
Revista Colombiana de Estadística

July 2018, Volume 41, Issue 2, pp. 173 to 189

DOI: http://dx.doi.org/10.15446/rce.v41n2.55250

Arti�cial Neuronal Networks: A Bayesian

Approach Using Parallel Computing

Redes neuronales regularizadas: un enfoque bayesiano usando

cómputo paralelo

Eduardo Guzmán1,a, Mario Vázquez2,b, David del Valle1,c,

Paulino Pérez-Rodríguez1,d

1Estadística, Socio Economía Estadística e Informática, Colegio de

Postgraduados, Texcoco, México

2Matemáticas y Cómputo, Departamento de Irrigación, Universidad Autónoma

Chapingo, Texcoco, México

Abstract

An Arti�cial Neural Network (ANN) is a learning paradigm and auto-
matic processing inspired in the biological behavior of neurons and the brain
structure. The brain is a complex system; its basic processing unit are the
neurons, which are distributed massively in the brain sharing multiple con-
nections between them. The ANNs try to emulate some characteristics of
humans, and can be thought as intelligent systems that perform some tasks
in a di�erent way that actual computer does. The ANNs can be used to
perform complex activities, for example: pattern recognition and classi�ca-
tion, weather prediction, genetic values prediction, etc. The algorithms used
to train the ANN, are in general complex, so therefore there is a need to
have alternatives which lead to a signi�cant reduction of times employed to
train an ANN. In this work, we present an algorithm based in the strategy
�divide and conquer� which allows to train an ANN with a single hidden
layer. Part of the sub problems of the general algorithm used for training
are solved by using parallel computing techniques, which allows to improve
the performance of the resulting application. The proposed algorithm was
implemented using the C++ programming language, and the libraries Open
MPI and ScaLAPACK. We present some application examples and we asses
the application performance. The results shown that it is possible to reduce
signi�cantly the time necessary to execute the program that implements the
algorithm to train the ANN.
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Resumen

Una Red Neuronal Arti�cial (RNA) es un paradigma de aprendizaje y
procesamiento automático inspirado en el comportamiento biológico de las
neuronas y en la estructura del cerebro. El cerebro es un sistema altamente
complejo; su unidad básica de procesamiento son las neuronas, las cuales se
encuentra distribuidas de forma masiva compartiendo múltiples conexiones
entre ellas. Las RNAs intentan emular ciertas características propias de los
humanos, pueden ser vistas como un sistema inteligente que lleva a cabo
tareas de manera distinta a como lo hacen las computadoras actuales. Las
RNAs pueden emplearse para realizar actividades complejas, por ejemplo:
reconocimiento y clasi�cación de patrones, predicción del clima, predicción
de valores genéticos, etc. Los algoritmos utilizados para entrenar las redes,
son en general complejos, por lo cual surge la necesidad de contar con alter-
nativas que permitan reducir de manera signi�cativa el tiempo necesario para
entrenar una red. En este trabajo se presenta una propuesta de algoritmos
basados en la estrategia �divide y conquista� que permiten entrenar las RNAs
de una sola capa oculta. Parte de los sub problemas del algoritmo general
de entrenamiento se resuelven utilizando técnicas de cómputo paralelo, lo
que permite mejorar el desempeño de la aplicación resultante. El algoritmo
propuesto fue implementado utilizando el lenguaje de programación C++,
así como las librerías Open MPI y ScaLAPACK. Se presentan algunos ejem-
plos de aplicación y se evalúa el desempeño del programa resultante. Los
resultados obtenidos muestran que es posible reducir de manera signi�cativa
los tiempos necesarios para ejecutar el programa que implementa el algo-
ritmo para el ajuste de la RNA.

Palabras clave: Bayes empírico; modelos no lineales; procesamiento en
paralelo.

1. Introduction

An Arti�cial Neural Network (ANN) is a learning paradigm and automatic
processing inspired in the biological behavior of neurons and the brain structure.
The brain is a complex system; its basic processing unit are the neurons, which
are distributed massively in the brain sharing multiple connections between them.
From the statistical point of view the ANN are non linear regression models that
are useful for prediction. ANN have been used to perform complex tasks in many
�elds, for example classi�cation and pattern recognition, weather prediction, pre-
diction of genetic values (Pérez-Rodríguez, Gianola, Weigel, Rosa & Crossa 2013),
human health (Lebrón-Aldea, Dhurandhar, Pérez-Rodríguez, Klimentidis, Tiwari
& Vazquez 2015), electrical engineering (Lampinen, Vehtari & Leinonen 1999),
etc. In some applications, for example genetics, it is usual to have a large number
of predictors, when included in a neural network the number of parameters to esti-
mate increases exponentially, which could lead to a problem known as over�tting.
Fortunately there exists some �tting algorithms that can avoid these problems.
These algorithms are complex and costly in computational terms and have been
implemented in some software packages, for example, the nn toolbox in Matlab,
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the brnn R-package (Pérez-Rodríguez et al. 2013), the �exible bayesian modeling
(Neal 1996), among others.

Modern computers include several CPU cores that can be used to speed up
the computations. Some the software packages mentioned above are able to use
multiple cores for the computations (e.g. brnn R-package and trainbr function in
the nn toolbox in Matlab). Nowadays we also have available computer clusters
that can be used to solve complex problems by using several workstations that
work cooperatively in the same problem. In this work we present an algorithm
based in the strategy �divide and conquer� which allows to train an ANN with
a single hidden layer. Part of the sub problems of the general algorithm used
for training are solved by using parallel computing techniques, which allows to
improve the performance of the resulting application. The proposed algorithm
was implemented using the C++ programming language, and the libraries Open
MPI (Gabriel, Fagg, Bosilca, Angskun, Dongarra, Squyres, Sahay, Kambadur,
Barrett, Lumsdaine, Castain, Daniel, Graham & Woodall 2004) and ScaLAPACK
(Blackford, Choi, Cleary, D'Azevedo, Demmel, Dhillon, Dongarra, Hammarling,
Henry, Petitet, Stanley, Walker & Whaley 2012) which can be downloaded freely
from the internet.

The work is organized as follows. In Section 2 we brie�y review linear and
non linear models and its relationship with Neural Networks. In Section 3 we
review the algorithms that are used to �t a Neural Network. Section 4 presents
the implementation of the proposed algorithm. Section 5 shows two application
examples. Section 6 presents a benchmark of computational times for the proposed
algorithm. Finally in Section 7 we present the concluding remarks.

2. Linear models and ANN

Multiple Linear Regression (MLR) model is widely used in statistics and many
other �elds. The model can be written as:

yi = β0 + β1xi1 + · · ·+ βpxip + ei, i = 1, . . . , n, j = 1, . . . , p, (1)

where yi is the response variable for the i-th individual, xij is the value of the
j-th covariate for individual i, β = (β0, . . . , βp)

′ are regression coe�cients to be
estimated from the data and ei are random residuals, usually ei ∼ N(0, σ2

e).

Note that the relationship between the covariates (predictors) is linear. In
many applications the relationship between predictors and response is not linear,
and in that case a non linear regression model is a better alternative (Fox 2008).
The model can be written as:

yi = β0 + f(β∗,x′i) + ei, (2)

where β∗ = (β∗1 , . . . , β
∗
p)
′, x′i = (xi1, . . . , xip) and f is a function that relates the

predictors with the response variable, this function maps from the input space
to the real line. Note that model (1) is a special case of (2) since f(β∗,x′i) =
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β1xi1 + · · · + βpxip. The Kolmogorov's theorem (Kolmogorov 1957) states that
any multivariate function can be represented as follows:

f(xi) = f(xi1, . . . , xip) =

2p+1∑
q=1

gq

(
p∑
r=1

hqr(xir)

)
, (3)

where hpq(x) are �xed increasing functions on I = [0, 1] and gq(·) are properly
chosen function of one variable (Girosi & Poggio 1989). Therefore, by using the
Kolmogorov's theorem, model (2) can be written as:

yi = β0 +

Combine output from hidden layer︷ ︸︸ ︷
s∑

k=1

wk gk

bk + p∑
j=1

xijβ
[k]
j


︸ ︷︷ ︸
output from hidden layer

+ei (4)

where gk(x) is an activation function, for example gk(x) =
exp(2x)+1
exp(2x)−1 , is known as

the tanh activation function.

Model (4) is known in the literature as a Single Hidden Layer Neural Network
(SHLNN). In these models, the prediction is performed in two steps: i) The inputs
are transformed non-linearly in the hidden layer, ii) Outputs from hidden layer are
combined, and the predictions can be obtained once the parameters are estimated.
Figure 1 shows a SHLNN, which includes an Input layer, Hidden layer with s
neurons and the Output layer, see Pérez-Rodríguez, Gianola, González-Camacho,
Crossa, Manes & Dreisigacker (2012) for further details. Note that no further
transformation to the data is applied in the output layer. The MLR model is a
particular case of (4). Model (1) is obtained by setting s = 1, w1 = 1, b1 = 0 and
g1(·) as the identity function in (4).

The parameters to be estimated in the SHLNN are w1, . . . , ws (neurons' weights),

b1, . . . , bs (intercepts or biases), β
[1]
1 , . . . , β

[1]
p ; . . . , β

[s]
1 , . . . , β

[s]
p (connection strengths

for covariates or regression coe�cients), β0 (general intercept or general mean) and

σ2
e . Note that here we refer to w1, . . . , ws as neuron's weights and β

[1]
1 , . . . , β

[1]
p ; . . . ,

β
[s]
1 , . . . , β

[s]
p can also be referred as weights for covariates. The number of param-

eter to be estimated for each neuron are 2 + p, i.e. one neuron's weight (w), one
intercept (b) and p connection strengths for covariates, hence the total number
of parameter to estimate in the full network without including the variance com-
ponent σ2

e is m = 1 + s × (2 + p). As the number of covariates included in the
model and the number of neurons increases the number of parameter to estimate
also increases. This could lead to a problem often referred as over�tting that is
avoided using penalized estimation algorithms or more generally Bayesian regular-

ization, although another strategies are used commonly in neural networks such
as dimensionality reduction, early stopping, pruning, etc. (Prechelt 2012). In the
next section we brie�y review the Empirical Bayes approach that is used to �t the
SHLNN.
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Figure 1: Single Hidden Layer Neural Network. Source: Pérez-Rodríguez et al. (2012).

3. Estimation Algorithms

MacKay (1994) developed Empirical Bayes approach framework for estimating

parameters in a neural network. Let θ = (w1, . . . , ws, b1, . . . , bs, β
[1]
1 , . . . , β

[1]
p ; . . . ,

β
[s]
1 , . . . , β

[s]
p , β0)

′. MacKay (1994) assigned the following multivariate normal dis-
tribution to the elements of θ:

p(θ|σ2
θ) =MN(0, σ2

θI),

that is θj ∼ N(0, σ2
θ), j = 1, . . . ,m. Note that σ2

θ is common to all the elements
of θ. The algorithm to obtain the posterior mode of θ, σ2

e , σ
2
θ is as follows:

1. Obtain conditional posterior modes of the elements in θ assuming σ2
θ, σ

2
e

known. These are obtained by maximizing:

p(θ|y, σ2
θ, σ

2
e) =

p(y|θ, σ2
e)p(θ|σ2

θ)

p(y|σ2
θ, σ

2
e)

=
p(y|θ, σ2

e)p(θ|σ2
θ)∫

Rm p(y|θ, σ2
e)p(θ|σ2

θ)dθ

which is equivalent to minimizing the �augmented sum of squares�:

F (θ) =
1

2σ2
e

n∑
i=1

e2i +
1

2σ2
θ

m∑
j=1

θ2j = βED + αEw, (5)
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where β = 1
2σ2

e
and α = 1

2σ2
θ
, ED =

∑n
i=1 e

2
i , Ew =

∑m
j=1 θ

2
j . The mini-

mization of F (θ) can be performed using numerical routines, in the present
work we adopted the Levenberg-Marquardt algorithm to solve this problem
[Levenberg (1944), Marquardt (1963)].

2. Update σ2
θ, σ

2
e by maximizing marginal likelihood of the data p(y|σ2

θ, σ
2
e).

The marginal log-likelihood approximated as:

log p(y|σ2
θ, σ

2
e) ≈ k +

n

2
log β +

m

2
logα− 1

2
log |Σ|θ=θmap − F (θ)|θ=θmap

where H = ∂2

∂θθ′F (θ), map stands for �maximum a posteriori�. It can be
shown that this function is maximized when:

α =
γ

2Ew
, β =

n− γ
2ED

, γ = m− 2αtr(H)−1. (6)

where γ is as estimate of the e�ective number of parameters, and it ranges
from 1 to m, which corresponds to the number of elements in θ, see Foresee
& Hagan (1997) and Gianola, Okut, Weigel & Rosa (2011) for further de-
tails, H is the Hessian matrix which is approximated with H = ∇2F (θ) ≈
2βJ ′J + 2αI, J is the Jacobian matrix for the errors in the training set and
I is the identity matrix. Note that these solutions are obtained considering
log p(y|σ2

θ, σ
2
e) as a function of σ2

θ and σ2
e , deriving partially the function

with respect to σ2
θ and σ2

e , setting the partial derivatives equal to 0 and
solving the resulting system of equations and rewriting the solution in terms
of α and β.

The algorithm developed by MacKay has been described numerous times in
the literature, see for example: Foresee & Hagan (1997), Lampinen et al. (1999),
Lampinen & Vehtari (2001), Gianola et al. (2011), Okut, Gianola, Rosa & Weigel
(2011), Pérez-Rodríguez et al. (2013), etc. The original implementation in the C
programming language can still be downloaded from the author's web site (http:
//www.inference.phy.cam.ac.uk/mackay).

Figure 2 shows a simpli�ed �ow chart for the algorithm that �ts a SHLNN,
the �owchart was generated based on the Foresee & Hagan (1997) algorithm and
the �owchart presented in Okut et al. (2011). Figure 3 presents the details of the
computations to minimize the �augmented sum of squares� by using the Levenberg-
Marquardt algorithm [Levenberg (1944), Marquardt (1963)] together �t the rest
of steps necessary to �t a SHLNN. In order to initialize the vector θ we adopted
the Nguyen & Widrow (1990) algorithm.

Neal (1996) developed fully Bayesian approach for �tting neural network mo-
dels, he developed Markov Chain Monte Carlo (MCMC) algorithms to that end.
He also developed a computer package called ��exible Bayesian modeling package�

that implements the MCMC based algorithms, the software can be downloaded
from www.cs.toronto.edu/~radford/fbm.software.html. Lampinen & Vehtari
(2001) implemented part of the routines developed by Neal (1996) using Matlab.
Pérez-Rodríguez et al. (2013) extended the algorithms in order shrink di�erentially
two sets of predictors.
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Figure 2: Flow chart for the algorithm that �ts a Bayesian Regularized Neural Network
with a single hidden layer.

4. Implementation

It is well known that as the number of predictors and neurons increases, the
number of parameters to estimate increases exponentially. The MacKay's algo-
rithm works very well when the number of parameters to estimate is small, but as
the number of parameters to estimate increases three bottle necks becomes evident
(see Figure 3):

1. The computation of the Jacobian (J) and the approximation of the Hessian
matrix (H).

2. The updating of θ in the Levenberg-Marquardt algorithm.

3. The computation of the e�ective number of parameters γ when updating σ2
e ,

σ2
θ.

The most computational expensive operations in the include the solving of
linear system of equations and obtaining the inverse of a matrix. Up to now the
existing software routines that implement the Empirical Bayes approach proposed
by MacKay are not able to use computational resources e�ciently. The original
software developed by MacKay was designed in order to run in a single core.
The Matlab routine trainbr in the nn toolbox and the one developed by Pérez-
Rodríguez et al. (2013) and implemented in the brnn-R package are able to use
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several cores in modern multi-core workstations, but are unable to use multiple
cores in several works stations available in modern computing clusters. In the case
of MCMC based approaches, the problem is even worse, the parallelization of the
tasks is not possible.

Start 

μ, μ𝑑𝑒𝑐, μ𝑖𝑛𝑐, μmax, n, flagμ, flagc, δ, epoch, epochs 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑤𝑒𝑖𝑔𝑕𝑡𝑠, 𝑏𝑖𝑎𝑠, 𝑎𝑛𝑑 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 
using the Nguyen-Widrow method 

Compute  𝑱  and  𝑯 = 𝑱′𝑱 Compute the Jacobian (J) 
and approximate the Hessian matrix (H) 

𝑦𝑖: 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 
𝑦 𝑖: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠  

𝐸𝐷 =   𝑒𝑖2
𝑛

𝑖=1

 ,  𝐸𝑤=   θ𝑗2
𝑚

𝑗=1

 
𝐸𝐷:  𝑠𝑢𝑚 of squares of errors 
𝐸𝑤: sum of squares of weights, biases and regression paramters 

𝐶𝑜𝑙𝑑 =  𝐹 θ =  β𝐸𝐷 +  α𝐸𝑤 Update the Cost function in L-M algorithm 

μ1 ≤  μ𝑚𝑎𝑥  

Auxiliary  variables  

𝜹 = 𝑯 + μ𝑰 𝒈 

yes 

𝜽𝑛𝑒𝑤 =  𝜽 − 𝜹 , 𝐸𝐷 =   𝑒𝑛𝑒𝑤,𝑖
2

𝑛

𝑖=1

 ,  𝐸𝑤=   θ𝑛𝑒𝑤,𝑗
2

𝑚

𝑗=1

 

𝐶𝑛𝑒𝑤 =  𝐹 𝜽𝑛𝑒𝑤 =  β𝐸𝐷 +  α𝐸𝑤 

𝑐𝑛𝑒𝑤 < 𝐶𝑜𝑙𝑑 

μ =  μ × μ𝑖𝑛𝑐 μ =  μ ∗ μ𝑑𝑒𝑐 

No 

Yes 

No 

epoch<=epochs 

𝜽 = 𝑤1,… ,𝑤𝑆; 𝑏1, … , 𝑏𝑆;  β1
1 ,… , β𝑝

1 , … , β1
𝑆 , … , β𝑝

𝑆 , β0  
 α, 𝐸𝐷, 𝐸𝑊 

ɣ = 𝑛 − 2α 𝑡𝑟(𝑯−1) 

α =
ɣ

2𝐸𝑊
, β = (𝑛 − ɣ)/(2𝐸𝐷) 

𝜽 =  𝜽𝑛𝑒𝑤, 𝑒𝑝𝑜𝑐𝑕 = 𝑒𝑝𝑜𝑐𝑕 + 1 

End 

Yes 

No 

Compute  a vector of increments for  𝜽  

1 

2 

3 

𝑒𝑖 =  𝑦𝑖 − 𝑦 𝑖, 𝑖 = 1,… , 𝑛 

Figure 3: Levenberg-Marquardt algorithm.

In this work, we propose to alleviate the bottle necks in the EB algorithm by
using parallel computing. We propose to use the software packages ScaLAPACK
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(http://www.netlib.org/scalapack/) and OpenMPI (http://www.open-mpi.
org). ScaLAPACK stands for Scalable Linear Algebra PACKage (Blackford
et al. 2012). The ScaLAPACK library is a software that was designed to per-
form e�ciently many linear algebra operations. The library was designed to give
high e�ciency on Multiple Instructions Multiple Data (MIDM) distributed mem-
ory concurrent supercomputers (Yoginath, Bauer, Kora, Samatova, Kora, Fann
& Geist 2009). The software can be used with clusters of work stations through
network environments via Multiple Processing Interface (MPI). The ScaLAPACK
library is based on block-partitioned algorithms that minimize the movement be-
tween di�erent processes. ScaLAPACK uses a Parallel BLAS (Basic Linear Alge-
bra Subroutines) for the computations and a set of routines (Basic Linear Algebra
Communications Subprograms, BLACS) for the communication between the pro-
cesses. The BLACS routines rely on one implementation of MPI, one of the most
widely used is OpenMPI (Gabriel et al. 2004). In order to perform any compu-
tation with ScaLAPACK it is necessary to create a two-dimensional grid with r
rows and c columns encompassing the process to be involved in a particular com-
putation, this grid is referred as process grid. For example, it is possible to specify
that we want to use 8 CPUs cores to perform a product matrix, then the four
possible processing grids are (2, 4), (4, 2), (8, 1), (1, 8). Once that the processing

grid has been de�ned the data is distributed among the involved process using an
algorithm that is known as block-cyclic data distribution.

ScaLAPACK was written in Fortran and C/C++ programming languages.
Routines can be call from programs written in both programming languages. In
this work we decided to use C/C++ in order to implement the Empirical Bayes
approach because this is the programming language that we have been using rou-
tinely. We use the following functions available in ScaLAPACK to perform the
computations:

• pdgemm: Performs a matrix-matrix product.

• pdgemv : Performs a matrix-vector product.

• pdgesv : Solves a linear system of equations without inverting the matrix of
coe�cients.

• pdpotrf : Performs the Cholesky decomposition of a matrix.

• pdpotri : Inverts a positive de�nite and symmetric matrix using the Cholesky
decomposition.

The resulting application is a console program that can run in standalone
workstations or in computing clusters. The source code is available upon request
from the authors. Figure 4, shows the command line and the arguments that are
used to execute the program.
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mpirun -np N ./trainbr  F C  S Xtraining.csv  Ytraining.csv nc nr nx ny testing.csv n 

MPI 
commands 

Number of 
cpu cores 

Executable’s name 

Processing 
grid 

dimmensions 

Block size Number of rows and 
columns in Xtraining 

Number of 
neurons 

Data file with 
predictors 

Number of rows  in 
testing set 

Data file with 
response vector 

Testing data 

Training data 

Figure 4: Command line example to execute the application that �ts a neural net-
work using parallel computing. The application uses ScaLAPACK to per-
form the matrix algebra operations, the communication between processes is
performed using OpenMPI.

5. Application examples

In this section we present two applications examples for ANN. In the �rst
example we predict building energy loads from a series of input variables. The
response variable is electricity consumption and the input variables are temper-
ature, humidity, solar �ux and wind. The dataset was analyzed previously by
MacKay (1994). In the second example we analyze grain yield for wheat. The
data set was generated by International Center of Maize and Wheat Improvement
(CIMMyT, http://www.cimmyt.org). The goal in this case is to predict the grain
yield of wheat lines using 1279 molecular markers (input variables). The dataset
was �rst analyzed by Crossa, de los Campos, Pérez-Rodríguez, Gianola, Burgueño,
Araus, Makumbi, Singh, Dreisigacker, Yan, Arief, Banziger & Braun (2010) and
has been reanalyzed by many authors since then. Finally we present a benchmark
of the application.

5.1. Electricity

For this example we selected the electricity consumption data reported by
MacKay (1994). The dataset was downloaded from the following web site http:

//www.inference.phy.cam.ac.uk/mackay/Bayes_FAQ.html#Data. The dataset
consisted of hourly measurements from September 1 1989 to February 23 1990
of four input variables (temperature, humidity, solar �ux, and wind) and three
response variables: electricity, cooling water and heating water. Here we only
analyze electricity consumption. The total number of records in the dataset is
4208. MacKay (1994) divided the data into two sets: Training and Testing. The
testing set consisted of the last 1282 data points (January 1 1990 to February 23
1990). The problem is to predict electricity consumption using the input variables.
Figure 5 shows the Whole Building Electric consumption (WBE), and also shows
the training and testing sets. MacKay (1994) �tted neural networks with a single
hidden layer of tanh units, he found that models with between 4 and 8 neurons
were appropriate for the problem. MacKay (1994) omitted some records in the
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training set, because when �tting the models he obtained large residuals (see
Figure 5). MacKay preprocessed the original data and he added variables that
allow him to get di�erent representations of time and holidays, moving averages of
the environmental variables, etc. So at the end of the preprocessing of the original
data he got a data set with 25 variables that he used as inputs. The pre-processed
dataset can also be downloaded from the MacKay's web site.
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Figure 5: Whole Building Electric consumption (WBE) in KWh/hr from September 1
1989 to December 31 to February 23 1990.

We �tted an ANN using the pre-processed dataset created by MacKay that
we described previously, the goal is just to show that the proposed algorithm
works as expected. We �tted an ANN with s = 8 neurons and 4 CPU cores, the
computing time necessary to complete the task were approximately 2 seconds. The
number of input variables was p = 25, so with s = 8 neurons, the total number of
weights, biasses and regression coe�cients estimated was s × (p + 1 + 1) = 216.

Furthermore β̂ = 184.0268, α̂ = 1.5994 and the e�ective number of parameters
γ = 207.26. Note than the e�ective number of parameters is close to 216, so it is
not necessary to include more than 8 neurons in the model.

Figure 6 shows the original data, the predictions obtained from the model and
the residuals. It can be seen that the model predicts very well, even that is not an
easy task. The RMSE was 41.34 and the Pearson's correlation between observed
and predicted values was 0.9538. Note also that even that the model has a huge
number of parameter it predicts very well in the testing set. It is well known that
non regularized neural networks tends to over�t the training data and when the
model is used to predict using a new dataset the predictions are very bad, but this
is not the case in this application example because the ANN used avoids over�tting
automatically.
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Figure 6: Predictions for Whole Building Electric consumption (WBE) in KWh/hr
from January 1 1990 to February 23 1990. The Figure displays 3 series:
Observed data, predicted data and residuals.

5.2. Wheat Dataset

The wheat data set is from CIMMYT's Global Wheat Program (http://
www.cimmyt.org). Historically, this program has conducted numerous interna-
tional trials across a wide variety of wheat-producing environments. The envi-
ronments represented in these trials were grouped into four basic target sets of
environments comprising four main agroclimatic regions previously de�ned and
widely used by CIMMYT's Global Wheat Breeding Program. The phenotypic
trait considered here was the average grain yield (GY) of the 599 wheat lines
evaluated in each of these four mega-environments. Wheat lines were recently
genotyped using 1447 Diversity Array Technology (DArT) generated by Triticarte
Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au). The DArT
markers may take on two values, denoted by their presence(1) or absence(0). The
dataset was �rst analyzed by Crossa et al. (2010). The dataset can be downloaded
from the following web site: http://www.genetics.org/content/suppl/2010/

09/02/genetics.110.118521.DC1.

From the statistical point of view we have a prediction problem, the response
variable (y) corresponds to grain yield and the predictors are the molecular markers
(x1, . . . , x1279). Crossa et al. (2010) predicted the grain yield using a MLR model,
that is:
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yi = β0 +

1279∑
j=1

xijβj + ei, i = 1, . . . , 599.

The model was �tted using the Bayesian framework by using di�erent priors
for βj . Crossa et al. (2010) studied the predicted ability of the proposed model
using cross-validation. The authors divided at random the dataset into 10 disjoint
subsets, S1, . . . , S10. The observations are assigned to the sets which are then used
in the evaluation process. For example, the full sample can be divided in training

and testing sets, if set 1 is selected as testing, then observations in S2, . . . , S10 are
used to train the model and obtain the predictions for individuals in the testing
set, that is {ŷi, i ∈ S1} and compute the Pearson's correlation between observed
and predicted values. Pearson's correlation is the standard statistic to measure
linear relationship between two continuous variables, in this case the variables
are observed phenotypic values (y) and predicted phenotypical values (ŷ). If the
�tted model is predicting correctly then we expect that y ≈ ŷ. In the case of
prediction of complex traits (those that are controlled by large number of genes
and with low heritabilities, e.g. grain yield) with high dimensional data like the
one presented in this example correlations between observed and predicted value
are expected to be low. The exercise can be repeated for the rest of the sets.
Table 1 shows the results from the cross-validation experiment for Environment
1, together with the execution times. Note that the Pearson's correlation in the
training set is always greater that the cross-validation in the testing set. The
average of Pearson's correlation was 0.4559, a result similar to this was reported
by Crossa et al. (2010).

Table 1: Pearson's correlations between observed and predicted values in training and
testing set for the 10 fold Cross Validation experiment.

Fold rtrn rtest time (hrs)

1 0.9781 0.5900 2.8

2 0.9748 0.6474 1.9

3 0.9752 0.4692 2.5

4 0.9711 0.3642 1.9

5 0.9842 0.3298 4.3

6 0.9742 0.5569 2.9

7 0.9876 0.4070 3.2

8 0.9724 0.4362 6.1

9 0.9768 0.2276 2.9

10 0.9782 0.5312 3.8

Avg. 0.9781 0.4559 3.23

6. Benchmark

We carried out a benchmark evaluation by �tting a Bayesian Regularized
Neural Network using the wheat dataset described previously. We considered
di�erent scenarios involving 4 di�erent number of neurons (s = 1, 2, 3 and 4)
and N = 1, 2, 4, 6, 8 CPU cores. The CPU cores were arranged in 5 di�erent
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processing grids: (1, 1), (1, 2), (2, 2), (2, 3), (2, 4). The evaluation was carried
out in a Linux workstation with an AMD Opteron processor (tm) with 32 core
CPUs @ 2.6 GHz and 160 Gb of RAM memory. We obtained the source code
for OpenMPI and ScaLAPACK libraries from http://www.open-mpi.org and
http://www.netlib.org/scalapack/ respectively and then we compiled and in-
stalled the libraries using the con�guration scripts included with the source code
of the libraries. The proposed algorithm uses the Nguyen & Widrow (1990) al-
gorithm in order to initialize the weights, biases and regression coe�cients in the
vector θ, which can lead to di�erent solutions and also it is possible that the run-
ning times vary from run to run, so we repeated each simulation experiment 5
times.

Table 2 shows the processing times necessary to �t the model. Figure 7 shows
the processing times against the number of cores, from the Figure, it is clear
that the time necessary to �t the models increases exponentially with the model
complexity (number of neurons), on the other hand if the number of computing
cores used to �t the model increases, the computing time decreases. Note that
the decrease rate in computing time for a �xed number of neurons is not a linear
function of the number of CPU cores used for the �tting, also note that for this
particular problem the computing times are almost constant when using 4, 6 or
8 CPU cores, unfortunately we do not know how to determine the optimal CPU
cores that must be used in the general case. Figure 8 shows the processing times vs
the number of neurons, if the number of neurons increases the processing time also
increases and the processing times decrease signi�cantly as the number of CPU
cores increases. Note also that there the relationship between processing times
and number of neurons is not linear.

Table 2: Running times.
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Figure 7: Running times vs number of cores.
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Figure 8: Running times vs number of neurons.

7. Concluding Remarks

The algorithms used to �t a Bayesian regularized neural networks are well
know. It is also well known that as the number of neurons and the number of
predictors increases the computing time necessary to �t the model also increases.
We identi�ed some bottle necks in the algorithm used to �t the model and we pro-
posed to use parallel computing in order to alleviate this problem. The resulting
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application can be run in multicore computers, but it can also run in computing
clusters where di�erent multicore computers (computing nodes) can work cooper-
atively to solve a given problem.[
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