figure 1: Accident data (entire study) and fitted distributions (Top). Accident data (year 1969) and fitted distributions (Middle). Accident data (year 1970) and fitted distributions (Bottom).

5. Conclusions

In this paper, the moments, cumulants, skewness of the univariate CGNBD are derived. Some monotonicity and distributional properties of the univariate CGNBD are provided. Then, BGNBD is defined and some important probabilistic characteristics such as moments, cumulants, covariance, and the coefficient of correlation are obtained. Some applications to accident data have been presented to illustrate the usage of the BGNBD. The results showed the superiority of BGNBD among other competitive models in the presented applications.

Acknowledgements

This Project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (11-MAT1856-02).
[Received: July 2016 — Accepted: December 2017]

References

Abramowitz, M. \& Stegun, I. A. (1972), Handbook of mathematical functions with formulas, graphs and mathematical tables, 10th edn, National Bureau of Standards Applied Marhematics Series, Washington, DC.

Alzaid, A. A., Almuhayfith, F. E. \& Omair, M. A. (2017), 'Bivariate regression models based on compound Poisson distribution', Communication in Statistics-Theory and Methods 46(15), 7375-7389.

Barlow, R. E. \& Proschan, F. (1975), Statistical theory of reliability and life testing: probability models, Holt, Rinehart and Winston, Inc, New York.

Cacoullos, T. \& Papageorgiou, H. (1980), 'On some bivariate probability models applicable to traffic accidents and fatalities', International Statistical Review/Revue Internationale de Statistique 48(3), 345-356.

Cacoullos, T. \& Papageorgiou, H. (1982), 'Bivariate negative binomial-Poisson and negative binomial-bernoulli models with an application to accident data', Statistics and Probability: Essays in Honor of CR Rao, G. Kallianpur et al. (eds) pp. 155-168.

Cai, J. \& Garrido, J. (2000), ‘Two-sided bounds for tails of compound negative binomial distributions in the exponential and heavy-tailed cases', Scandinavian Actuarial Journal 2000(2), 102-120.
dhaene, J. (1991), 'Approximating the compound negative binomial distribution by the compound Poisson distribution', Bulletin of the Swiss Association of Actuaries 1, 117-121.

Drekic, S. \& Willmot, G. E. (2005), 'On the moments of the time of ruin with applications to phase-type claims', North American Actuarial Journal 9(2), 17-30.

Gerber, H. U. (1984), 'Error bounds for the compound Poisson approximation', Insurance: Mathematics and Economics 3(3), 191-194.

Hanagal, D. D. \& Dabade, A. D. (2013), 'Compound negative binomial shared frailty models for bivariate survival data', Statistics \& Probability Letters 83(11), 2507-2515.

Jewell, W. \& Milidiu, R. (1986), 'Strategies for computation of compound distributions with two-sided severities', Insurance: Mathematics and Economics 5(2), 119-127.

Johnson, N. L., Kemp, A. W. \& Kotz, S. (2005), Univariate discrete distributions, 3rd edn, John Wiley \& Sons, Inc, New York.

Karp, D. \& Sitnik, S. (2010), 'Log-convexity and log-concavity of hypergeometriclike functions', Journal of Mathematical Analysis and Applications 364(2), 384-394.

Kemp, A. W. (1968), 'A wide class of discrete distributions and the associated differential equations', Sankhy \bar{a} : The Indian Journal of Statistics, Series A 30(4), 401-410.

Leiter, R. E. \& Hamdan, M. (1973), 'Some bivariate probability models applicable to traffic accidents and fatalities', International Statistical Review/Revue Internationale de Statistique 41(1), 87-100.

Özel, G. (2011a), 'A bivariate compound Poisson model for the occurrence of foreshock and aftershock sequences in turkey', Environmetrics 22(7), 847856.

Özel, G. (2011b), 'On certain properties of a class of bivariate compound Poisson distributions and an application to earthquake data', Revista Colombiana de Estadistica 34(3), 545-566.

Panjer, H. H. \& Willmot, G. E. (1981), 'Finite sum evaluation of the negative binomial-exponential model', ASTIN Bulletin 12(2), 133-137.

Papageorgiou, H. (1985), 'On a bivariate Poisson-geometric distribution', Applicationes Mathematicae 4(18), 541-547.

Papageorgiou, H. (1995), 'Some remarks on the d compound Poisson distribution', Statistical Papers 36(1), 371-375.

Papageorgiou, H. \& Loukas, S. (1988), 'On estimating the parameters of a bivariate probability model applicable to traffic accidents', Biometrics 44, 495-504.

Ramsay, C. M. (2009), 'The distribution of compound sums of Pareto distributed losses', Scandinavian Actuarial Journal 2009(1), 27-37.

Shaked, M. \& Shanthikumar, J. G. (2007), Stochastic orders, 1st edn, Springer Science \& Business Media, New York.

Steutel, F. W. \& van Harn, K. (2004), Infinite divisibility of probability distributions on the real line, 10th edn, Marcel Dekker, Inc, New York.

Subrahmaniam, K. (1966), 'On a general class of contagious distributions: The Pascal-Poisson distribution', Trabajos de estadística y de investigación operativa 17(2), 109-128.

Subrahmaniam, K. (1978), 'The Pascal-Poisson distribution revisited: estimation and efficiency', Communications in Statistics-Theory and Methods 7(7), 673683.

Upadhye, N. \& Vellaisamy, P. (2014), 'Compound Poisson approximation to convolutions of compound negative binomial variables', Methodology and Computing in Applied Probability 16(4), 951-968.

Vellaisamy, P. \& Upadhye, N. (2009a), 'Compound negative binomial approximations for sums of random variables', Probability and Mathematical Statistics 29(2), 205-226.

Vellaisamy, P. \& Upadhye, N. (2009b), 'On the sums of compound negative binomial and gamma random variables', Journal of Applied Probability 46(1), 272283.

Wang, Z. (2011), 'One mixed negative binomial distribution with application', Journal of Statistical Planning and Inference 141(3), 1153-1160.

Willmot, G. E. \& Lin, X. (1997), 'Upper bounds for the tail of the compound negative binomial distribution', Scandinavian Actuarial Journal 1997(2), 138148.

[^0]: ${ }^{\text {a }}$ PhD. E-mail: maomair@ksu.edu.sa
 ${ }^{\mathrm{b}} \mathrm{PhD}$. E-mail: falmuhaifeez@kfu.edu.sa
 ${ }^{c}$ PhD. E-mail: alzaid@ksu.edu.sa

