
Revista Colombiana de Estadística

January 2018, Volume 41, Issue 1, pp. 87 to 108

DOI: http://dx.doi.org/10.15446/rce.v41n1.57803

A Bivariate Model based on Compound Negative

Binomial Distribution

Un modelo basado en bivariadas compuesto distribución binomial

negativa

Maha Omair1,a, Fatimah Almuhayfith2,b, Abdulhamid Alzaid1,c

1Department of Statistics and Operations Research, College of Sciences, King

Saud University, Riyadh, Saudi Arabia

2Department of Mathematics and Statistics, College of Sciences, King Faisal

University, Alahsa, Saudi Arabia

Abstract

A new bivariate model is introduced by compounding negative bino-
mial and geometric distributions. Distributional properties, including joint,
marginal and conditional distributions are discussed. Expressions for the
product moments, covariance and correlation coe�cient are obtained. Some
properties such as ordering, unimodality, monotonicity and self-decomposa-
bility are studied. Parameter estimators using the method of moments and
maximum likelihood are derived. Applications to tra�c accidents data are
illustrated.
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Resumen

Un nuevo modelo de dos variables se introduce mediante la composición
distribuciones binomiales negativos y geométricos. propiedades distributivas,
incluyendo distribuciones conjuntas, marginales y condicionales se discuten.
se obtienen las expresiones para los momentos de productos, la covarianza
y el coe�ciente de correlación. Se estudian algunas propiedades tales como
pedidos, unimodalidad, monotonía y la auto-decomposability. estimadores
de parámetros utilizando el método de los momentos y de máxima verosimil-
itud se derivan. Aplicaciones a los datos de accidentes de trá�co se ilustran.
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1. Introduction

Let Y1 be a negative binomial random variable with parameters 0 < p1 < 1,
r > 0, and probability mass function (pmf)

fY1
(y1) =

(
y1 + r − 1

y1

)
pr1(1− p1)y1 , y1 = 0, 1, . . . , (1)

and letWi, i = 1, 2, . . . be independent identically distributed (i.i.d.) non-negative,
integer-valued random variables distributed as Q-distribution, independent of Y1.
The random sum Y2 =

∑Y1

i=0Wi has a compound negative binomial distribution
(CQNB) with compounding distribution Q, where W0 = 0 with probability 1.

The univariate compound negative binomial models arise naturally in insurance
and actuarial sciences and were studied by several authors (see Drekic & Willmot
(2005)). Panjer & Willmot (1981) studied compound negative binomial with expo-
nential distribution. Subrahmaniam (1966) derived the Pascal-Poisson distribution
(compound negative binomial with Poisson distributions) as a limiting case of a
more general contagious distribution (see Johnson, Kemp & Kotz (2005)). Sub-
rahmaniam (1978) investigated the parameters estimates for the Pascal-Poisson
distribution by method of moments and maximum likelihood procedures. Jew-
ell & Milidiu (1986) suggested three methods to approximate the evaluation of
the compound Pascal distribution where the compounding distribution is de�ned
on both negative and positive integers. Ramsay (2009) derived expression for
the cumulative distribution function of compound negative binomial where the
compounding distribution is Pareto distribution. Wang (2011) presented recur-
sion on the pdf of compound beta negative binomial distribution. Willmot & Lin
(1997) constructed upper bound for the tail of the compound negative binomial
distribution. Cai & Garrido (2000) derived two sided-bounds for tails of com-
pound negative binomial distributions. Vellaisamy & Upadhye (2009b) studied
convolutions of compound negative binomial distributions. Gerber (1984), dhaene
(1991), Vellaisamy & Upadhye (2009a) and Upadhye & Vellaisamy (2014) consid-
ered the problem of approximating a compound negative binomial distribution by a
compound Poisson distribution. Hanagal & Dabade (2013) introduced compound
negative binomial frailty model with three baseline distributions.

Joint modeling of the bivariate random vector (Y1, Y2) has been studied by
several authors. A variety of bivariate models such as Poisson-Bernoulli, Poisson-
Poisson and Poisson-Geometric are discussed by Leiter & Hamdan (1973), Cacoul-
los & Papageorgiou (1980), Papageorgiou (1985) and Papageorgiou (1995). Ca-
coullos & Papageorgiou (1982) introduced and studied a three parameter bivariate
discrete distribution, which they called the negative binomial-Poisson, to analyze
tra�c accidents. Papageorgiou & Loukas (1988) derived maximum likelihood esti-
mators for the parameters of the bivariate negative binomial-Poisson distribution.
Recently, Alzaid, Almuhay�th & Omair (2017) obtained some general forms for
density, cumulative distribution, moments, cumulants and correlation coe�cient
of (Y1, Y2), when Y1 has a Poisson distribution, and di�erent assumptions for the
compounding distribution, namely Poisson, binomial and negative binomial dis-
tributions, denoted by BPPM, BBPM and BNBPM, respectively. Özel (2011b)
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proposed a bivariate compound Poisson distribution and introduced bivariate ver-
sions of the Neyman Type A, Neyman type B, geometric-Poisson and Thomas
distributions. Earthquake data was used to illustrate the application of these dis-
tributions. Özel (2011a) de�ned a bivariate compound Poisson distribution to
model the occurences of forshock and aftershock sequences in Turkey.

In this paper, we study the random vector (Y1, Y2) where Y1 ∼ NB(r, p1) and
Wi ∼ geo(p2). We refer to this distribution as BGNBD, which stands for bivariate
geometric-negative binomial distribution. The BGNBD distribution can be used
as appropriate model for many problems of social, income and physical nature.
For instance, the number of purchased order and the number of total soled items
per day, the total number of insurance claimed and the number of claimants per
unit time, the total number of injury accidents and number of fatalities and the
number of visits and number of drugs prescribed.

Our paper is organized as follows. In Section 2, the bivariate geometric-negative
binomial distribution is derived and distributional properties are discussed. Pa-
rameter estimators of BGNBD are derived using the methods of moment and
maximum likelihood in Section 3. Applications on real data sets are presented in
Section 4 to illustrate the BGNBD. Finally, some conclusions are drawn in Section
5.

2. Bivariate Geometric Negative Binomial

Distribution

De�nition 1. A random vector (Y1, Y2) with the stochastic representation (Y1, Y2) =d

(Y1,
∑Y1

i=0Wi) where Y1 is a negative binomial variable given in (1) and the Wi's
are i.i.d. geometric variables (p2), independent of the Y1, is said to have a bivari-
ate geometric-negative binomial distribution with parameters r,p1 and p2. This
distribution is denoted by BGNBD(r, p1, p2).

The random variable Y2 is distributed according to the compound geometric-
negative binomial distribution (CGNB) with parameters r, p1 and p2, denoted by
CGNB(r, p1, p2).

2.1. General Properties of Compound Geometric-Negative

Binomial Distribution

• The probability mass function

By using conditional argument on Y1, it is easy to show that the pmf of
Y2 ∼ CGNB(r, p1, p2) is given by

fY2(y2) = rp2q1p
r
1q
y2
2 2F1(y2 + 1, r + 1; 2; p2q1), y2 = 0, 1, . . . , (2)

where 2F1 is the Gaussian hypergeometric function (see Abramowitz & Ste-
gun (1972), chapter 15). Recurrence for the pmf in (2) can be derived using
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the recurrence relation of the Gaussian hypergoemetric function,

(c− a)2F1(a− 1, b; c; z) + (2a− c− (a− b)z)2F1(a, b; c; z)+

a(z − 1)2F1(a+ 1, b; c; z) = 0.

Thus, we have:

fY2
(0) = [

p1

1− p2q1
]r,

fY2
(1) =

rpr1p2q2q1

(1− p2q1)r+1

and, ∀y2 ≥ 2

fY2
(y2 + 1) =
q2

(y2 + 1)(p2q1 − 1)
{(y2(p2q1 − 2)− rp2q1)fY2

(y2) + q2(y2 − 1)fY2
(y2 − 1)}.

(3)

• Moments properties

Using properties of compound distribution, the moment generating function
(mgf) can be derived as

MY2
(t) = [

p1

1− q1MW (t)
]r = [

p1(1− q2e
t)

1− q2et − p2q1
]r, (4)

The mean and variance of CGNBD are obtained as follows:

E(Y2) = r
q1

p1
E(W ) = r

q1q2

p1p2
, (5)

V ar(Y2) = r
q1

p1
V ar(W ) + r

q1

p2
1

E2(W ) = r
q1q2(p1 + q2)

p2
1p

2
2

. (6)

The Skewness of Y2 ∼ CGNB(r, p1, p2) is given by

Skew(Y2) = E(
Y2 − r q1p1E(W )

σY2

)3 =
1

σ
Y

3
2

2

[3r
q2
1

p2
1

µ′1µ
′
2+2r

q3
1

p3
1

µ
′3
1 +r

q1

p1
µ′3], (7)

where µ′i, i = 1, 2, 3 are the �rst three moments about zero ofW . As r and p1

and the moments of W are positive, it follows that the compound geometric
negative binomial distribution is positively skewed.

Proposition 1. If r = 1 then CGNBD random variable has the representa-
tion Y2 = IU where I ∼ Bernoulli(p1) independent of U ∼ Geo( p1p2

1−p2q1 ) i.e.
Y2 has zero in�ated geometric distribution.
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Proof . From equation (4), the pgf of Y2 when r = 1 is

GY2
(t) =

p1(1− q2t)

1− q2t− p2q1
=
p1(1− q2t− p2q1) + p1p2q1

1− q2t− p2q1
= p1+q1

p1p2
1−p2q1

1− q2
1−p2q1 t

.

which is a mixture of degenerate distribution at 1 with probability p1 and
Geo( p1p2

1−p2q1 ) with probability q1. Hence, the proof is complete.

Since the negative binomial distribution can be represented as a compound
Poisson distribution with logarithmic compounding distribution. Then, the
compound negative binomial distribution is a compound Poisson distribution
with a compound logarithmic distribution as the compounding distribution.
This is stated in the following proposition.

Proposition 2. The compound negative binomial distribution with parame-
ters r and p1, and compounding distribution with pgf GW , can be regarded as
compound Poisson distribution with mean λ = −r log p1 and compounding
distribution with pgf of the form

GW∗(t) =
log(1− q1GW (t))

log p1
.

• Monotonicity Properties.

Proposition 3. The pmf of Y2 ∼ CGNB(r, p1, p2) is log-concave for r > 1
and log-convex for r < 1.

Proof . The relation

f2
Y2

(y2 + 1) ≥ fY2
(y2)fY2

(y2 + 2)

is equivalent to

2F1(y2 + 1, r + 1; 2; p2q1)2 ≥2 F1(y2, r + 1; 2; p2q1)2F1(y2 + 2, r + 1; 2; p2q1),

Using the fact that 2F1(a, b; c;x) is log-concave in a for 0 < x < 1 , b > c > 0
and log-convex in a for −∞ < x < 1, c > b > 0 (Theorem 6 and 7 of Karp
& Sitnik 2010), we get the result.

Note that the log-concavity is equivalent to strongly unimodal, and it implies
that the distribution is unimodal and has increasing hazard (failure) rate.

• Divisibility and Self-decomposability
Useful theorems from Steutel & van Harn (2004) regarding the representa-
tion of in�nitely divisible and self-decomposable for distributions on the set
of nonnegative integers are quoted here. The results of these theorems en-
able us to prove the self-decomposability of the compound negative binomial
distribution.
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Theorem 1 (Theorem 3.2 of Steutel & van Harn (2004), Chapter II, Section
3). A pgf G is in�nitely divisible i� it is compound Poisson, i.e., if it has
the form

G(t) = e−λ(1−Q(t))

with λ > 0 and Q a pgf with Q(0) = 0.

Theorem 2 ( 4.13 of Steutel & van Harn (2004), Chapter V, Section 4).
Let (pn)∞0 and (rn)∞0 be sequences of real numbers with pn ≥ 0, p0 > 0, and
let pn and rn be related by

(n+ 1)pn+1 =

n∑
k=0

rn−kpk, n = 0, 1, 2, . . . ,

where the r's satisfy rn ≥ 0, and necessarily
∑∞
n=0

rn
n+1 < ∞. Then (pn)∞0

is self-decomposable i� it is in�nitely divisible and has a canonical sequence
rn that is non-increasing.

• Remark.

Note that the probability generating function of the compound negative bi-
nomial distribution is given by

G(t) = (
p1

1− q1GW (t)
)r

= e
−r log

p1
1−q1GW (t)

= e−r log p1(1− log(1−q1GW (t))

log p1
)

= e−r log p1(1−GW∗ (t))

= e−λ(1−Q(t)).

Therefore by Theorem 1 and Proposition 2, the compound negative binomial
distribution is in�nitely divisible.

Proposition 4. The compound negative binomial distribution has canonical
sequence representation of the form

rk = r(k + 1)

∞∑
i=1

qi1
i
f∗iW (k + 1). (8)

Proof . From Proposition 2, the compound negative binomial distribution
can be regarded as compound Poisson distribution with λ = −r log p1 and
compounding distribution with pgf of the form

GW∗(t) =
log(1− q1GW (t))

log p1
= − 1

log p1

∞∑
i=1

qi1
i
GiW (t).
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Since f∗iW is the probability mass function of GiW , we get

fW∗(k + 1) = − 1

log p1

∞∑
i=1

qi1
i
f∗iW (k + 1). (9)

It is easily seen that the canonical representation of the compound Poisson
distribution is given by

rk = λ(k + 1)fW (k + 1). (10)

Substituting λ = −r log p1 and (9) in (10), we get the relation (8).

Corollary 1. The compound negative binomial distribution is self-decom-
posable i� the canonical sequence in (8) is non-increasing in k.

Proof . Follows directly from Theorem 2.

Example 1. In case of compound geometric-negative binomial distribution,
we have

rk = r(k + 1)

∞∑
i=1

qi1
i
f∗iW (k + 1)

= r(k + 1)

∞∑
i=1

qi1
i

(
k + i

k + 1

)
pi2q

k+1
2

= r(
q2

1− q1p2
)k+1,

which is non-increasing function. Hence, the compound geometric-negative
binomial distribution is self-decomposable.

De�nition 2. If X1 and X2 are two rv's with pmf's f1(x) and f2(x), respectively.
Then X1 is less than X2 in likelihood ratio order (denoted by X1 ≤lr X2) if

f2(x)
f1(x)

is increasing in x.

Proposition 5. Let {Wi : i = 1, 2, . . .} be sequence of independent geo(p2) random
variables, and let Y1 ∼ NB(r, p1) and Y ∗1 ∼ NB(r∗, p∗1) be two random variables
which are independent of the Wi's. Then

Y1∑
i=1

Wi ≤lr
Y ∗1∑
i=1

Wi

if and only if r ≥ r∗ and r(1− p1) ≤ r∗(1− p∗1).

Proof . The result follows from application of Theorem 1.C.11 of Shaked & Shan-
thikumar (2007), and likelihood ordering of negative binomial distribution and
log-concavity of geometric distribution.
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2.2. Basic Properties of (Y1, Y2) ∼ BGNBD(r, p1, p2)

Using conditional argument on Y1 we can obtain the followings;

• The joint pmf of (Y1, Y2) is given by

fY1,Y2(y1, y2) =

(
y1 + r − 1

y1

)(
y1 + y2 − 1

y2

)
pr1(1− p1)y1py12 (1− p2)y2 , (11)

y1 ≥ 1, y2 = 0, 1, . . ., fY1,Y2
(0, y2) = 0 for y2 = 1, 2, . . ., and fY1,Y2

(0, 0) = pr1.

• The Moment generating function of (Y1, Y2) is

MY1,Y2
(u, v) = [

p1

1− q1euMW (v)
]r;MW (v) =

p2

1− q2ev
. (12)

• Covariance structure of (Y1, Y2) ∼ BGNBD(r, p1, p2).

The covariance matrix of (Y1, Y2) takes the form

[
r (1−p1)

p21
r (1−p1)(1−p2)

p21p
2
2

r (1−p1)(1−p2)
p21p

2
2

r (1−p1)(1−p2)(p1+q2)
p21p

2
2

]
(13)

and the correlation coe�cient of Y1 and Y2 is

Corr(Y1, Y2) = E(W )

√
V ar(Y1)

V ar(Y2)
=

√
1

1 + C.V 2(W )
E(Y1)C.V 2(Y1)

=

√
1− p2

1− p2 + p1
.

(14)

where C.V (W ) denotes the coe�cient of variation of W . It is interesting to
note that the correlation does not depend on r. This gives more �exibilty in
modeling as one can let the mean and the variance varies without a�ecting
the correlation. Also, One can see that the correlation coe�cient is a de-
creasing function of p1 and p2 and assumes only positive values. Obviously,
the correlation is bounded by 0 and 1, where the lower bound is attained if
p2 = 0 and the upper bound is attained when p2 = 1 which correspond to
the trivial cases Y2 = 0 and Y1 = Y2, respectively.

• Product moments and joint cumulants.

The (r, s)-th product moment of (Y1, Y2) ∼ BGNBD(r, p1, p2) are given by
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µ′1,1 = r
1− p1

p2
1

(1 + r(1− p1))E(W ),

µ′2,1 = r
1− p1

p3
1

(1 + q1(1 + 3r + r2q2
1))E(W ),

µ′1,2 = r
1− p1

p3
1

[(1− q1)(1 + rq1)E(W 2) + q1(r + 1)(2 + rq1)E2(W )],

µ′2,2 = r
1− p1

p4
1

[p1(1 + q1(1 + 3r + r2q1))E(W 2)

+ q1(r + 3 + r2q1(2 + q1 + rq1) + (3r + 1)(1 + 2q1 + rq1))E2(W )].

and the three �rst cumulants of (Y1, Y2) ∼ BGNBD(r, p1, p2) are as follows

k1,1 = r
1− p1

p2
1

E(W ),

k1,2 = r
1− p1

p3
1

[p1E(W 2) + 2q1E
2(W )],

k2,1 = r
1− p1

p3
1

(1 + q1)E(W ),

k2,2 = r
1− p1

p4
1

[(1− q2
1)E(W 2) + 2q1(2 + q1)E2(W )],

k1,3 = r
1− p1

p4
1

[p2
1E(W 3) + 6p1q1E

2(W )E(W 2) + 6q2
1E

3(W )],

k3,1 = r
1− p1

p4
1

(1 + 2q1)2E(W ).

• Conditional distribution and regression functions

1. It is obvious that the conditional distribution of Y2 given Y1 is a negative
binomial random variable with parameters y1 and p1. Thus

E(Y2|Y1 = y1) = y1
1− p2

p2
, (15)

which is a linear in y1 with regression coe�cient
1−p2
p2

. As the coe�cient
is non-negative we have the conditional mean of Y2 increases with the
increase in y1. Also the conditional variance is

V ar(Y2|Y1 = y1) = y1
1− p2

p2
2

, (16)

which has similar properties as the conditional mean.

2. The conditional pmf of Y1 given Y2 = y2 has the form

fY1|Y2
(Y1|Y2 = y2) =

θy1

rθ

(
y1+r−1
y1

)(
y1+y2−1

y2

)
2F1(y2 + 1, r + 1; 2; θ)

, (17)
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θ = p2q1, y1 = 0, 1, . . .

As a direct consequence of (17), we have the pgf of the conditional
distribution as

GY1|Y2=y2(t|y2) = t
2F1(y2 + 1, r + 1; 2; θt)

2F1(y2 + 1, r + 1; 2; θ)
, (18)

i.e. the conditional distribution of Y1 given Y2 = y2 is shifted (by 1)
generalized hypergeometric probability distribution (GHPD) (see Kemp
1968). The �rst and second derivative of the pgf in (18) yield the
following results:

E(Y1|Y2 = y2) =

1 +
(r + 1)(y2 + 1)

2
p2q1

2F1(y2 + 2, r + 2; 3; θ)

2F1(y2 + 1, r + 1; 2; θ)
,

E(Y 2
1 |Y2 = y2) = 1 + 3

(r + 1)(y2 + 1)

2
p2q1

2F1(y2 + 2, r + 2; 3; θ)

2F1(y2 + 1, r + 1; 2; θ)

+
(r + 1)(r + 2)(y2 + 1)(y2 + 2)

6
(p2q1)2 2F1(y2 + 3, r + 3; 4; θ)

2F1(y2 + 1, r + 1; 2; θ)
.

The following proposition gives the distribution of the random sum S =
Y1 + Y2.

Proposition 6. The random variable S = Y1 + Y2 has compound negative
binomial distribution with shifted geometric distribution.

Proof .

GS(t) = E(etS) = E(tY1+Y2) = E(E(tY1+
∑Y1

i=1Wi)|Y1)

= E(tY1E(t
∑Y1

i=1Wi)|Y1) = E((tGW (t))Y1)

= GY1
(tGW (t)) = [

p1

1− q1tGW (t)
]r = [

p1

1− q1
tp2

1−q2t
]r.

and, the proof is complete.

• Convolutions of BGNBD

Proposition 7. Let (Y1i, Y2i) =d (Y1i,
∑Y1i

i=0Wi) be mutually independent
BGNBD for i = 1, 2 · · · , n, Y1i is a negative binomial random variable with
parameters ri,p1, and Wi's are iid random variables distributed as geometric
with parameter p2, and independent of the Y1i's, then the distribution of∑n
i=1(Y1i, Y2i) is BGNBD with parameters r =

∑n
i=1 ri ,p1 and p2.

Proof . The mgf of the random vector (Y1i, Y2i) is given by

MY1i,Y2i
(u, v) = [

p1

1− q1euMW (v)
]ri .
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Then, the mgf of the sum of the n random vectors (Y1i, Y2i) is

E(et
∑n

i=1(Y1i,Y2i)) =

n∏
i=1

E(et(Y1i,Y2i))

=

n∏
i=1

[
p1

1− q1euMW (v)
]ri

= [
p1

1− q1euMW (v)
]
∑n

i=1 ri

which is the mgf of BGNBD with parameters r =
∑n
i=1 ri, p1 and p2.

Example 2. Let (Y11, Y21) ∼ BGNBD(r1, p1, p2) independent of (Y12, Y22) ∼
BGNBD(r2, p1, p2). Then according to Proposition 7, we have (Y11 +
Y12, Y21 + Y22) ∼ BGNBD(r1 + r2, p1, p2). Hence, the conditional distri-
bution is given by

Pr(Y11 = y1, Y21 = y2|Y11 + Y12 = z1, Y21 + Y22 = z2)

=
fY1,Y2

(y1, y2; r1, p1, p2)fZ1−Y1,Z2−Y2
(z1 − y1, z2 − y2; r2, p1, p2)

fZ1,Z2(z1, z2; r1 + r2, p1, p2)

=

(
y1+r1−1

y1

)(
z1−y1+r2−1

z1−y1

)(
z1+r1+r2−1

z1

) (
y1+y2−1

y2

)(
z1+z2−y1−y2−1

z2−y2

)(
z1+z2−1

z2

) .

i.e. the conditional distribution is the product of two negative hypergeomet-
ric distribution, NHG(r1, z1, r1 + r2) and NHG(y1, z2, z1).

• Limiting Distribution.

Since the negative binomial distribution with parameters r and p1 converges
to the Poisson distribution with parameter λ = r(p − 1) where r → ∞ and
p1 → 1. Thus, we have the following proposition.

Proposition 8. Under the limiting conditions r →∞ and p1 → 1 such that
r(1− p1) = λ , the following relation is true

lim
r→∞

lim
p1→1

MY1,Y2
(u, v) = eλ(euMW (v)−1),

where eλ(euMW (v)−1) is the mgf of bivariate Poisson-geometric distribution.
Hence, the bivariate geometric-negative binomial distribution converges to
that of the bivariate geometric-Poisson distribution

• Monotonicity

De�nition 3. A function p(x, y) de�ned for x ∈ X and y ∈ Y is totally
positive of order 2 (TP2) if and only if p(x, y) ≥ 0 for all x ∈ X , y ∈ Y and∣∣∣∣p(x1, y1) p(x1, y2)

p(x2, y1) p(x2, y2)

∣∣∣∣ ≥ 0

whenever x1 ≤ x2 and y1 ≤ y2.
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Proposition 9. If (Y1, Y2) ∼ BGNBD(r, p1, p2), then the function fY1,Y2
(y1, y2)

de�ned in (11) is TP2.

Proof . For z1 < z2, we have

fY1,Y2(y1, z1)

fY1,Y2
(y1, z2)

= (1− p2)z1−z2
z2!(y1 + z1 − 1)!

z1!(y1 + z2 − 1)!

= (1− p2)z1−z2
z2!

z1!(y1 + z2 − 1) . . . (y1 + z2 − z1) . . . (y1 + z1)
.

which is decreasing function in y1, hence fY1,Y2
(y1, y2) de�ned in (11) is

TP2.

The TP2 is very strong positive dependence between random variables in
particular it implies association and positive quadrant dependence and hence
a nonnegative covariance (see for example Barlow & Proschan (1975)).

Proposition 10.

i For r < 1 and y2 = 0, the joint pmf of BGNBD given in (11) is log-
convex in y1, otherwise it is log-concave.

ii The joint pmf of BGNBD given in (11) is log-concave in y2.

Proof .

i In order to prove that the joint pmf of BGNBD given in (11) is log-

concave in y1, we need to show that
fY1,Y2

(y1+1,y2)

fY1,Y2
(y1,y2) is decreasing in y1

for every y2.
But

fY1,Y2
(y1 + 1, y2)

fY1,Y2
(y1, y2)

= (1− p1)p2(1 +
y2 + r − 1

y1 + 1
+

ry2

y1(y1 + 1)
)

Thus, the ratio is decreasing in y1 for r ≥ 1. For r < 1, we have two
cases, the �rst is that y2 = 0 then the ratio increasing and the second
case where y2 > 0 which is clearly decreasing in y1.

ii The log-concavity of BGNBD in y2 follows from the fact that the y1 −
th convolution of geometric distribution with parameter p2 is negative
binomial distribution with parameters y1 and p2 which is a log-concave.

• Stochastic Order

Proposition 11. Let {Wi : i = 1, 2, . . .} and {W ∗i : i = 1, 2, . . .} be two
sequences of independent geo(p2) and geo(p∗2) random variables, respectively,
such that p2 ≥ p∗2. Let Y1 ∼ NB(r, p1) and Y ∗1 ∼ NB(r∗, p∗1) be two random
variables which are independent of Wiś and W

∗
i ś, respectively, where r ≥ r∗

and r(1− p1) ≤ r∗(1− p∗1), then (Y1,
∑Y1

i=1Wi) ≤st (Y ∗1 ,
∑Y ∗1
i=1W

∗
i ).

Proof . The result follows from an application of Theorem 6.B.3 of Shaked
& Shanthikumar (2007) and Proposition 5.
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3. Estimation

Assume that we have n pairs of observations (y1i, y2i); i = 1, 2, . . . , n from
BGNBD with parameters r,p1 and p2.

• Method of moments
The moment estimates p̂1MM , p̂2MM and r̂MM of p1,p2 and r are obtained
from solving the moments equations. Using the moments

E(Y1) = r
q1

p1
,

V ar(Y1) = r
q1

p2
1

,

E(Y2) = r
q1q2

p1p2
,

we get

p̂1MM =
r̂MM

r̂MM + ȳ1
,

p̂2MM =
ȳ1

ȳ1 + ȳ2
,

r̂MM =
ȳ2

1

s2
1 − ȳ1

.

As the value of r is non-negative, then the estimate r̂MM has meaning only
when s2

1 > ȳ1.

• Maximum Likelihood
Maximum likelihood estimates (MLE) for the parameters p1, p2 and r can
be derived by considering the likelihood function given by

L =

n∏
i=1

(
y1i + r − 1

y1i

)(
y1i + y2i − 1

y2i

)
pr1(1− p1)y1ipy1i2 (1− p2)y2i .

Then it can be seen that the MLE satisfy

p̂1MLE =
r̂MLE

r̂MLE + ȳ1
,

p̂2MLE =
ȳ1

ȳ1 + ȳ2

and

∂LogL

∂r
=

n∑
i=1

[log(p1) + ψ(y1i + r)− ψ(r)] = 0, ψ(x) =
d log Γ(x)

dx
.

Note that MLE and MM estimate of p2 are identical. Under mild regularity
condition the maximum likelihood estimator Θ̂ = (r̂, p̂1, p̂2) for large sample
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has approximately a multivariate normal distribution N3(Θ, I−1(Θ)) where

I(Θ) = −E(∂
2 logL

∂Θ∂Θ̀
).

In order to obtain the asymptotic variance-covariance matrix of p1, p2 and r,
we need the second partial derivatives of the log likelihood function. These
are given by

∂2LogL

∂p2
1

= −nr
p2

1

−
∑n
i=1 y1i

(1− p1)2
,

∂2LogL

∂p2
2

= −
∑n
i=1 y1i

p2
2

−
∑n
i=1 y2i

(1− p2)2
,

∂2LogL

∂r2
=

n∑
i=1

ψ′(y1i + r)− nψ′(r),

∂2LogL

∂p1∂r
=

n

p1
.

and

∂2LogL

∂p1∂p2
=
∂2LogL

∂p2∂r
= 0.

Hence,

Cov(p̂2, r̂) = Cov(p̂1, p̂2) = 0.

4. Numerical Example

For comparison purposes, the BGNBD was �tted to the same sets of accident
data used by Leiter & Hamdan (1973) and Cacoullos & Papageorgiou (1980), i.e.,
the total number of injury accidents recorded during 639 days (in 1969 and 1970)
in a 50-mile stretch of highway in eastern Virginia (Y1), and the corresponding
number of fatalities (Y2) for individual years. We look at the data as three sets
of data. The �rst data is the entire study, the second and third set of data
representing the total number of injury accidents in 1969 and 1970, respectively.
Descriptive statistics of the considered data are presented in Table 1.

As the estimation criterion holds (s2
1 > ȳ1), hence we considered estimating the

parameters using both methods the moments and the maximum likelihood. The
results are reported in Table 2. Comparing the MM and MLE of the parameters
show that they are quite similar. The estimated variance-covariance matrix of the
maximum likelihood estimators are computed for each data set.

Σentire =

 7.397 0.138 0

0.138 0.003 0

0 0 0.0001

,
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Table 1: Descriptive Statistics for accident data.

Data Variable Size Mean Variance Min Max Skew

Corr
(p-

value)

entire study Y1 639 0.862 0.984 0 5 1.21 0.205 (0)

Y2 639 0.058 0.061 0 2 4.41

Year 1969 Y1 349 0.880 1.014 0 5 1.21 0.206 (0)

Y2 349 0.066 0.067 0 2 4.00

Year 1970 Y1 290 0.841 0.951 0 4 1.20 0.204 (0)

Y2 290 0.048 0.053 0 2 5.06

Table 2: Parameter estimates for BGNBD.

Data Method p̂1 p̂2 r̂ ρ̂ Log-lik AIC

entire study MLE 0.873 0.937 5.925 0.259 −919.154 1842.307

MM 0.876 0.937 6.102 0.259

year 1969 MLE 0.865 0.930 5.649 0.273 −513.839 1031.677

MM 0.867 0.930 5.751 0.273

Year 1970 MLE 0.884 0.946 6.383 0.241 −404.892 813.7831

MM 0.885 0.946 6.486 0.240

Σ1969 =

 19.11 0.396 0

0.396 0.008 0

0 0 0.0002

,

Σ1970 =

 11.978 0.192 0

0.192 0.003 0

0 0 0.0002

.
In order to investigate the performance of the BGNBD, we compared the �tting of
this model with the results of �tting the bivariate Poisson-Poisson (BPPD), bivari-
ate binomial-Poisson (BBPD), bivariate geometric-Poisson (BGPD), and bivariate
negative binomial-Poisson (BNBPD) distributions to the data (For more informa-
tion about these distributions, see Alzaid et al. (2017)). The BBPD is �tted assum-
ing di�erent values of the parameter m, the BNBPD assuming di�erent values of
the parameter r for the �rst two data sets, in this case the moments estimates coin-
cide with the maximum likelihood estimates. The �t of each model was measured
using the Akaike information criterion AIC, SSE values and chi-square goodness-of-
�t criterion, where the SSE is de�ned by SSE =

∑
ally1,y2

(observed− expected)2.
The observed and expected values for the bivariate models along with the log-
likelihood, AIC, χ2 values, degrees of freedom (d.f.), corresponding p-values and
SSE are given in Tables 3-5. Figure 1 demonstrates the �tted distributions. The
values of χ2, were computed after the grouping of bolded cells in the table. The
results show that the log-likelihood and AIC values of all the bivariate models
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are essentially the same. Note that the �t of the models BPPD, BBPD, BGPD
and BNBPD is much better for the individual years, than it is for the entire 639
days. It is obvious from the χ2 and SSE values in Table 3 that the models BPPD,
BBPD, BGPD and BNBPD could not give a satisfactory �t for the data. The
�t by BGNBD yields a smaller χ2 and SSE values as compared with the other
models, which implies that this model �ts the data well, this is also re�ected by
the p-value. Same conclusion is reached from Table 4. The p-values of the models
in Table 5, suggest acceptable with the superiority of BGNBD as judged by larger
p-value and smaller SSE.

Table 3: Bivariate models �tted to accident data entire study (639 days).

Cell
no. y1 y2 Observed

Expected
BPPD

Expected
BBPD
(m = 5)

Expected
BGPD

Expected
BNBPD
(r = 20)

Expected
BGNBD
MM

Expected
BGNBD
MLE

1 0 0 286 269.78 269.78 269.78 269.78 285.25 285.68

2 1 0 198 217.52 217.42 217.99 217.55 201.95 201.51

3 2 0 82 87.69 87.61 88.07 87.71 83.2 83.06

4 3 0 24 23.57 23.54 23.72 23.58 26.07 26.12

5 4 0 13 4.75 4.74 4.79 4.75 6.88 6.94

6 5 0 1 0.77 0.76 0.77 0.77 1.61 1.64

7 1 1 17 14.61 14.8 13.72 14.56 12.71 12.68

8 2 1 10 11.78 11.93 11.08 11.74 10.47 10.45

9 3 1 5 4.75 4.81 4.48 4.73 4.92 4.93

10 4 1 1 1.28 1.29 1.21 1.27 1.73 1.75

11 5 1 0 0.26 0.26 0.24 0.26 0.51 0.52

12 1 2 1 0.49 0.4 0.86 0.51 0.8 0.8

13 2 2 0 0.79 0.73 1.05 0.81 0.99 0.99

14 3 2 1 0.48 0.46 0.56 0.48 0.62 0.62

15 4 2 0 0.17 0.17 0.19 0.17 0.27 0.27

16 5 2 0 0.04 0.04 0.05 0.04 0.1 0.1

Log-like -921.753 −921.795 −921.987 −921.749 - −919.154

AIC 1847.505 1847.59 1847.974 1847.498 - 1842.307

χ2-value 16.896 16.863 17.284 16.907 5.984 6.088

p-value 0.0097 0.0098 0.0083 0.0096 0.4249 0.4134

d.f. 6 6 6 6 6 6

SSE 755.05 750.16 780.69 756.36 80.38 76.15
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Table 4: Bivariate models �tted to accident data for year 1969 (349 days).

Cell
no. y1 y2 Observed

Expected
BPPD

Expected
BBPD
(m = 2)

Expected
BGPD

Expected
BNBPD
(r = 50)

Expected
BGNBD
MM

Expected
BGNBD
MLE

1 0 0 154 144.81 144.81 144.81 147.35 153.94 154.09

2 1 0 107 118.19 118.02 118.5 117.89 109.26 109.11

3 2 0 43 48.23 48.09 48.49 47.16 45.52 45.47

4 3 0 15 13.12 13.06 13.23 12.58 14.51 14.53

5 4 0 7 2.68 2.66 2.71 2.52 3.92 3.94

6 5 0 1 0.44 0.43 0.44 0.4 0.94 0.95

7 1 1 12 8.85 9.19 8.26 8.82 7.62 7.6

8 2 1 6 7.23 7.49 6.76 7.06 6.34 6.34

9 3 1 3 2.95 3.05 2.77 2.82 3.03 3.04

10 4 1 0 0.8 0.83 0.75 0.75 1.09 1.1

11 5 1 0 0.16 0.17 0.15 0.15 0.33 0.33

12 1 2 0 0.33 0.18 0.58 0.34 0.53 0.53

13 2 2 0 0.54 0.44 0.71 0.53 0.66 0.66

14 3 2 1 0.33 0.3 0.39 0.32 0.42 0.42

15 4 2 0 0.12 0.11 0.13 0.11 0.19 0.19

16 5 2 0 0.03 0.03 0.03 0.03 0.07 0.07

Log-like −515.1093 −514.7947 −515.6018 −515.0592 - −513.839

AIC 1034.219 1033.589 1035.204 1034.118 1031.677

χ2-value 11.775 11.603 12.224 12.514 5.172 5.617

df 5 5 5 5 5 5

p-value 0.038 0.040659 0.031849 0.02838 0.395275 0.345327

SSE 272.4608 266.2474 285.2767 219.2574 42.9263 41.978
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Table 5: Bivariate models �tted to accident data for year 1970 (290 days).

Cell
no. y1 y2 Observed

Expected
BPPD

Expected
BBPD
(m=5)

Expected
BGPD

Expected
BNBPD

Expected
BGNBD
MM

Expected
BGNBD
MLE

1 0 0 132 125.02 122.44 122.44 125.02 131.47 131.57

2 1 0 91 99.33 99.66 99.85 99.56 92.60 92.50

3 2 0 39 39.46 40.56 40.71 39.64 37.64 37.61

4 3 0 9 10.45 11.00 11.07 10.52 11.56 11.58

5 4 0 6 2.08 2.24 2.26 2.09 2.98 2.99

6 1 1 5 5.70 5.78 5.42 5.26 5.02 5.02

7 2 1 4 4.53 4.71 4.42 4.19 4.08 4.08

8 3 1 2 1.80 1.92 1.80 1.67 1.88 1.88

9 4 1 1 0.48 0.52 0.49 0.44 0.65 0.65

10 1 2 1 0.16 0.13 0.29 0.35 0.27 0.27

11 2 2 0 0.26 0.25 0.36 0.39 0.33 0.33

12 3 2 0 0.15 0.16 0.20 0.20 0.20 0.20

13 4 2 0 0.05 0.06 0.07 0.06 0.09 0.09

log-like −406.2536 −406.3961 −405.9546 −405.9235 - −404.892

AIC 816.5071 816.7921 815.9091 817.8469 - 813.7831

χ2-value 2.1398 2.3157 2.0818 1.8648 0.19169 0.1862

df 4 4 4 3 3 3

P-value 0.710063 0.677909 0.72071 0.60093 0.97892 0.979785

SSE 137.5873 189.1432 192.2528 141.008 21.228 20.8874
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Figure 1: Accident data (entire study) and �tted distributions (Top). Accident data
(year 1969) and �tted distributions (Middle). Accident data (year 1970) and
�tted distributions (Bottom).
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5. Conclusions

In this paper, the moments, cumulants, skewness of the univariate CGNBD
are derived. Some monotonicity and distributional properties of the univariate
CGNBD are provided. Then, BGNBD is de�ned and some important probabilis-
tic characteristics such as moments, cumulants, covariance, and the coe�cient
of correlation are obtained. Some applications to accident data have been pre-
sented to illustrate the usage of the BGNBD. The results showed the superiority
of BGNBD among other competitive models in the presented applications.
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