
Revista Colombiana de Estadística

July 2018, Volume 41, Issue 2, pp. 191 to 233

DOI: http://dx.doi.org/10.15446/rce.v41n2.63332

Construction of the Design Matrix for Generalized
Linear Mixed-E�ects Models in the Context of

Clinical Trials of Treatment Sequences

Construcción de la matriz de diseño en modelos lineales de efectos

mixtos generalizados en un contexto de ensayos clínicos

de secuencias de tratamientos

Francisco J. Diaz
a

Department of Biostatistics, The University of Kansas Medical Center, Kansas

City, Kansas, United States

Abstract

The estimation of carry-over e�ects is a di�cult problem in the design and
analysis of clinical trials of treatment sequences including cross-over trials.
Except for simple designs, carry-over e�ects are usually unidenti�able and
therefore nonestimable. Solutions such as imposing parameter constraints
are often unjusti�ed and produce di�ering carry-over estimates depending
on the constraint imposed. Generalized inverses or treatment-balancing of-
ten allow estimating main treatment e�ects, but the problem of estimating
the carry-over contribution of a treatment sequence remains open in these
approaches. Moreover, washout periods are not always feasible or ethical.
A common feature of designs with unidenti�able parameters is that they
do not have design matrices of full rank. Thus, we propose approaches to
the construction of design matrices of full rank, without imposing arti�cial
constraints on the carry-over e�ects. Our approaches are applicable within
the framework of generalized linear mixed-e�ects models. We present a new
model for the design and analysis of clinical trials of treatment sequences,
called Antichronic System, and introduce some special sequences called Skip
Sequences. We show that carry-over e�ects are identi�able only if appro-
priate Skip Sequences are used in the design and/or data analysis of the
clinical trial. We explain how Skip Sequences can be implemented in prac-
tice, and present a method of computing the appropriate Skip Sequences.
We show applications to the design of a cross-over study with 3 treatments
and 3 periods, and to the data analysis of the STAR*D study of sequences
of treatments for depression.
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Resumen

La estimación de los efectos de arrastre es un problema difícil en el diseño
y análisis de ensayos clínicos de secuencias de tratamientos, incluyendo en-
sayos cruzados. Excepto por diseños simples, estos efectos son usualmente no
identi�cables y, por lo tanto, no estimables. La imposición de restricciones a
los parámetros es a menudo no justi�cada y produce diferentes estimativos de
los efectos de arrastre dependiendo de la restricción impuesta. Las inversas
generalizadas o el balance de tratamientos a menudo permiten estimar los
efectos principales de tratamiento, pero no resuelven el problema de estimar
la contribución de los efectos de arrastre de una sequencia de tratamiento.
Además, los períodos de lavado no siempre son factibles o éticos. Los diseños
con parámetros no identi�cables comúnmente tienen matrices de diseño que
no son de rango completo. Por lo tanto, proponemos métodos para la cons-
trucción de matrices de rango completo, sin imponer restricciones arti�ciales
en los efectos de arrastre. Nuestros métodos son aplicables en un contexto
de modelos lineales mixtos generalizados. Presentamos un nuevo modelo
para el diseño y análisis de ensayos clínicos de secuencias de tratamientos,
llamado Sistema Anticrónico, e introducimos secuencias de tratamiento espe-
ciales llamadas Secuencias de Salto. Demostramos que los efectos de arrastre
son identi�cables sólo si se usan Secuencias de Salto apropiadas. Explicamos
como implementar en la práctica estas secuencias, y presentamos un método
para calcular las secuencias apropiadas. Presentamos aplicaciones al diseño
de un estudio cruzado con 3 tratamientos y 3 períodos, y al análisis del es-
tudio STAR*D de secuencias de tratamientos para la depresión.

Palabras clave: Cuasi-verosimilitud; diseño cruzado; efectos de arrastre;
estimabilidad; estimadores robustos de efectos �jos; identi�cabilidad; inver-
sas generalizadas; matriz de diseño; máxima verosimilitud; mínimos cuadra-
dos generalizados; modelos lineales de efectos aleatorios; placebo.

1. Introduction

The estimation of carry-over e�ects is a challenging problem in the design
and analysis of clinical trials (CTs) of treatment sequences. Parametrizations of
generalized linear mixed-e�ects models (GLMMs) that include carry-over e�ects
usually produce design matrices that are not of full rank (Jones & Kenward 2015).
When the design matrix is not of full rank, not all linear contrasts of parameters
are identi�able (Christensen 2011). In particular, except for very simple designs
and parametrizations, carry-over e�ects are usually not identi�able, which creates
di�culties in the quanti�cation of the contribution of carry-over e�ects to the
subjects' responses. The most common solution when the design matrix is not of
full rank is to impose linear constraints that produce full rank. For instance, in
cross-over trials, one assumption is that carry-over e�ects add up to zero (Jones
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& Kenward 2015). Such constraints are usually not justi�ed, however, in terms
of the clinical phenomenon under study, and this limits parameter interpretation
(Fleiss 1989). Moreover, as pointed out by Christensen (2011), di�erent computer
packages may use di�erent linear constraints, giving the impression that program-
mers employ some constraints for the sole purpose of delivering a computer output.
The problem is that although di�erent linear constraints on unidenti�able parame-
ters produce identical estimates of an identi�able parameter, they lead to di�erent
estimates of the unidenti�able parameters (Christensen 2011, p. 97).

Another common approach when the design matrix is not of full rank is to
use generalized inverses (Christensen 2011, Bronson 1989). Usually, data analysts
can use this approach to estimate overall di�erences among treatment e�ects.
Only identi�able contrasts can be estimated in this way, however, and further
elaborations on how treatments administered in earlier stages of the clinical trial
a�ect the �nal response are often di�cult, except for simple parametrizations that
are not always justi�ed (Fleiss 1989, Senn 2002, Jones & Kenward 2015). With
this approach, therefore, the problem of examining the contribution of carry-over
to the subjects' responses remains open.

The main objective of this article is to propose an approach to construct-
ing a design matrix of full rank for clinical trials (CTs) of treatment sequences
(including cross-over trials) without imposing unjusti�ed constraints on the pa-
rameters representing carry-over e�ects. The goal is to achieve the identi�ability
of model parameters including the parameters corresponding to carry-over e�ects.
The proposed approach is applicable within the framework of GLMMs and allows
assessing the contribution of carry-over e�ects to the subjects' responses. With
this approach, data analysts can assess not only �rst-order carry-over e�ects but
also e�ects from treatments administered two or more stages (or periods) earlier.

Cross-over trials are the most common CTs of treatment sequences (Jones &
Kenward 2015, Senn 2002, Diaz, Berg, Krebill, Welty, Gidal, Alloway & Privitera
2013, Berg, Welty, Gidal, Diaz, Krebill, Sza�arski, Dworetzky, Pollard, Elder Jr,
Jiang, Jiang, Switzer & Privitera 2017, Grajales & Lopez 2006). In this article,
however, the author is not only concerned with cross-over trials but also with CTs
of treatment sequences in general. A representative example of a CT of treatment
sequences, whose study design is not usually treated in the literature of cross-over
trials, is the Sequenced Treatment Alternatives to Relieve Depression (STAR*D)
study (Fava, Rush, Trivedi, Nierenberg, Thase, Sackeim, Quitkin, Wisniewski, La-
vori, Rosenbaum & Kupfer 2003). In that study, the researchers investigated adult
subjects who were treated in outpatient settings for non-psychotic major depressive
disorder. The primary purpose of the study was to determine which alternative
treatments worked best if Citalopram monotherapy did not produce an acceptable
response. The investigators examined a large number of treatments and treat-
ment sequences including antidepressants and/or cognitive therapy and combined
standard randomization procedures and a detailed protocol with a naturalistic ap-
proach that modeled real-life clinical practice. For instance, if a treatment fails,
the subject and physician may choose the next treatment from a prescribed list
of alternative treatments that are allowed at that stage, or the subject may be
randomly assigned a treatment from a subset of the list determined by the subject
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and/or the physician. The idea was to repeat this procedure until reaching an
acceptable treatment.

The di�culty of modeling carry-over e�ects is well documented in the cross-
over trials literature (Senn & Lambrou 1998, Senn, D'Angelo & Potvin 2004, Senn
2002, Abeyasekera & Curnow 1984, Fleiss 1989). For pharmacokinetic studies,
the modern consensus is that minimizing carry-over e�ects during the design and
implementation of the study is better than attempting to model these e�ects dur-
ing the data-analysis phase (Senn 2002, Privitera, Welty, Gidal, Diaz, Krebill,
Sza�arski, Dworetzky, Pollard, Elder, Jiang, Jiang & Berg 2016). In particular,
specialists recommend washout periods in order to rationally exclude the pos-
sibility of carry-over e�ects, followed by regression modeling that does not in-
clude carry-over e�ect parameters [Senn(2002), Center for Drug Evaluation and
Research(2001, 2003)]. In pharmacodynamic or behavioral studies, however, the
situation is more complex. Although washout periods of su�cient length may help
eliminate the carry-over e�ects of some therapies, the permanence of carry-over ef-
fects cannot always be ruled out when cognitive or learning processes are involved
in the therapy (Hofmann, Wrobel, Kessner & Bingel 2014). Moreover, washout
periods may not be ethical or convenient in some cases. For instance, patients
may not agree to stop receiving treatment temporarily because they believe that
doing this may exacerbate their symptoms.

In some cases, in cross-over trials, a balance of treatments across periods can
be used to eliminate the in�uence of carry-over e�ects on treatment comparisons
(Senn 2002). Even in these cases, however, an evaluation of how one treatment
administered in one period a�ects the responses measured in subsequent periods
cannot be conducted if the carry-over e�ects are not identi�able. When the pres-
ence of carry-over e�ects cannot be rationally ruled-out, another common solution
is to include only �rst-order carry-over e�ects in the modeling equations. However,
this type of carry-over e�ect, despite its widespread use in data analyses of phar-
macological trials, may not be consistent with standard pharmacokinetic theory
(Senn 2002).

Mixed-e�ects regression modeling is a well-established approach in statistical
practice (Frees 2004, Diaz et al. 2013, Berg et al. 2017, Diaz 2016). In particular,
the approach is frequently used in the analysis of clinical trials collecting repeated
measures and/or longitudinal data. This article presents new developments in
GLMMs that have not been published before. These developments are applicable
to continuous and discrete responses, including dichotomous and count responses.
Our approach is applicable to pharmacological and non-pharmacological therapies
and combinations of these. It can also accommodate the same treatment being
administered at di�erent stages (or periods) of the trial to some subjects as well
as di�erent treatment durations at a particular stage. In addition, it allows the
examination of whether clinical decisions made at a particular sequence stage
a�ect the subjects' responses in future stages as well as the investigation of delayed
treatment e�ects. For instance, for the STAR*D study, we can answer the question:
Is the bene�t of cognitive therapy administered in the �rst stage still present in
the second stage which consisted of only antidepressant drugs?
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GLMMs are a combination of two general modeling frameworks, which are very
popular in statistical practice: random e�ects linear regression models (RELMs)
and generalized linear models (GLMs) (see the review by Rabe-Hesketh & Skrondal
2009). RELMs (Henderson 1953, Laird & Ware 1982) consist of the classic lin-
ear regression model with the additional assumption that some of the regression
coe�cients are random variables. RELMs have had a dramatic impact on the
statistical analysis of repeated measures and longitudinal data (Frees 2004, Fitz-
maurice & Molenberghs 2004, Hooks, Marx, Kachman & Pedersen 2009, Diaz
et al. 2013, Diaz 2017). A GLM (Nelder & Wedderburn 1972) is essentially a linear
regression model whose response has a distribution that belongs to an exponential
family of distributions with a possibly transformed mean response that depends
linearly on covariates. The richness of GLMs comes of the profound statistical
properties of exponential families (see Shao 2003) and the fact that many useful
families are exponential (e.g. normal, Poisson and Bernoulli). Popular GLMMs
are the Poisson regression model with random e�ects (Long, Preisser, Herring &
Golin 2015), the logistic regression model with random e�ects (Vermunt 2005),
and RELMs.

The most popular estimation methods for GLMMs are maximum likelihood,
quasi-likelihood, and generalized least squares (GLS) (Breslow & Clayton 1993,
Rabe-Hesketh, Skrondal & Pickles 2005, Frees 2004), but robust methods such as
the generalized method of moments (Kim & Frees 2007) and robust �xed-e�ects
estimation (Hausman 1978, Mundlak 1978, Frees 2001, Kim & Frees 2006, Ebbes,
Bockenholt & Wedel 2004, Frees 2004) also exist. These methods can estimate
only identi�able model parameters (Christensen 2011). Thus, if the design matrix
is not of full rank, users cannot estimate all parameters. Therefore, ideally, the
design matrix should be of full rank to ensure the estimability of all parameters
and contrasts of interest. As illustrated in this article, the de�nition of covariates
in the context of clinical trials of treatment sequences is not a trivial algebraic
problem if we want to obtain a design matrix of full rank that includes all carry-
over e�ects of interest. In this article, we propose a new model, called Antichronic
System (AS), along with new experimental design and analysis strategies that
assist in the construction of design matrices of full rank. Once users implement
the proposed tools, they can utilize the usual estimation methods.

In addition to the di�culties of building an appropriate design matrix, we
face another challenge in the application of GLMMs to clinical trials of treatment
sequences. The treatments administered at some stages may be determined by
(unmeasured or measured) subjects' characteristics and/or by their responses to
treatments administered in previous stages. Problems such as self-selection, simul-
taneity, and omitted variables may occur (Kim & Frees 2006, Ebbes et al. 2004).
Such problems can occur, for instance, when the subjects are not randomly as-
signed to the sequences. They cause correlations between random e�ects and
covariates and, consequently, if data analysts employ inappropriate estimation
methods, they bias the estimators of GLMM parameters. Fortunately, the econo-
metrics literature contains well-established solutions for analogous problems. In
the case of RELMs, the most popular solutions are robust �xed-e�ect estimation,
which provides unbiased estimates of regression coe�cients for stage dependent
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covariates (Hausman 1978, Kim & Frees 2006), and augmented regression, which
provides unbiased coe�cient estimates for time invariant covariates such as demo-
graphics (Mundlak 1978, Frees 2001, 2004). These are the estimation methods we
will adopt for the analysis of the STAR*D data. On the other hand, if reasons
exist to believe that these issues did not occur, standard maximum likelihood,
quasi-likelihood or GLS may be appropriate.

Due to the novelty of our approach and to ensure mathematical coherence,
rigorous de�nitions of the new concepts will be necessary. In sections 2-3, we
introduce some special sequences of treatments, called skip sequences (SSs), and
propose that SSs be incorporated in the experimental design and analysis of trials
because they guarantee the existence of design matrices of full rank. Section 4
introduces antichronic systems (ASs), which are models of treatment sequences.
Section 5 connects ASs with GLMMs. Section 6 presents our main results, which
show the important role of SSs in the construction of design matrices. Theorem 2
shows that the identi�ability of all model parameters is guaranteed only if SSs are
implemented. Theorems 3-4 establish methods for implementing SSs in practice.
Section 7 presents a test to examine whether the responses obtained in a treatment
stage (or period) are in�uenced by a previous stage. Section 8 shows an application
to the design of cross-over trials with 3 treatments and 3 periods. Sections 9-10
analyze the STAR*D data using ASs. See proofs of theorems in Appendix A. To
understand some of the proofs, the reader must have a familiarity with advanced
algebraic treatments of GLMMs (for instance, Frees 2004).

2. Introduction to the Strategies to Obtain
a Design Matrix of Full Rank

This and the next section present a convenient notation representing the pro-
cess of administering a sequence of medical or behavioral treatments (MBTs) to
a subject (or a patient) su�ering from a chronic disease. Let Y be a (possibly
transformed) variable measuring or indicating some aspect of the state of a par-
ticular chronic disorder of a subject (or patient). Assume the goal of a MBT
is to modify the value of Y . Examples of Y are: 1) a dichotomous indicator of
whether or not a child with autism has appropriate expressive language skills; 2)
the positive or negative subscales of the PANSS syndrome scale, which measure
schizophrenia severity; 3) blood glucose or cholesterol concentrations, which par-
tially assess the metabolic syndrome; 4) the 17-item Hamilton Rating Scale for
Depression (HAM-D17); or 5) the total number of abstemious days (NADs) in a
month, which assesses chronic alcoholism.

Assume the CT consists of at most q stages, q ≥ 2. (In a cross-over trial,
a stage corresponds to a period.) At Stage i, li di�erent MBTs (or �decisions�)
Ai,1, . . . , Ai,li are available for administration to the subject, where li ≥ 2, i =
1, . . . , q; the clinician must administer one and only one of these decisions to the
subject. The set of all decisions, {A1,1, . . . , A1,l1 , . . . , Aq,1, . . . , Aq,lq} is called the
treatment pool, and Ai,1, . . . , Ai,li are called i-stage decisions. Here, Ai,j 6= Ai,j′
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for all j 6= j′, but the same decision can be used in two or more di�erent stages,
that is, we can have that Ai,j = Ai′,j′ for some i 6= i′ and some pair (j, j′). In other
words, our methods can accommodate the same treatment occurring at di�erent
stages for some subjects. Also, in our formulation, the MBTs of a particular stage
can have di�erent durations. For instance, A1,1 can represent �administer cognitive
therapy for only 1 month�, A1,2 can represent �administer cognitive therapy for 3
months�, and so on.

Let Y0,ω be the baseline value of Y for a subject ω, measured just before the
sequence of decisions is administered. Our formulation introduces a new mathe-
matical object, symbolized as Ϙ (read �koppa�) and called the basal backdrop. As
explained in Section 4, Ϙ acts as a zero vector in computations. The symbol Ϙ is
interpreted as the existing clinical context under which Y0,ω is measured, that is,
the context before Stage 1 begins. By de�nition, Aij 6= Ϙ for all i and j. That is,
no treatment from the treatment pool can be administered at baseline.

Ϙ allows representing symbolically two proposed alternative strategies for ob-
taining a design matrix of full rank. In one strategy, Ϙ represents placebo and it
is assumed that placebo e�ects are negligible. For instance, in a CT with q = 2
stages, the pair (A1,5, A2,3) represents a sequence in which a subject receives treat-
ment A1,5 at Stage 1 and treatment A2,3 at Stage 2. In contrast, the pair (Ϙ, A2,3)
will be used to represent the following sequence of events: the subject is adminis-
tered placebo at the �rst stage and A2,3 at the second stage. Similarly, if q = 3,
the triplet (Ϙ, Ϙ, A2,3) will indicate that the subject is administered placebo in the
�rst two stages and treatment A2,3 at the third stage. This strategy is called real
placebo.

In the second strategy, called virtual placebo, Ϙ symbolizes a virtual absence of
treatment at a particular stage, but the �rst treatment that the patient receives
corresponds to a treatment from a subsequent stage. For instance, in a CT with
q = 2 stages, the pair (Ϙ, A2,3) will be used to represent the following strategy:
the subject is not administered any 1-stage treatment during Stage 1, but is ad-
ministered A2,3 at Stage 1 instead. That is, the subject �skips� having a 1-stage
treatment, receives the 2-stage treatment A2,3 right after measuring Y0,ω, and com-
pletes the trial at the end of Stage 1. Although A2,3 is implemented in this subject
as if it were a 1-stage treatment, A2,3 will be treated as a 2-stage treatment in
the design matrix. In particular, the response determined by A2,3 will be treated
as a response measured at the end of Stage 2. Provided Y0,ω measures a stable
illness state, this strategy is methodologically sound and does not compromise the
conclusions of data analysis. This is a consequence of Theorem 4. As shown in
Theorems 2 and 3, the above strategies help construct design matrices of full rank.

3. Admissible and Skip Sequences

For r = 1, ..., q, a treatment sequence up to Stage r is viewed as an element
of the Cartesian product Ar = {Ϙ, A1,1, . . . , A1,l1}× {Ϙ, A2,1, . . . , A2,l2}× · · · × {Ϙ,
Ar,1, . . . , Ar,lr}. For �x S ∈ Ar, denote S = (S1, . . . , Sr), where Si ∈ {Ϙ, Ai,1, . . . ,
Ai,li}, i ≤ r. A sequence S ∈ Ar is called inadmissible if there exist i and j with
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1 ≤ i < j ≤ r such that Si 6= Ϙ but Sj = Ϙ, or if Si = Ϙ for all i = 1, . . . , r. A
sequence that is not inadmissible is called admissible. The subset of admissible
sequences in Ar is denoted as A∗r . An admissible sequence S = (S1, . . . , Sr)
is called a skip sequence (SS) if Si = Ϙ for some i. An inadmissible sequence
S 6= (Ϙ, . . . , Ϙ) can be interpreted as a protocol violation in which a subject was
returned at some stage ≥ 2 to baseline conditions, which are not part of the
treatment pool.

Thus, any admissible sequence can be written as either

(A1,j1 , A2,j2 , . . . , Ar,jr ), (Ϙ, A2,j2 , . . . , Ar,jr ), . . . , or (Ϙ, Ϙ, . . . , Ϙ, Ar,jr ),

for some r = 1, ..., q and some ji's such that ji ∈ {1, ..., li}. Only admissible
sequences will be used in our model. Examples of admissible sequences in A3

are (A1,2, A2,2, A3,1), (Ϙ, A2,2, A3,1), and (Ϙ, Ϙ, A3,1). All these except the �rst
are skip. In the second sequence, under a virtual-placebo strategy, the subject
�skipped� receiving any 1-stage treatment, but received A2,2 at Stage 1 and A3,1

at Stage 2, completing the trial at the end of Stage 2. In the third sequence, the
subject "skipped" receiving 1- and 2-stage treatments, but received A3,1 at Stage 1
and completed the trial at the end of Stage 1. Examples of inadmissible sequences
are (A1,2, Ϙ, A3,1) ∈ A3, (A1,2, A2,2, Ϙ) ∈ A3, (A1,2, Ϙ) ∈ A2 and S = (Ϙ, . . . , Ϙ).

4. Antichronic Systems

This section presents a new model of sequences of decisions. We assume
that there is a clearly de�ned population of subjects to whom admissible se-
quences of possibly di�erent lengths will be administered. Suppose a subject
experienced (or was administered) a sequence S ∈ A∗r . Under a real placebo
strategy, we assume that the subject's response Y was measured at the end of
stages 1, . . . , r. Alternatively, under a virtual placebo strategy, we assume that
the response was measured at the end of stages m(S),m(S) + 1, . . . , r, where
m(S) = min {i; 1 ≤ i ≤ r, Si 6= Ϙ}. Measured responses from subject ω are denoted
as Yk,ω with k ∈ {0, 1, . . . , r} under real placebo, or k ∈ {0,m(S),m(S) + 1, . . . , r}
under virtual placebo. Thus, after administering S, the subject's response vec-

tor is YYY
(r)
ω = YYY

(r)
ω (S) = (Y0,ω, Y1,ω, . . . , Yr,ω) T under real placebo, but it is =(

Y0,ω, Ym(S),ω, Ym(S)+1,ω, . . . , Yr,ω
)
T under virtual placebo. Under virtual placebo,

if Si = Ϙ for some particular i, Yi,ω is unde�ned. However, Y0,ω must be measured
in both approaches.

Importantly, our model identi�es decision Ai,j with a row vector of dimen-
sion li which has 1 in its j-th component but 0 elsewhere. (That is, Ai,j =
(0, ..., 0, 1, 0, ..., 0) ∈ Rli). Also, if Ϙ occurs at Stage i, we identify Ϙ with the
zero row vector of dimension li. [That is, Ϙ = 0 ∈ Rli .] Thus, a sequence
S = (S1, . . . , Sr) is viewed as a sequence of row vectors S1, . . . , Sr such that Si has
dimension li.

De�nition 1. A set C of admissible sequences is called an antichronic system
(AS) if, for subject ω, there exist a unique number αω and unique column vectors
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βββij,ω of dimension li, i = 1, . . . , j, j = 1, . . . , q, such that, for all r = 1, . . . , q, if
the subject experiences sequence S = (S1, . . . , Sr)∈ C, then

Eω[Y0,ω] = g−1(Λω) , Eω[Yk,ω] = g−1(Λω +

k∑
i=1

Siβββik,ω) , and

Λω = αω + λλλTXω (1)

where k = 1, . . . , r if real placebo is implemented, or k = m(S), . . . , r under virtual
placebo. We assume C includes at least one sequence in A∗q .

Here, g is a known link function and Eω[ · ] represents conditional expectation
given subject ω, that is, given both Λω and βββij,ω, i = 1, . . . , j, j = 1, . . . , q. In
addition, Xω is a p×1 vector of baseline clinical, environmental, genetic, biological
or demographic covariates, and λλλ ∈ Rp. The number αω and the vectors βββij,ω are
all characteristic constants of subject ω (they do not change over time). However,
some of them may vary from subject to subject. Thus, at the subject population
level, αω and βββij,ω are viewed as particular realizations of a random variable α and
a random vector βββij , which may possibly take on constant values. It is possible to
assume that λλλ varies from subject to subject, but the simpler model that assumes a
�xed λλλ will su�ce to introduce our ideas. For �xed ω, under real placebo, the con-
ditional distributions of Y0,ω, Y1,ω, . . . , Yr,ω belong to the same exponential family
(e.g. normal, Poisson or Bernoulli), although with possibly di�erent parameter
values. Similarly, under virtual placebo and �xed ω, the conditional distributions
of Y0,ω and Ym(S),ω, . . . , Yr,ω belong to the same exponential family. Importantly,
observe Siβββik,ω = 0 if Si = Ϙ, because Ϙ acts as a zero vector in computations
(that is, Si = 0 in that case).

To interpret equation (1), denote βSk,ω =
∑k
i=1 θik,ω with θik,ω = Siβββik,ω. The

e�ect βSk,ω of subsequence (S1, . . . , Sk) on Yk,ω is equal to the sum: �E�ect of
1-stage treatment on Yk,ω (that is, θ1k,ω)� plus �e�ect of 2-stage treatment on
Yk,ω� (θ2k,ω) plus . . .plus �e�ect of k-stage treatment on Yk,ω� (θkk,ω). Thus, by

denoting βββik,ω = (βik,ω,1, . . . , βik,ω,li)
T
, we see that βik,ω,j is the e�ect of decision

Ai,j on response Yk,ω, if decision Ai,j was actually taken at stage i, i ≤ k. Note
that we can easily model delayed treatment e�ects. For instance, if higher values
of Y represent a less severe illness, and if βik,ω,j > 0, but βir,ω,j ≤ 0 for all r
with i ≤ r < k, then βik,ω,j can be interpreted as a delayed bene�cial e�ect of
treatment Ai,j on response Yk,ω. Finally, note we are measuring all these e�ects
with respect to baseline conditions.

The virtual placebo approach requires an additional assumption. To present
the assumption, we need the concept of interchangeable sequences. Let r and
t be such that 1 ≤ r < t ≤ q. We say that a sequence S = (S1, . . . , Sr) ∈
A∗r is interchangeable with a sequence T ∈ A∗t if T = (Ϙ, . . . , Ϙ, S1, . . . , Sr). As
an interpretation, the skip sequence T may represent the hypothetical situation
in which the administration of S was postponed t − r stages but the baseline
conditions did not change during the �rst t− r stages.

Interchangeability assumption for virtual placebo: Suppose S ∈ A∗r and T ∈ A∗t
are interchangeable sequences. Then, for a particular subject ω, Y

(t)
ω (T ) has
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the same distribution as Y
(r)
ω (S). Thus, interchangeable sequences S and T will

potentially produce the same responses in a subject. Consequently, the e�ect of
treatment sequence S will not change in the hypothetical situation that we delay
the administration of the sequence t− r stages, provided the subject continues on
the baseline clinical backdrop (Ϙ) during the delay.

The practical consequence of the Interchangeability Assumption is that the
e�ect of T = (Ϙ, . . . , Ϙ, S1, . . . , Sr) on a subject ω can be examined by administering
S = (S1, . . . , Sr) right after measuring Y0,ω, and labeling the obtained responses as
Yt−r+1,ω, Yt−r+2,ω, . . . , Yt,ω. That is, we do not need to delay the administration
of S by administering placebo during the �rst t − r stages, and we can use the
responses to S to incorporate T in the design matrix. Thus the name �virtual
placebo�. We demonstrate in Section 6 that this approach is valid under the
Interchangeability Assumption and that we need sequences like T in order to
build a design matrix of full rank. This approach is recommendable when placebo
is unfeasible or unethical, but other applications are possible as illustrated in
Sections 9-10. Note that the Interchangeability Assumption is an assumption
about particular sequences S and T . Not all sequences of an AS have to satisfy
interchangeability assumptions in order for the virtual placebo approach to be
applicable.

Finally, note that both equation (1) and the Interchangeability Assumption
implicitly require that Y0,ω measures a stable illness state (relative to sequence
duration). That is, they are applicable if the subject's baseline state will not
change rapidly in the hypothetical situation that the subject is not intervened.
That subjects must enter the study in a stable condition is an inclusion criterion
of many clinical trials.

5. Matrix Representation of Responses

Next we exhibit the connection between ASs and the algebraic machinery that
underlies GLMMs. To motivate the connection using q = 2, suppose subject ω
was administered S = (S1, S2) ∈ A∗2 with S1 6= Ϙ. Then, by equation (1),

g
(
Eω[Y0,ω]

)
= Λω +

⇀
000
⇀
000
⇀
000βββ11,ω +

⇀
000
⇀
000
⇀
000βββ12,ω +

⇀
000
⇀
000
⇀
000βββ22,ω

g
(
Eω[Y1,ω]

)
= Λω + S1βββ11,ω +

⇀
000
⇀
000
⇀
000βββ12,ω +

⇀
000
⇀
000
⇀
000βββ22,ω

g
(
Eω[Y2,ω]

)
= Λω +

⇀
000
⇀
000
⇀
000βββ11,ω + S1βββ12,ω + S2βββ22,ω

=


1

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

1 S1

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

1
⇀
000
⇀
000
⇀
000 S1 S2


3×(m2+1)


Λω
βββ11,ω

βββ12,ω

βββ22,ω


(m2+1)×1

(2)
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where the ~000's represent row vectors, not all of them with the same dimension, and
m2 = 2l1 + l2. If S1 = Ϙ, we treat S1 as a zero vector; and if a virtual placebo
approach is followed we do not use the equation at the second row.

In general, suppose that S = (S1, . . . , Sr) ∈ A∗r . If the study follows a real
placebo strategy, we de�ne

V = V (S) =



⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 0 · · · 0

S1

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 0 · · · 0

⇀
000
⇀
000
⇀
000 S1 S2

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 0 · · · 0

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 S1 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 0 · · · 0

...
...

...
...

. . .
...

...
...

...
...

...
. . .

...
⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · · Sr−1

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000 0 · · · 0

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000 S1 S2 · · · Sr 0 . . . 0


(r+1)×mq

(3)

where mq =
∑q
i=1 ui , with ui = l1 + · · · + li. If the study implements virtual

placebo and S is not skip, V = V (S) is de�ned exactly as in equation (3); but if S
is skip, V is de�ned as the matrix obtained after eliminating rows 2 through m(S)
from the matrix in (3).

The number of rows of V is equal to the dimension of the subject's response

YYY
(r)
ω (S). The �rst row of V includes only zeros because, by equation (1), Y0,ω does

not depend on any investigated MBT. All V matrices need to be put on top of
each other to build the study design matrix. Therefore, they must have the same
number of columns. For this reason, if r < q, the last mq−mr columns of V must
contain only zeros. If r = q, the additional zero columns in equation (3) are not
needed. The following theorem gives a matrix representation of responses.

Theorem 1. Let C be an antichronic system and suppose that, by the end of Stage
r, r ≤ q, a particular subject ω with covariate vector Xω has been administered
sequence S = (S1, . . . , Sr) ∈ C. Then,

Eω

[
YYY (r)
ω

]
= g−1 (Wωγγγω) ,where

γγγω =
(
αω,λλλ

T , δδδ(q)ω

)T
,

δδδ(q)ω =
[(
βββT11,ω

)
,
(
βββT12,ω,βββ

T
22,ω

)
,
(
βββT13,ω,βββ

T
23,ω,βββ

T
33,ω

)
, . . . ,

(
βββT1q,ω,βββ

T
2q,ω, . . . ,βββ

T
qq,ω

)]
,

Wω = [111,XXX∗ω, V ] , XXX∗ω = [XXXω, . . . ,XXXω]
T

and 111 = (1, . . . , 1)T

(X∗ω and 1 have the same number of rows as V .) For convenience, we denote

g−1
(

(a1, . . . , ak)
T
)

=
(
g−1 (a1) , . . . , g−1 (ak)

)T
.

Theorem 1 shows that an AS is algebraically analogous to a GLMM of re-
peated measures of Y . Speci�cally, g (Eω [Yr,ω]) depends linearly not only on the
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covariates in Xω but also on stage-dependent covariates whose values for a sub-
ject who underwent sequence S = (S1, . . . , Sr) are given in the �rst mr columns
of V (S). Thus, at least in principle, to estimate AS parameters, we can adapt
standard software for �tting GLMMs (or RELMs in the case of Gaussian response
with identity link). For example, we can use SAS GLIMMIX or MIXED proce-
dures (SAS Institute Inc, Cary, NC, USA) or Stata's meglm and mixed commands
(StataCorp LP, College Station, TX, USA). Stata's xtreg command with the option
fe provides �xed-e�ects estimators for RELMs, which are robust to self-selection,
simultaneity and omitted variables (Hausman 1978, Ebbes et al. 2004, Kim &
Frees 2006). The option vce(robust) additionally provides Huber/White estima-
tors of standard errors, which are robust to covariance matrix misspeci�cations
(Huber et al. 1967, White 1982).

Fitting an AS requires that appropriate (stage-dependent) covariates be cre-
ated, using matrix V (S) as a template. The supplementary material, described
in Appendix C, provides a Stata ado program written by the author, called as-
design, which creates the covariates. The help �le of asdesign provides additional
instructions to �t an AS.

Here, we are interested in estimating the �xed e�ects vector E[γγγ], where γγγ =(
α,λλλT , δδδ(q)

)T
and

δδδ(q) =
[(
βββT11
)
,
(
βββT12,βββ

T
22

)
,
(
βββT13,βββ

T
23,βββ

T
33

)
, . . . ,

(
βββT1q,βββ

T
2q, . . . ,βββ

T
qq

)]
(We interpret γγγω as a constant vector characterizing one particular subject, which
is a realization of the random vector γγγ.) If the experimental design does not
incorporate SSs, however, the study design matrix will not be of full rank and,
therefore, E[γγγ] will not be identi�able. We show this in Theorems 2-3.

Finally, note that the Interchangeability Assumption does not participate in
the proof of Theorem 1. This assumption is required to prove Theorem 4, which
guarantees that the introduction of SSs for the virtual placebo approach will not
a�ect parameter interpretation.

6. Experimental Designs and Data Analysis
Strategies for Antichronic Systems

This section presents the crux of our proposal: to estimate all AS model pa-
rameters, CTs of treatment sequences must incorporate SSs in their experimental
design and/or data analysis. First, we show we need SSs to render E[γγγ] identi�-
able. Then we explain strategies for constructing SSs in practice.

In the context of a CT, let S(1), S(2), . . . , S(d) be distinct admissible sequences.
Assume that C =

{
S(1), S(2), . . . , S(d)

}
is an AS, and that we have a sample of

N subjects, each of whom experienced one sequence in C. Suppose Ni subjects
completed sequence S(i), i = 1, . . . , d, where

∑d
i=1Ni = N and Ni ≥ 1 for all i.

For S = (S1, . . . , Sr) ∈ C, if subject ω has covariate vector Xω and underwent
sequence S, the matrix Wω = W (S,XXXω) = [111,XXX∗ω, V (S)] is the subject 's design
matrix (DM), ω = 1, . . . , N .
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Under the usual assumptions of GLMMs, E[γγγ] will be identi�able if and only

if the study design matrix K =
(
WT

1 , . . . ,W
T
N

)T
is of full rank, regardless of the

method used to estimate E[γγγ] (for instance, quasi-likelihood, maximum likelihood,
generalized method of moments or robust �xed-e�ect estimation) (see Christensen
2011). The following theorem indicates the importance of SSs for the estimation
of E[γγγ].

Theorem 2. Let D =
(
W
(
S(1)

)T
, . . . ,W

(
S(d)

)T)T
, where W (S) = [111, V (S)].

A necessary condition for K to be of full rank is that the following two facts
simultaneously occur: (1) ρ(K) = ρ(D)+p, and (2) at least one subject experiences
a treatment sequence S ∈ C such that S is skip. (Here, ρ(A) = rank of A.)

The practical consequence of Theorem 2 is that, to estimate E[γγγ] through
any method implemented in statistical software for GLMMs without imposing
additional restrictions on E[γγγ], the clinical trial must implement SSs. Appendix
B illustrates ASs with a DM of full rank. In practice, at the design stage of a
CT, we must add SSs to the set of investigated treatment sequences until D is of
full rank. This sometimes can also be done at the data analysis stage of existing
data, as in Section 9. With existing data, however, it is not always possible to
implement an adequate amount of SSs (see below). Condition 1 of Theorem 2 is
achieved when the covariates in XXXω are not perfectly correlated with each other
and the �nal sequence allocations.

The next theorem will be useful to �nd the appropriate SSs at the design stage
of a CT.

Theorem 3. Suppose S〈1〉, . . . , S〈c〉 are c distinct non-skip sequences in A∗q , which
will occur with positive probability in the CT. Assume that each 1-stage treatment
will be administered in the �rst stage of at least one of these sequences. Denote

Γ =
[ (
S〈1〉

)T
, . . . ,

(
S〈c〉

)T ]T
and τ =

q∑
i=1

li − ρ(Γ)

Then, there exist τ skip sequences S
〈1〉
Ϙ
, . . . , S

〈τ〉
Ϙ

such that D =
(
DT

1 , D
T
2

)T
is of

full rank, where

D1 =
(
W (S〈1〉)T , . . . ,W (S〈c〉)T

)T
and D2 =

(
W (S

〈1〉
Ϙ

)T , . . . ,W (S
〈τ〉
Ϙ

)T
)T

The practical implication of Theorem 3 is that E[γγγ] will be identi�able and
therefore estimable if the CT implements all the sequences S〈1〉, . . . , S〈c〉,

S
〈1〉
Ϙ
, . . . , S

〈τ〉
Ϙ

. That is, adding S
〈1〉
Ϙ
, . . . , S

〈τ〉
Ϙ

to the design will produce a de-
sign matrix of full rank. The theorem's proof actually establishes a procedure

to construct S
〈1〉
Ϙ
, . . . , S

〈τ〉
Ϙ

starting from S〈1〉, . . . , S〈c〉. In essence, these SSs are
taken from some of the families of SSs,

F (Ai,j) =
{

(S1, . . . , Sq) ∈ A∗q ;Si = Ai,j and Sk = Ϙ for k < i
}
,

i = 2, . . . , q and j = 1, . . . , li
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There are a total of
∑q
i=2 li families, but only τ of them need to be used. To illus-

trate, for q = 4, any member of the family F (A2,3) can be written as (Ϙ, A2,3, B,C),
where B and C are 3-stage and 4-stage treatments.

Speci�cally, the procedure to construct S
〈1〉
Ϙ
, . . . , S

〈τ〉
Ϙ

consists of the following
easy steps: (1) Using the treatment names, label the columns of Γ. With our
notation, the labels are

A1,1, . . . , A1,l1 , A2,1, . . . , A2,l2 , . . . , Aq,1, . . . , Aq,lq ,

from the left to the right column of Γ. (2) Convert Γ into an echelon matrix using
only elementary row operations, and then identify the columns of the echelon that
do not have a pivot. Let A〈1〉, . . . , A〈τ〉 denote their labels. (3) Lastly, for each

k = 1, . . . , τ , choose S
〈k〉
Ϙ

from the family F
(
A〈k〉

)
. We recommend choosing the

sequence in F
(
A〈k〉

)
that both can be implemented in practice and will cause the

lightest burden for the subjects. For each k, the CT has to implement at least
one SS from the family F

(
A〈k〉

)
. Otherwise, E[γγγ] will not be estimable. Section

8 illustrates this procedure for a cross-over design.

As explained in Section 2, two general strategies to implement SSs in practice
are possible: real and virtual placebo. In the real placebo strategy, the trialist
implements sequence S by administering a placebo at each stage k with k <
m(S). The rest of this section elaborates further on virtual placebo. This strategy
exploits the following theorem, which is a consequence of the Interchangeability
Assumption.

Theorem 4. Let C be an antichronic system and S, T ∈ C. Suppose that S =
(S1, . . . , Sr) ∈ A∗r is interchangeable with T ∈ A∗t , where r < t. Then, for a
speci�c subject ω,

g−1 (W (S,XXXω)γγγω) = g−1 (W (T,XXXω)γγγω)

The practical consequence of Theorem 4 is that we can use W (T,XXXω) in place
of W (S,XXXω) in order to code the covariates of a subject who experienced S.
The theorem guarantees that doing this will not a�ect the interpretation of model
parameters contained in E[γγγ].

As suggested by Theorem 4, T = (Ϙ, . . . , Ϙ, S1, . . . , Sr) can be implemented in a
CT by administering S = (S1, . . . , Sr) without delay after measuring Y0,ω, labeling
the obtained r responses as Yt−r+1,ω, Yt−r+2,ω, . . . , Yt,ω. For instance, suppose that
q = 3 and that (Ϙ, Ϙ, A) is needed, where A is a 3-stage treatment. To implement
this sequence, some subjects are administered treatment A right after measuring
Y0,ω, without a previous administration of 1-stage or 2-stage treatments. Then, the
response produced by A is labeled as Y3,ω. Responses to 1- or 2-stage treatments
will not be needed from these subjects, because the DMs of these subjects will not
have rows corresponding to these stages.

Under some circumstances, we can use virtual placebo in the analysis of data
from studies that did not implement SSs in their protocol. The method constructs
SSs at the data-analysis phase of the study and is also based on Theorem 4. To
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code the covariates of a subject who experienced S, we can useW (T,XXXω) in place
ofW (S,XXXω) if the skip sequence T is needed to construct a study design matrix of
full rank and S is interchangeable with T . For instance, for q = 2, suppose that A
is simultaneously a 1-stage and 2-stage treatment, and that, after providing Y0,ω,
a particular subject was administered A at Stage 1, then the subject provided Y1,ω
at the end of this stage, but then he/she dropped out of the study right after that.
These events can be represented as S = (A) ∈ A∗1. Matrix V (S) corresponding
to S = (A) can be used to construct K. But if we need SSs to estimate E[γγγ], we
can use matrix V (T ) instead, where T = (Ϙ, A) ∈ A∗2, and relabel Y1,ω as Y2,ω.
We followed this method in the analysis of the STAR*D data in Sections 9-10.
Clearly, this approach to data analysis is not always applicable to studies that
were not designed with SSs in mind, because it requires that some treatments be
simultaneously administered at two or more di�erent stages, and appropriate SSs
may not always be available. This also highlights the importance of incorporating
SSs at the planning stage of a CT.

7. E�ect of a Stage on Future Responses

ASs allow testing naturally the null hypothesis that clinical decisions made at
a particular stage do not a�ect the subjects' responses in future stages. Note that
βββik includes all the e�ects of i -stage treatments on Yk,ω. If βββik 6= 0, we say that
Stage i a�ects Yk,ω. The importance of this concept is that if βββik = 0 for i < k,
then clinical decisions made at Stage i will not a�ect the response measured at
Stage k, and there are no delayed e�ects of Stage i on Yk,ω. To examine whether
Stage i does not a�ect Yk,ω we test the null hypothesis, βββik = 0. This test can
be implemented with standard statistical software for �tting GLMMs, examining
the joint signi�cance of the covariates corresponding to βββik. These covariates are
called i-to-k transition covariates. For a particular subject, the values of these
(stage-dependent) covariates are in columns c1 through c2 of matrix V , where

c1 = mk−1+
∑i−1
j=1 lj+1 and c2 = mk−1+

∑i
j=1 lj . For convenience, the covariates

corresponding to βββii are called i-stage covariates; these are also stage-dependent.

For instance, for q = 2, the third terms of the equations in (2) contain the
1-to-2 transition covariates. There are l1 of these covariates, one for each 1-Stage
treatment. Similarly, �rst and second stage covariates are in the second and fourth
terms, respectively. Tables 2 and 5 illustrate these types of covariates for the cross-
over example (Section 8) and the STAR*D data (Section 9), respectively.
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8. Application: Improving a Cross-Over Design with
3 Treatments and 3 Periods

This Section illustrates an application of the proposed methodology to the
design of a cross-over study of 3 treatments administered in 3 periods. The treat-
ments are denoted A, B and C. Speci�cally, we show how placebo can be im-
plemented in order to achieve the estimability of carry-over e�ects. Suppose the
trialist wants to implement 6 sequences arranged in 2 Latin squares, as follows
(Senn 2002):

A B C

B C A

C A B

A C B

B A C

C B A

We assume a baseline measure is obtained prior to the administration of a sequence.
We also assume a normal response Y , independent and identically distributed ran-
dom errors, and a random intercept representing subjects's heterogeneity (Jones
& Kenward 2015). Cross-over studies often assign the same number of subjects to
the investigated sequences, but we do not need to assume this for this illustration.

Table 1 shows the expected responses by sequence and period for the above
sequences, assuming the responses satisfy an AS (sequences 1-6). In Table 1, a
parameter τAij measures the e�ect of treatment A on Y , when A is administered
in period i and Y is measured at the end of period j, for i ≤ j and i, j = 0, 1, 2, 3.
This e�ect is measured relative to the average baseline response µ. The e�ects
of treatments B and C are de�ned analogously. Table 1 also shows expected
responses for some skip sequences (sequences 7-12). Here, we interpret Ϙ as placebo
and assume placebo has negligible e�ects on Y .

We built the DM corresponding to sequences 1-6 without assuming any linear
constraint on model parameters. For a design with only one subject per sequence,
the DM is shown in Table 2. For a study with more than one subject in a sequence,
the study DM will include the rows corresponding to the sequence as many times
as subjects are assigned to the sequence. As predicted from Theorem 2, the matrix
in Table 2 (and the study DM in general) are not of full rank.

Here, we are interested in estimating the percent contribution of carry-over to
the total e�ect of a treatment sequence. For instance, the percent contribution of
carry over to the total e�ect of sequence ABC is de�ned as

τA13 + τB23

µ+ τA13 + τB23 + τC33
× 100

Similarly, the contribution of carry-over to the total e�ect of the partial sequence
AB is

τA12

µ+ τA12 + τB22
× 100

Carry-over contributions for other sequences are de�ned analogously.
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Table 1: Expected responses under a cross-over design with 3 treatments, 3 periods
and 6 sequences (Sequences 1-6), assuming an antichronic system. Expected
responses for some skip sequences are also shown (Sequences 7-12). Placebo
is symbolized with Ϙ.

Period
Sequence	 0		ሺBaselineሻ	 1	 2	 3	

	ܥܤܣ			1 	ߤ ߤ ൅ ߬஺ଵଵ	 ߤ ൅ ߬஺ଵଶ ൅ ߬஻ଶଶ	 ߤ ൅ ߬஺ଵଷ ൅ ߬஻ଶଷ ൅ ߬஼ଷଷ	

	ܣܥܤ			2 	ߤ ߤ ൅ ߬஻ଵଵ	 ߤ ൅ ߬஻ଵଶ ൅ ߬஼ଶଶ	 ߤ ൅ ߬஻ଵଷ ൅ ߬஼ଶଷ ൅ ߬஺ଷଷ	

	ܤܣܥ			3 	ߤ ߤ ൅ ߬஼ଵଵ	 ߤ ൅ ߬஼ଵଶ ൅ ߬஺ଶଶ	 ߤ ൅ ߬஼ଵଷ ൅ ߬஺ଶଷ ൅ ߬஻ଷଷ	

	ܤܥܣ			4 	ߤ ߤ ൅ ߬஺ଵଵ	 ߤ ൅ ߬஺ଵଶ ൅ ߬஼ଶଶ	 ߤ ൅ ߬஺ଵଷ ൅ ߬஼ଶଷ ൅ ߬஻ଷଷ	

	ܥܣܤ			5 	ߤ ߤ ൅ ߬஻ଵଵ	 ߤ ൅ ߬஻ଵଶ ൅ ߬஺ଶଶ	 ߤ ൅ ߬஻ଵଷ ൅ ߬஺ଶଷ ൅ ߬஼ଷଷ	

	ܣܤܥ			6 	ߤ ߤ ൅ ߬஼ଵଵ	 ߤ ൅ ߬஼ଵଶ ൅ ߬஻ଶଶ	 ߤ ൅ ߬஼ଵଷ ൅ ߬஻ଶଷ ൅ ߬஺ଷଷ	

Some	skip	sequences:	

7		 	ܣ 	ߤ 	ߤ 	ߤ ߤ ൅ ߬஺ଷଷ	

8		 	ܤ 	ߤ 	ߤ 	ߤ ߤ ൅ ߬஻ଷଷ	

9		 	ܥ 	ߤ 	ߤ 	ߤ ߤ ൅ ߬஼ଷଷ	

10			 	ܣܥ 	ߤ 	ߤ ߤ ൅ ߬஼ଶଶ ߤ ൅ ߬஼ଶଷ ൅ ߬஺ଷଷ	

11			 	ܤܥ 	ߤ 	ߤ ߤ ൅ ߬஼ଶଶ ߤ ൅ ߬஼ଶଷ ൅ ߬஻ଷଷ	

12			 	ܥܥ 	ߤ 	ߤ ߤ ൅ ߬஼ଶଶ ߤ ൅ ߬஼ଶଷ ൅ ߬஼ଷଷ	

In general, however, if the cross-over trial includes only sequences 1-6, the
numerators of the carry-over contributions will not be estimable and, therefore,
we will not be able to estimate the carry-over contributions. To demonstrate this
assertion, we used Searle criterion for estimability (Searle 1966). According to
this criterion, if τττ is the column vector containing the 19 parameters in Table 1
(including µ), L is a row vector, and Lτττ is a contrast of these parameters, then
Lτττ is estimable if and only if

L− L(MTM)−MTM = 0

where M is the matrix in Table 2 and (MTM)− is the Moore-Penrose inverse of
MTM (Bronson 1989). Using Searle criterion, we found that all parameters in
Table 1 are nonestimable, except µ, τA11, τB11 and τC11, if only sequences 1-6 are
implemented in the trial. In addition, although the denominators of all percent
carry-over contributions are estimable, the numerators are not.

To assess carry-over contributions, the estimability of all model parameters is
needed. By Theorem 2, we will be able to achieve estimability if we add SSs to
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the design. Figure 1 illustrates how to compute appropriate skip sequences in
accordance to the procedure explained after Theorem 3. The top portion of the
�gure shows the matrix Γ, whose six rows represent sequences 1-6. The �gure
also shows the reduced row echelon form of matrix Γ. Since the echelon has four
columns without pivots, at least four skip sequences are necessary to achieve the
estimability of all model parameters. The bottom of Figure 1 suggests that we
need to add to the design the sequences (Ϙ, Ϙ, A), (Ϙ, Ϙ, B) and (Ϙ, Ϙ, C), and at
least one of the sequences (Ϙ, C, T ) with T = A,B, or C. Thus, for instance, if at
least one subject is randomized to each of the sequences 1-10 in Table 1, percent
carry-over contributions can be estimated. Table 3 shows the DM corresponding
to the skip sequences 7-10 in Table 1, assuming only one subject per sequence
and without imposing any parameter constraint. The reader can verify that if
Tables 2 and 3 are combined, the resultant matrix is of full rank as predicted from
Theorem 3. Therefore, the study DM of a cross-over trial including sequences 1-10
will be of full rank, provided that at least one subject undergoes each sequence.
We computed the Moore-Penrose inverse with SAS PROC IML (SAS Institute
Inc.) and the echelon matrix in Figure 1 with the calculator TI-Nspire CX CAS
(Texas Instruments Inc.).

	 	 	 	 	
	
	
	
	
	

Γ ൌ	

	 Period	1	 Period	2	 Period	3	
	 	 	 	
Sequence	 	ܣ 	ܤ 	ܥ 	ܣ 	ܤ 	ܥ 	ܣ 	ܤ 	ܥ

	ܥܤܣ 1	 0	 0	 0	 1	 0	 0	 0	 1	
	ܣܥܤ 0	 1	 0	 0	 0	 1	 1	 0	 0	
	ܤܣܥ 0	 0	 1	 1	 0	 0	 0	 1	 0	
	ܤܥܣ 1	 0	 0	 0	 0	 1	 0	 1	 0	
	ܥܣܤ 0	 1	 0	 1	 0	 0	 0	 0	 1	
	ܣܤܥ 0	 0	 1	 0	 1	 0	 1	 0	 0	

	 	 	 	 	 	 	 	 	 	 	
	
	
				Echelonൌ	

1	 0	 0	 0	 0	 1	 0	 1	 0	
0	 1	 0	 0	 0	 1	 1	 0	 0	
0	 0	 1	 0	 0	 1	 1	 1	 ̶1	
0	 0	 0	 1	 0	 ̶1	 ̶1	 0	 1	
0	 0	 0	 0	 1	 ̶1	 0	 ̶1	 1	
0	 0	 0	 0	 0	 0	 0	 0	 0	

	
Columns	without	pivots	
	

	 	 	 	 	 	
	ܥ

	
	ܣ

	
	ܤ

	
	ܥ

	

	

 

Figure 1: Illustration of the computation of skip sequences for a cross-over design with
3 treatments, 3 periods and 6 sequences, according to Theorem 3.
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9. Application: Fitting an AS to the STAR*D Data

In this section, we use virtual placebo for the analysis of the STAR*D clinical
trial database which was provided by the National Institutes of Mental Health.
The author did not conduct this clinical trial or participate in it. The STAR*D
study investigators have declared in their publications that the study was approved
by ethical committees and that patient consents were obtained (Fava et al. 2003).
The database provided to the author did not contain information identifying the
subjects, and the author maintained the database in a password-protected com-
puter system.

The STAR*D study investigated 4,041 adult subjects with non-psychotic ma-
jor depressive disorder (Fava et al. 2003). We analyzed the 1,439 subjects who
did not have an acceptable response to Citalopram (CIT) monotherapy but con-
tinued in the study receiving alternative treatments. Here, Y is the HAM-D17
total depression score and Y0,ω is the score obtained right after CIT monotherapy
ended. The HAM-D17 scale produced values from 0 to 42 inclusive, and all integer
numbers in this range were observed in the patient population. Thus, we treated
the HAM-D17 score as a continuous variable, as most statisticians would do in
practice. An AS model with identity link and Gaussian response was �tted. The
design matrix K was built using our Stata program asdesign (see Appendix C).

Alternative treatments given right after Citalopram monotherapy failure are
named here �1-stage� treatments (Table 4). If a 1-stage treatment was declared
to be successful by the clinician, the subject was passed to follow-up (FU). If
the 1-stage treatment failed, the subject and clinician were presented with other
treatment choices; these other choices, together with FU, are named here �2-stage�
treatments. Although additional treatment choices were available if a 2-stage treat-
ment failed, we analyzed here only sequences of at most 2 additional treatments
given after CIT monotherapy failure; that is, q = 2 (Table 4).

In the STAR*D data, correlated e�ects were possible because 2-stage decisions
may have been correlated with observed or unobserved subjects' characteristics
that determined the responses to Stage-1 decisions. Thus, we assumed a model
with correlated e�ects and used robust �xed-e�ects estimators to estimate re-
gression coe�cients of �rst and second stage covariates and transition covariates
(Kim & Frees 2006, Ebbes et al. 2004, Frees 2004) (Table 5, footnote g). Addi-
tional advantages of this approach are that the actual structure and distribution
of random e�ects do not need to be speci�ed, and it is not necessary to con-
duct subject-level variable selection because these variables are not used in robust
�xed-estimation. However, since we were also interested in estimating the e�ects
of demographics, we additionally conducted a separate augmented regression to es-
timate their e�ects (Mundlak 1978, Frees 2001, 2004) (Table 5, footnote d). In the
augmented regression, we treated second-stage covariates as endogenous and used
their average to augment the regression equation. Since subjects were initially
randomized to �rst-stage treatments, �rst-stage and 1-to-2 transition covariates
were treated as exogenous. Huber/White robust standard errors were computed
(Huber et al. 1967, White 1982) (Table 5).
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Table 4: Sequences of at most two additional treatments administered to 1,439 sub-
jects with major depression from the STAR*D study who were refractory to
Citalopram monotherapy.

Sequence  Stage 1a  Stage 2b  Nc  Sequence  Stage 1a  Stage 2b  Nc 

1  BUP  ‐‐  87d  20  CIT+CTH  BUP  10 
2  BUP  BUP+LI  18  21  CIT+CTH  FU  45 
3  BUP  BUP+THY  8  22  CIT+CTH  VEN  12 
4  BUP  FU  69  23  CTH  ‐‐  20d 

5  BUP  MIRT  28  24  CTH  BUP  5 
6  BUP  NTP  29  25  CTH  FU  33 
7  CIT+BUP  ‐‐  68d  26  CTH  VEN  4 
8  CIT+BUP  CIT+LI  14  27  SER  ‐‐  75d 

9  CIT+BUP  CIT+THY  20  28  SER  FU  87 
10  CIT+BUP  FU  150  29  SER  MIRT  33 
11  CIT+BUP  MIRT  10  30  SER  NTP  22 
12  CIT+BUP  NTP  17  31  SER  SER+LI  11 
13  CIT+BUS  ‐‐  78d  32  SER  SER+THY  10 
14  CIT+BUS  CIT+LI  10  33  VEN  ‐‐  81d 

15  CIT+BUS  CIT+THY  17  34  VEN  FU  101 
16  CIT+BUS  FU  137  35  VEN  MIRT  21 
17  CIT+BUS  MIRT  18  36  VEN  NTP  22 
18  CIT+BUS  NTP  26  37  VEN  VEN+LI  10 
19  CIT+CTH  ‐‐  18d  38  VEN  VEN+THY  15 

  FU: follow-up; CTH: Cognitive Therapy; BUP: Bupropion; BUS: Buspirone; CIT: Citalopram;
LI: Lithium; MIRT: Mirtazapine; NTP: Nortriptyline; SER: Sertraline; TCP: Tranylcypromine;
THY: Thyroid; VEN: Venlafaxine.
aStage 1 treatments are the treatments from Level 2 of the STAR*D study. In Level 1 of the
study, only Citalopram monotherapy was given to the subjects.
bStage 2 treatments are the treatments from Levels 2A and 3 of STAR*D study. A follow-up
(FU) after Level 2 of the study was treated as a �treatment� choice for Stage 2. The �rst HAM-
D17 score available from follow-up was usually obtained at the end of the 3rd month of follow-up
and was used in the �t of the AS model.
cNumber of subjects who underwent the treatment sequence.
dThese subjects withdrew from the study after completing Stage 1 (=Level 2 of STAR*D study).

Stata's xtreg and mixed commands were used (StataCorp LP, College Station,
TX, USA). For comparison purposes, we also present GLS estimates for a random
intercept model with i.i.d errors (Table 5). These estimates would be more ap-
propriate if there were not correlated e�ects, but this cannot be guaranteed in the
STAR*D data. Residual analyses showed both that the model �tted well and that
the assumption of normality for the untransformed scores was reasonable.
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Table 5: Parameter estimates of a 2-stage antichronic system model of HAM-D17 scores
computed with 3,303 scores from 1,434 STAR*D subjects refractory to Citalo-
pram monotherapy.a

 

 GLS estimators (random intercept)b          Robust estimatorsc                 

 
             Covariates 

Regression 
coefficient 

95% Confidence 
Interval                  

Regression 
Coefficient 

95% Confidence 
interval 

     
Age (y) 0.060*** [0.033, 0.087] 0.055*** [0.032, 0.078]d 

Black or African Americane 2.52*** [1.61, 3.44] 2.01*** [1.16, 2.85]d 

Cocaine abuser or 
dependentf 

–3.70* [–7.10, –0.31] –3.87*** [–6.15, –1.60]d 

     
First stage covariates     
BUP –5.09*** [–6.17, –4.01] ‒5.26*** [‒6.45, ‒4.06]g 

CIT+BUP –5.87*** [–6.75, –4.98] ‒4.90*** [‒5.87, ‒3.93]g 

CIT+BUS –4.87*** [–5.72, –4.02] ‒4.16*** [‒5.15, ‒3.16]g 

CIT+CTH –4.67*** [–6.16, –3.19] ‒4.65*** [‒6.50, ‒2.80]g 

CTH –5.58*** [–7.47, –3.68] ‒4.57*** [‒7.03, ‒2.10]g 

SER –4.74*** [–5.70, –3.77] ‒5.56*** [‒6.70, ‒4.43]g 

VEN –5.89*** [–6.93, –4.85] ‒6.01*** [‒7.23, ‒4.80]g 

     
Transition  covariatesh     
          BUP 0.73 [–2.76, 4.22] 0.28 [‒3.65, 4.21]g 

          CIT+BUP 0.58 [–2.80, 3.95] 0.66 [‒3.17, 4.48]g 

          CIT+BUS 0.48 [–2.90, 3.86] 0.60 [‒3.22, 4.41]g 

          CIT+CTH –0.53 [–3.50, 2.44] ‒1.29 [‒4.71, 2.14]g 

          CTH –0.0021 [–3.52, 3.51] ‒0.35 [‒4.62, 3.91]g 

          SER –0.86 [–4.30, 2.59] ‒2.05 [‒5.93, 1.83]g 

          VEN –0.48 [–3.94, 2.97] ‒1.66 [‒5.58, 2.25]g 

     
Second stage covariates     
BUP –2.53* [–4.60, –0.46] ‒2.85** [‒4.91, ‒0.79]g 

BUP+LI –4.35 [–8.90, 0.21] ‒5.48* [‒9.96, ‒0.99]g 

BUP+THY –10.6*** [–16.0, –5.17] ‒11.2*** [‒17.0, ‒5.32]g 

CIT+LI –3.96 [–8.29, 0.36] ‒5.09* [‒9.29, ‒0.88]g 

CIT+THY –5.81** [–9.79, –1.83] ‒5.58* [‒10.2, ‒1.01]g 

FU –6.69*** [–9.92, –3.45] ‒5.03** [‒8.70, ‒1.36]g 

MIRT –5.17** [–8.72, –1.62] ‒5.95** [‒9.90, ‒2.01]g 

NTP –5.25** [–8.78, –1.72] ‒6.02** [‒10.1, ‒1.95]g 

SER+LI –4.91 [–10.3, 0.46] ‒6.29* [‒11.3, ‒1.32]g 

SER+THY –3.26 [–8.47, 1.95] ‒3.49 [‒8.24, 1.26]g 

VEN –4.17*** [–6.36, –1.97] ‒4.68** [‒7.66, ‒1.70]g 

VEN+LI –8.25** [–13.6, –2.87] ‒7.78** [‒13.2, ‒2.34]g 

VEN+THY –5.71* [–10.5, –0.96] ‒5.92* [‒11.1, ‒0.76]g 

Constant ( ) 14.9*** [13.7, 16.1] 17.4***   [17.2, 17.6]g 

     
 

 

 

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Note: To estimate model parameters, skip sequences with BUP and VEN at the second stage
were implemented.
FU: follow-up; CTH: Cognitive Therapy; BUP: Bupropion; BUS: Buspirone; CIT: Citalopram;
Li: Lithium; MIRT: Mirtazapine; NTP: Nortriptyline; SER: Sertraline; TCP: Tranylcypromine;
THY: Thyroid; VEN: Venlafaxine.
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aThe data were obtained from version 4.1 of the limited access datasets distributed from the

NIH-supported �Sequenced Treatment Alternatives to Relieve Depression� (STAR*D). Before

�tting the models, a few inconsistencies in the STAR*D data were found and corrected by the

author. Inconsistencies and corrections were documented in a text �le that is available from the

author on request.
bFor the random intercept model estimated with GLS, estimated standard deviations of intercept

and error were σ̂α = 5.56 (95% con�dence interval, [5.26, 5.88]) and σ̂ε = 5.12 ([4.95, 5.29]).
cTo estimate regression coe�cients of demographic variables, augmented regression was used.

To estimate regression coe�cients of �rst and second stage covariates and transition covariates,

robust �xed-e�ects estimators were used.
dAugmented regression (Mundlak 1978; Frees 2001, 2004) and Huber/White sandwich standard

errors (Huber 1967, White 1982) were used. The estimators are robust to correlated e�ects and

covariance matrix misspeci�cation.
eThe dichotomous covariate was de�ned as 1 if the subject was self-declared black or African

American, 0 otherwise.
fThe dichotomous covariate was de�ned as 1 if the subject declared to be cocaine abuser or

dependent, 0 otherwise.
gRobust �xed e�ects estimators (Hausman 1978, Kim and Frees 2006) and Huber/White sand-

wich standard errors (Huber 1967, White 1982) were computed. The estimators are robust to

correlated e�ects and covariance matrix misspeci�cation.
h1-to-2 transition covariates. These covariates were jointly signi�cant (robust test of H0 : βββ1,2 =

0, p= 0.0079), suggesting that treatments at Stage 1 a�ected signi�cantly the responses measured

at the end of Stage 2. However, no individual transition covariate reached signi�cance.

Data and skip sequences used are described in the rest of this section. Five
of the 1,439 subjects did not provide any of the three scores Y0,ω, Y1,ω and Y2,ω.
Each of the other 1,434 subjects provided at least one of them. Thus, the 2-stage
AS was �tted with these 1,434 subjects (Table 5). An assumption of missingness
at random was made to include subjects who did not have all three values of Y .
In total, the subjects provided 3,303 HAM-D17 scores for this analysis.

After CIT monotherapy failed, subjects had seven alternative treatment choices
for Stage 1; thus, l1 = 7 (Table 4). For Stage 2, subjects had 13 alternative choices,
including follow-up (FU) (l2 = 13). Note that the STAR*D protocol did not use
the term �Stage� (footnotes a and b of Table 4).

Skip sequences were built as follows. Both Bupropion (BUP) and Venlafaxine
(VEN) were simultaneously 1-stage and 2-stage treatments (Table 4). Also, 87
subjects who were on BUP at Stage 1 withdrew from the study after complet-
ing this stage (Sequence 1 in Table 4). Applying Theorem 4, these 87 subjects
were assigned the skip sequence, (Ϙ,BUP) ∈ A∗2. Similarly, the skip sequence,
(Ϙ,VEN) ∈ A∗2 was assigned to each of 81 subjects who were on VEN at Stage 1
but withdrew after completing this stage (Sequence 33 in Table 4).

In summary, we built an AS that included the 38 sequences in Table 4, but
Sequences 1 and 33 were rede�ned to corresponding interchangeable SSs. By
following this approach, we obtained a study design matrix K of full rank. Pa-
rameter estimates are shown in Table 5. Note that, here, Ϙ can be interpreted
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as �CIT monotherapy�. Also, the regression coe�cient of follow-up (FU) must be
interpreted with caution, because two di�erent subjects on FU may have been
under di�erent therapies.

Note that subjects in Sequence 7 of Table 4 took CIT+BUP at Stage 1 but
withdrew from the study after completing this stage. These subjects cannot be
used to build SSs because CIT+BUP was not a 2-stage treatment. Thus, Sequence
7 was treated as (CIT + BUP) ∈ A∗1. Similar comments can be made for subjects
in Sequences 13, 19, 23 and 27. In contrast, Sequence 35 in Table 4, say, was
treated as (VEN,MIRT) ∈ A∗2.

10. Results for STAR*D Data

Hausman test comparing robust �xed-e�ects estimators with GLS estimators
con�rmed that there were correlated e�ects (χ2 = 346.9, df = 27, p < 0.0001)
(Frees 2004). Therefore, robust �xed-e�ects estimators and augmented regression
were necessary.

At α = 0.05, each 1-Stage treatment reduced signi�cantly the average HAM-
D17 score during Stage 1 in subjects who received the treatment (Table 5). Using
the robust �xed-e�ects estimates, we found that Stage 1 signi�cantly a�ect Y2,ω
[overall test with robust estimates, F (7, 1433) = 2.74, p = 0.0079]. That is, at
least one transition covariate was signi�cant according to the overall test. How-
ever, none of the individual regression coe�cients of transition covariates reached
signi�cance. Thus, the evidence is weak that treatments used at Stage 1 had a
potential in�uence on HAM-D17 scores measured at the end of Stage 2. In par-
ticular, there did not appear to be appreciable delayed e�ects. Not even cognitive
therapy (CTH), which was a 1-stage treatment, gave these di�cult-to-treat sub-
jects a signi�cant added advantage at �ghting their illness at the next stage�the
regression coe�cient for the transition covariate corresponding to CTH was −0.35,
95% CI, (−4.62, 3.91) (Table 5). The other 1-stage treatments included drugs and
it is possible that these drugs' blood levels dropped during Stage 2, which may
explain in part why Stage 1 treatments did not a�ect substantially the 2nd stage
response.

Only one 2-stage treatment did not lower signi�cantly the HAM-D17 aver-
age score in comparison with the score measured at the end of CIT monotherapy,
namely SER+THY (Table 5). Also, according to the robust augmented regression,
self-declared blacks or African Americans had signi�cantly higher HAM-D17 av-
erage scores after controlling for treatment; cocaine abuser or dependent subjects
had signi�cantly lower average scores; and subjects of older age had signi�cantly
higher average scores.

The regression coe�cients of 1-stage treatments were not signi�cantly di�erent
from each other (using robust estimation, F (6, 1433) = 1.13, p = 0.3398; Table
5). Therefore, there was no evidence that 1-stage treatments had di�erential aver-
age e�ects on HAM-D17. Similarly, 2-stage treatments did not have signi�cantly
di�erent average e�ects on HAM-D17 (F (12, 1433) = 1.18, p = 0.2927).
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We also tested the appropriateness of the Interchangeability Assumption. This
assumption implies that the regression coe�cients of BUP for the �rst and second
stage covariates are equal and that those of VEN are equal as well. Employing
the robust standard errors, a simultaneous Wald test of these two null hypotheses
was not signi�cant (F (2, 1433) = 2.06, p = 0.1275). This suggests the assumption
was appropriate.

With a few additions, our model allows investigating interactions between
treatments administered at di�erent stages. Transition covariates are useful in
this regard. As an illustration, we examined the interaction between BUP admin-
istered at the �rst stage and MIRT administered at the second stage by computing
the product of the transition covariate corresponding to BUP and the second-stage
covariate corresponding to MIRT. Using robust estimation, this interaction was
not signi�cant (p = 0.70). It is also possible to compute interactions between
baseline covariates and stage or transition covariates.

In general, however, some interaction terms may induce a non-full-rank design
matrix. Thus, future research must investigate how the presence of interaction
terms a�ects the rank of design matrices, and must give conditions for the identi-
�ability of their regression coe�cients. Fortunately, however, the omission of sig-
ni�cant interaction terms should not bias robust �xed-e�ects estimators because
they are robust to omitted variables (Kim & Frees 2006).

11. Discussion

The main contribution of this article is the introduction of skip sequences in
the design and analysis of clinical trials of treatment sequences. These sequences
guarantee the existence of design matrices of full rank and, therefore, guarantee
the identi�ability (estimability) of carry-over e�ects. Importantly, we did not need
unjusti�ed linear constraints in order to examine carry-over e�ects. Skip sequences
also facilitate the implementation of many estimation methods for GLMMs.

Theorem 2 indicates the importance of SSs in the experimental design and
statistical analysis of CTs of treatment sequences, and theorem 3 gives a proce-
dure for selecting appropriate SSs at the planning stage of a particular study.
This procedure is very general, being applicable to any number of study stages
and treatments, and to continuous or discrete responses, including dichotomous
responses.

Real placebo can be used to implement SSs in practice. Alternatively, a virtual
placebo approach can be applied to the analysis of data from some CTs such as
the STAR*D study which did not speci�cally implement SSs in their protocol. As
illustrated with the STAR*D data, useful insights can also be obtained in such CTs.
This approach, however, cannot always be applicable if SSs are not implemented
in the study protocol. Theorem 4 supports the use of virtual placebo. A virtual
placebo approach can also be applied when real placebo is unethical or unfeasible.
In such cases, appropriate SSs must be selected at the design stage of the CT.
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ASs are applicable if we can assume the subjects' health will not improve or
deteriorate rapidly should they remain under baseline conditions. In other words,
Y0,ω must measure a stable illness state. Having a stable illness is an inclusion
criterion of many clinical trials. Our approach is applicable to these trials. This
assumption, however, may not be applicable to some conditions such as advanced
cancer or mental illness in acute state.

Our model does not include stage-dependent variables other than the investi-
gated MBTs. The reason is that CTs are highly controlled experiments that at-
tempt maintaining other variables a�ecting the response constant during the study.
Therefore, in a well-conducted CT, the response Y should be a function only of
both MBTs administered during the CT and baseline covariates. For instance, it
is well known that smoking a�ects the metabolism of some neurotropic drugs (e.g.
Botts, Diaz, Santoro, Spina, Muscatello, Cogollo, Castro & de Leon 2008). In a
CT investigating these drugs, a subject quitting smoking (or starting smoking)
during the CT is usually considered a protocol violation. Therefore, data from
this subject is not included in data analyses. Thus, although it would be easy to
incorporate in our model stage-dependent covariates other than those proposed in
this article, doing so would be just a mere academic exercise that is inconsistent
with the principles of CTs.

Note also that variables changing as a result of the investigated MBTs should
not be treated as independent variables in ASs, because ASs account for the e�ects
of treatments applied in one stage on subsequent stages. Thus, for instance, if a 1-
stage treatment changed the value of a mediating variable that ultimately a�ected
Y2,ω, the corresponding 1-to-2 transition covariate will be signi�cant. This means
that we do not need to include the mediating variable as independent variable.

Our approach based on SSs poses an interesting question: when Theorem 3
guarantees that two or more alternative sets of SSs will produce a design matrix
of full rank, which set will produce the lowest standard errors for the estimates of
the regression coe�cients? This open problem needs to be investigated by future
research.

If the value of Y is missing for some stages, the corresponding rows of V can
be eliminated accordingly. In such case, the assumption of missingness at random
must be made, as we did to �t an AS to the STAR*D data.
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Appendix A. Proofs of Theorems

Some proofs utilize the following convenient matrix notation. If ai, i = 1, . . . , n,
is a sequence of scalars or matrices, the matrix [a1, . . . , an] is denoted with ∃ni=1ai,

and the matrix
[
aT1 , . . . , a

T
n

]T
is denoted with ∃i=1

n ai. The symbols ∃i and ∃i are
read �stack right� and �stack down�, respectively. For simplicity, for a constant
number or matrix a, we denote ∃na = ∃ni=1a = [a, . . . , a] and ∃na = ∃i=1

n a =[
aT , . . . , aT

]T
, in which a is repeated n times.

Proof of Theorem 1. Observe that, in general, if aaaij and bbbij are column vectors
of the same dimension, then

r0∑
i=1

ri∑
j=1

aaaTijbbbij =
(
∃r0i=1∃

ri
j=1aaa

T
ij

) (
∃r0i=1∃

ri
j=1bbb

T
ij

)T
Then, by Fubini's theorem,

r∑
i=1

r∑
h=i

aaaTihbbbih =

r∑
h=1

h∑
i=1

aaaTihbbbih =
(
∃rh=1∃hi=1aaa

T
ih

) (
∃rh=1∃hi=1bbb

T
ih

)T
(4)

Fix r and k, where r = 1, . . . , q, and k ∈ {0, 1, . . . , r} (real placebo) or k ∈
{0,m(S),m(S) + 1, . . . , r} (virtual placebo). Denote τik ,ω =

∑r
h=i I{h=k}Siβββih,ω ,

where I{h=k} = 1 if h = k, or I{h=k} = 0 if h 6= k. Observe that τik ,ω = 0 if i > k
and τik ,ω = Siβββik ,ω if i ≤ k. Thus,

k∑
i=1

Siβββik ,ω =

r∑
i=1

τik ,ω (5)

Now de�ne the row vectors TTT ∗k = ∃rh=1

(
∃hi=1(I{h=k}Si)

)
, k = 0, . . . , r, and observe

that the �rst row of V is

[
TTT ∗0,

⇀
000
⇀
000
⇀
000

]
, where

⇀
000
⇀
000
⇀
000 is a row vector of zeros of dimension

mq −mr. And, for j ≥ 2, the j-th row of V is

[
TTT ∗k,

⇀
000
⇀
000
⇀
000

]
with k = j − 2 + m(S).

Also note that δδδ
(q)
ω = ∃qh=1

(
∃hi=1βββ

T
ih,ω

)
Therefore, by equations (1), (4) and (5),
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Eω [Yk,ω] = g−1

(
αω + λλλTXXXω +

k∑
i=1

Siβββik ,ω

)
= g−1

(
αω + λλλTXXXω +

r∑
i=1

τik ,ω

)

= g−1

(
αω + λλλTXXXω +

r∑
i=1

r∑
h=i

I{h=k}Siβββih,ω

)

= g−1
(
αω + λλλTXXXω + TTT ∗k(δδδ(r)ω )T

)
= g−1

(
αω + λλλTXXXω +

[
TTT ∗k,

⇀
000
⇀
000
⇀
000

]
(δδδ(q)ω )T

)
De�nition A.1 To prove Theorem 2, we need to de�ne a new binary matrix
operation. For a matrix A with rows Ai, i = 1, . . . , n, and a matrix B with rows Bj ,

j = 1, . . . , k, de�ne the new �product� of A and B as A ∗B = ∃j=1
k

(
∃i=1
n [Ai, Bj ]

)
,

where [Ai, Bj ] is a row vector that contains from left to right the elements of the
i-th row of A �rst, and then those of the j-th row of B. Observe that A ∗ B has
n · k rows.

Lemma A.1. (Used in proof of Theorem 2.) Let A be an n×p matrix. Let Ik be
the k × k identity matrix. Let Jn be an n× 1 vector with ones in all its entries.
If there exists a p× 1 vector c such that Ac = Jn, then ρ (A ∗ Ik) = ρ(A) + k − 1
for all k ≥ 1, where ∗ is the product de�ned in De�nition A.1.

Proof of Lemma A.1. Let Ai and Bi denote the i-th rows of A and Ik, respec-
tively. We will reduce A ∗ Ik into echelon form by using both elementary row and
column transformations. Let 0k = (0, . . . , 0) denote a row with k zeros. (Here, the
symbol � ⇐⇒ � is read �has the same rank as�, and numbers above this symbol
refer to explanations below.) Then,
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A ∗ Ik =



A1 B1

A2 B1

...
...

An B1

- - - - -

A1 B2

A2 B2

...
...

An B2

- - - - -
...

- - - - -

A1 Bk
A2 Bk
...

...

An Bk



1⇐⇒



B1 A1

B1 A2

...
...

B1 An
- - - - -

B2 A1

B2 A2

...
...

B2 An
- - - - -

...

- - - - -

Bk A1

Bk A2

...
...

Bk An



2⇐⇒



B1 A1

B1 −B1 A2 −A1

...
...

B1 −B1 An −A1

- - - - - - - - - - - -

B2 A1

B2 −B2 A2 −A1

...
...

B2 −B2 An −A1

- - - - - - - - - - - -
...

- - - - - - - - - - - -

Bk A1

Bk −Bk A2 −A1

...
...

Bk −Bk An −A1


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=



B1 A1

0k A2 −A1

...
...

0k An −A1

- - - - - - - - -

B2 A1

0k A2 −A1

...
...

0k An −A1

- - - - - - - - -
...

- - - - - - - - -

Bk A1

0k A2 −A1

...
...

0k An −A1



3⇐⇒



B1 A1

B2 A1

...
...

Bk A1

- - - - - - - - -

0k A2 −A1

...
...

0k An −A1

- - - - - - - - -

0k A2 −A1

...
...

0k An −A1

- - - - - - - - -
...

- - - - - - - - -

0k A2 −A1

...
...

0k An −A1



4⇐⇒



B1 A1

B2 A1

...
...

Bk A1

- - - - - - - - -

0k A2 −A1

...
...

0k An −A1

- - - - - - - - -

0k 0p
...

...

0k 0p
- - - - - - - - -

...

- - - - - - - - -

0k 0p
...

...

0k 0p



5⇐⇒



B1 A1

B2 A1

...
...

Bk A1

- - - - - - - - -

0k A2 −A1

...
...

0k An −A1


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⇐⇒



B1 A1

B1 −B2 0p
...

...

B1 −Bk 0p
- - - - - - - - -

0k A2 −A1

...
...

0k An −A1


6⇐⇒



B1 A1

B1 −B2 0p
...

...

B1 −Bk 0p
- - - - - - - - -

B1 A2

...
...

B1 An


7⇐⇒ ∆,

where ∆ =



B1 −B2 0p
...

...

B1 −Bk 0p
- - - - - - - - -

B1 A1

B1 A2

...
...

B1 An


=



1 −1 · · · 0 | 0p
...

...
...

... |
...

1 0 · · · −1 | 0p
- - - - - - - - - - - - - - - - - -

1 0 · · · 0 | A1

1 0 · · · 0 | A2

...
...

...
... |

...

1 0 · · · 0 | An


.

where ∆ is a matrix with dimension {k−1+n}×{k+p}. Above, 1⇐⇒ is obtained

by switching columns;
2⇐⇒ is obtained by subtracting the �rst row of the block

from the other block's rows;
3⇐⇒ by moving the �rst row of each block to the

upper part of the matrix;
4⇐⇒ by subtracting the second block from the blocks

below it;
5⇐⇒ by deleting rows with zeroes;

6⇐⇒ by adding �rst row to rows in

second block; and
7⇐⇒ by putting �rst row at top of second block.

Now observe that the last p columns of ∆ constitute the matrix

H =


0p
...

0p
- - -

A


{k−1+n}×p

By hypothesis, Jk−1+n − Hc = Jk−1+n −
(

0Tk−1
Jn

)
=

(
Jk−1
0Tn

)
. Also, the �rst

column of ∆ is Jk−1+n. By replacing the �rst column of ∆ with the column
Jk−1+n − Hc, which can be viewed as a sequence of elementary column transfor-
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mations on matrix ∆, we obtain that A ∗ Ik has the same rank as

1 −1 · · · 0 | 0p
...

...
...

... |
...

1 0 · · · −1 | 0p
- - - - - - - - - - - - - - - - - -

0 0 · · · 0 | A1

0 0 · · · 0 | A2

...
...

...
... |

...

0 0 · · · 0 | An


The rank is ρ(A) + k − 1.

Proof of Theorem 2. If subject ω underwent sequence S, denote Wω = W (S),

ω = 1, . . . , N . Denote Q =
(
W

T

1 , . . . ,W
T

N

)T
. Clearly, for �xed i, all subjects

who experienced sequence S(i) have the same matrix W . Note that ρ(D) = ρ
(
Q
)

because, for any ω = 1, . . . , N , there exists i = 1, . . . , d such that Wω = W
(
S(i)

)
and, for any i, there exists ω such that Wω = W

(
S(i)

)
, which imply that any row

in Q is equal to some row in D, and any row in D is equal to some row in Q .

Suppose �rst that

C = {A1,1, ..., A1,l1} × {A2,1, ..., A2,l2} × · · · ×
{
Aq,1, ..., Aq,lq

}
(6)

that is, that all possible decision combinations occur but Ϙ does not occur at

any stage. Then, d =
∏q
i=1 li. Denote a0 = d, aj = d

/∏j
i=1 li , j = 1, . . . , q;

and G0 =∃a01, G1 = ∃a1Il1 , G2 = ∃a2 {Il1 ∗ Il2}, G3 = ∃a3 {(Il1 ∗ Il2) ∗ Il3}, . . .,
and Gq = ∃aq

{
(· · · ((Il1 ∗ Il2) ∗ Il3) ∗ · · · ) ∗ Ilq

}
, where ∗ is the product de�ned in

De�nition A.1. Then, the rows of D can be rearranged as

D∗ =


G0

⇀
0
⇀
0
⇀
0 . . .

⇀
0
⇀
0
⇀
0

⇀
1
⇀
1
⇀
1 G1 . . .

⇀
0
⇀
0
⇀
0

...

...

...
...

. . .
...

⇀
1
⇀
1
⇀
1

⇀
0
⇀
0
⇀
0

⇀
0
⇀
0
⇀
0 Gq


{d(q+1)}×mq

where the
⇀
111
⇀
111
⇀
111 's are column vectors with only ones, not all of the same dimension. By

Lemma A.1, ρ (G0) = 1, ρ (G1) = l1 and ρ (Gj) = l1 +
∑j
i=2 (li − 1), j = 2, . . . , q.

Hence, if C satis�es equation (6),

ρ
(
Q
)

= ρ(D) = ρ (D∗) =
∑q
j=0 ρ (Gj) = 1 +mq − q(q − 1)/2 < 1 +mq

(Recall that q ≥ 2.)

Now note that if S is not skip for any S ∈ C, and if there exists S ∈ C such
that S ∈ A∗r for some r < q, that is, if at least one subject did not receive a q-stage
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treatment, then the number of rows of D is ≤ d(q + 1); or if S ∈ A∗q for all S ∈ C
but the number of sequences in C is ≤

∏q
i=1 li, then the number of rows of D is

also ≤ d(q + 1). In both situations, ρ
(
Q
)
≤ 1 +mq − q(q − 1)/2.

But, K is of full rank if and only if ρ(K) = 1+p+mq. This implies that K will
not be of full rank if ρ(K) = ρ

(
Q
)

+ p but S is not skip for any S ∈ C, because,
in such case, ρ(K) ≤ 1 + p+mq − q(q − 1)/2. In particular, if ρ(K) = ρ

(
Q
)

+ p
and C satis�es equation (6), then ρ(K) = 1 + p + mq − q(q − 1)/2, which is the
maximum possible rank of K when no subject experiences a skip sequence.

Proof of Theorem 3. By reorganizing the rows of D1 and subtracting rows from
their duplicates, and then eliminating rows with only zeros, we obtain

D1 ⇐⇒



1
⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 Il1

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 ∃i=1

c

(
S
〈i〉
1 , S

〈i〉
2

) ⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 ∃i=1

c

(
S
〈i〉
1 , S

〈i〉
2 , S

〈i〉
3

)
· · ·

⇀
000
⇀
000
⇀
000

...
...

...
...

. . .
...

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · · ∃i=1

c

(
S
〈i〉
1 , . . . , S

〈i〉
q

)


where Ili is the li × li identity matrix, the

⇀
0
⇀
0
⇀
0 's represent matrices of zeros, and,

as before, the � ⇐⇒ � is read �has the same rank as�. [We obtained Il1 in

place of ∃i=1
c S

〈i〉
1 in the above matrix because of the assumption that every 1-

stage treatment is implemented in the �rst stage of at least one of the sequences
S〈1〉, . . . , S〈c〉.]

By applying elementary row operations to ∃i=1
c

(
S
〈i〉
1 , S

〈i〉
2

)
, we can obtain an

echelon matrix E2 which has the form

E2 =

 Il1 B12
⇀
000
⇀
000
⇀
000 C2
⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000


where C2 is also a row echelon matrix. Noting that the number of columns of
C2 is l2, let τ2 = l2 − ρ (C2), and let w2,1 < · · · < w2,τ2 be the indices of the
columns of C2 that do not have a pivot. Recall that the rank of a matrix is equal
to the number of columns minus the number of columns without pivots. Clearly,
1 ≤ w2,1 < · · · < w2,τ2 ≤ l2.

For i = 2, . . . , q and j = 1, . . . , li, consider the family of skip sequences,

F(i, j) = F (Ai,j) =
{

(S1, . . . , Sq) ∈ A∗q ;Si = Ai,j and Sk = Ϙ for k < i
}
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A particular sequence in F(i, j) will be denoted F(i, j, ∗). If F(i, j, ∗) = (S1, . . . , Sq),
we denote F(i, j, ∗)t = (S1, . . . , St) for 1 ≤ t ≤ q.

Now take τ2 skip sequences F (2, w2,1, ∗) , . . . ,F (2, w2,τ2 , ∗) from F (2, w2,1) , . . . ,
F (2, w2,τ2), respectively, and consider the matrix

M2 =

 ∃i=1
c

(
S
〈i〉
1 , S

〈i〉
2

)
- - - - - - - - - - -

∃j=1
τ2 F (2, w2,j , ∗)2


By using elementary row operations,

M2 ⇐⇒

 E2

- - - - - - - - - - - -

∃j=1
τ2 F (2, w2,j , ∗)2

 ⇐⇒ E′2:=

 Il1 B12
⇀
000
⇀
000
⇀
000 Il2
⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000


because ∃j=1

τ2 F (2, w2,j , ∗)2 has 1's only in its columns l1 +w2,1 < · · · < l1 +w2,τ2 ,
which are matched with the columns of C2 that do not have a pivot after converting
the upper part ofM2 into E2. Then, ρ (M2) = l1+l2. Now observe that, by starting
with the same elementary row operations used to obtain E2, we can obtain

∃i=1
c

(
S
〈i〉
1 , S

〈i〉
2 , S

〈i〉
3

)
⇐⇒ E3:=


Il1 B12 B13
⇀
000
⇀
000
⇀
000 C2 B23
⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 C3

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000


where C3 is row echelon. Denoting τ3 = l3 − ρ (C3), let w3,1 < · · · < w3,τ3 be the
columns of C3 that do not have a pivot. Now take τ3 sequences F (3, w3,1, ∗) , . . .,
F (3, w3,τ3 , ∗) from F (3, w3,1) , . . ., F (3, w3,τ3), respectively. By using elementary
row operations, we obtain

M3:=


∃i=1
c

(
S
〈i〉
1 , S

〈i〉
2 , S

〈i〉
3

)
- - - - - - - - - - - -

∃j=1
τ2 F (2, w2,j , ∗)3
- - - - - - - - - - - -

∃j=1
τ3 F (3, w3,j , ∗)3

 ⇐⇒


E3

- - - - - - - - - - - -

∃j=1
τ2 F (2, w2,j , ∗)3
- - - - - - - - - - - -

∃j=1
τ3 F (3, w3,j , ∗)3



⇐⇒



Il1 B12 B13
⇀
000
⇀
000
⇀
000 Il2 B23
⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 C3

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

- - - - - - - - - - - -

∃j=1
τ3 F (3, w3,j , ∗)3


⇐⇒


Il1 B12 B13
⇀
000
⇀
000
⇀
000 Il2 B23
⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 Il3

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000


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where the second equivalence was obtained by using row operations analogous
to those used to obtain E′2, and the third equivalence is because the 1's of ∃j=1

τ3
F (3, w3,j , ∗)3 are aligned vertically with the columns of C3 that do not have a
pivot. Then, ρ (M3) = l1 + l2 + l3.

Thus, working iteratively in this way, we can construct q − 1 sequences of
numbers, namely wi,1 < · · · < wi,τi , i = 2, . . . , q, and matrices of the form

Mk:=

 ∃i=1
c

(
S
〈i〉
1 , . . . , S

〈i〉
k

)
- - - - - - - - - - - - - - -

∃h=2
k ∃j=1

τh F (h,wh,j , ∗)k

 , k = 2, . . . , q,

such that ρ (Mk) = l1 + · · ·+ lk. By construction, since Γ = ∃i=1
c

(
S
〈i〉
1 , . . . , S

〈i〉
q

)
,

a conversion of Γ into a row echelon matrix shows that ρ(Γ) =
∑q
i=1 li − τ , where

τ =
∑q
i=2 τi.

Now observe that, for all i = 2, . . . , q and j = 1, . . . , li,

W (F(i, j, ∗)) =



1
⇀
000
⇀
000
⇀
000mi−1

⇀
000
⇀
000
⇀
000mi−mi−1

⇀
000
⇀
000
⇀
000mi+1−mi

⇀
000
⇀
000
⇀
000mi+2−mi+1

. . .
⇀
000
⇀
000
⇀
000mq−mq−1

1
⇀
000
⇀
000
⇀
000mi−1

F(i, j, ∗)i
⇀
000
⇀
000
⇀
000mi+1−mi

⇀
000
⇀
000
⇀
000mi+2−mi+1 . . .

⇀
000
⇀
000
⇀
000mq−mq−1

1
⇀
000
⇀
000
⇀
000mi−1

⇀
000
⇀
000
⇀
000mi−mi−1

F(i, j, ∗)i+1

⇀
000
⇀
000
⇀
000mi+2−mi+1

· · ·
⇀
000
⇀
000
⇀
000mq−mq−1

1
⇀
000
⇀
000
⇀
000mi−1

⇀
000
⇀
000
⇀
000mi−mi−1

⇀
000
⇀
000
⇀
000mi+1−mi F(i, j, ∗)i+2 · · ·

⇀
000
⇀
000
⇀
000mq−mq−1

...
...

...
...

...

...

...
. . .

...

1
⇀
000
⇀
000
⇀
000mi−1

⇀
000
⇀
000
⇀
000mi−mi−1

⇀
000
⇀
000
⇀
000mi+1−mi

⇀
000
⇀
000
⇀
000mi+2−mi+1

. . . F(i, j, ∗)q



where
⇀
000
⇀
000
⇀
000 k is a row vector of zeros of dimension k, and the dimension ofW (F(i, j, ∗))

is (q − i+ 2)× (mq + 1).

Then, reordering rows,

D =



D1

- - - - - - - - - - - -

∃j=1
τ2 W (F (2, w2,j , ∗))
∃j=1
τ3 W (F (3, w3,j , ∗))

...

∃j=1
τq W (F (q, wq,j , ∗))


⇐⇒
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

1
⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 Il1

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 ∃i=1

c

(
S
〈i〉
1 , S

〈i〉
2

) ⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 ∃i=1

c

(
S
〈i〉
1 , S

〈i〉
2 , S

〈i〉
3

)
· · ·

⇀
000
⇀
000
⇀
000

...
...

...
...

. . .
...

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · · ∃i=1

c

(
S
〈i〉
1 , . . . , S

〈i〉
q

)
− − - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 ∃j=1

τ2 F (2, w2,j , ∗)2
⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 ∃h=2

3 ∃j=1
τh F

(
h,wh,j , ∗

)
3

· · ·
⇀
000
⇀
000
⇀
000

...
...

...
...

. . .
...

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · · ∃h=2

q ∃j=1
τh F

(
h,wh,j , ∗

)
q


We �nally obtain

D ⇐⇒



1
⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 Il1

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 M2

⇀
000
⇀
000
⇀
000 · · ·

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 M3 · · ·

⇀
000
⇀
000
⇀
000

...
...

...
...

. . .
...

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000

⇀
000
⇀
000
⇀
000 · · · Mq


and conclude that ρ(D) = 1 + l1 +

∑q
i=2 ρ (Mi) = 1 + mq, which is equal to the

number of columns of D. Thus, with the selected skip sequences, D is of full rank.

Proof of Theorem 4. By Theorem 1, Eω[YYY
(r)
ω (S)] = g−1 (W (S,XXXω)γγγω), and

similarly for T . By the Interchangeability Assumption, YYY
(r)
ω (S) and YYY

(t)
ω (T ) have

the same distribution. Hence, Eω[YYY
(r)
ω (S)] = Eω[YYY

(t)
ω (T )]. Then,

g−1 (W (S,XXXω)γγγω) = g−1 (W (T,XXXω)γγγω) .

Appendix B. Examples of Antichronic Systems with
a Full-Rank Design Matrix

Example B.1. Consider the simplest ASs, which occur when q = 2 and l1 =
l2 = 2. In this case, A∗q includes only four non-skip sequences, namely: S〈1〉 =

(A1,1, A2,1), S〈2〉 = (A1,1, A2,2), S〈3〉 = (A1,2, A2,1), and S〈4〉 = (A1,2, A2,2), for
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which

W
(
S〈1〉

)
=

 1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 0 0 1 0 1 0


W
(
S〈2〉

)
=

 1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 0 0 1 0 0 1


W
(
S〈3〉

)
=

 1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 0 0 0 1 1 0


and W

(
S〈4〉

)
=

 1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 0 0 0 1 0 1


Suppose that C1 =

{
S〈1〉, . . . , S〈4〉

}
is an antichronic system. By Theorem 2, an

estimator of E[γγγγγγγγγ] cannot be computed if only the sequences in C1 are implemented
in a CT, even if each sequence in C1 is administered to at least one subject, because,
in this case, mq = 6, q(q−1)/2 = 1 and ρ(K) = p+6 < p+7 (see proof of Theorem
2); that is, the study design matrix will never be of full rank. Only two SSs are
possible, namely S〈5〉 = (Ϙ, A2,1) and S〈6〉 = (Ϙ, A2,2), for which, respectively,

W
(
S〈5〉

)
=

(
1 0 0 0 0 0 0

1 0 0 0 0 1 0

)
and W

(
S〈6〉

)
=

(
1 0 0 0 0 0 0

1 0 0 0 0 0 1

)

Thus, for q = l1 = l2 = 2, the design matrix will be of full rank for some systems
including at least one SS, provided each sequence of the system is administered to
at least one subject. Examples of such systems are

C2 = C1 ∪
{
S〈5〉

}
; C3 = C1 ∪

{
S〈6〉

}
; C4 = C1 ∪

{
S〈5〉, S〈6〉

}
, and

C5 =
{
S〈1〉, S〈2〉, S〈3〉, S〈5〉

}
To show that the design matrix is of full rank for C5, say, just observe that the rank
of [W

(
S〈1〉

)T
,W

(
S〈2〉

)T
,W

(
S〈3〉

)T
,W

(
S〈5〉

)T
]T is 7. Mathematical software

such as Mathematica (Wolfram Research, Inc.), or the calculator TI-Nspire CX
CAS (Texas Instruments Inc.) are helpful in these rank computations.

Example B.2. Now suppose that q = 3 and l1 = l2 = l3 = 2. Here, A∗q includes

8 possible non-skip sequences (see Figure 2). For instance, in the Figure, S〈3〉 =
(A1,1, A2,2, A3,1). Consider the skip sequences S〈9〉 = (Ϙ, Ϙ, A3,2) and S〈10〉 =
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Figure 2: Graphical representation of all possible non-skip sequences with q = 3 and
l1 = l2 = l3 = 2.

Stage 1  Stage 2  Stage3  Sequence   

 

       A3,1  S< 1 >  

     A2,1 

       A3,2  S< 2 >  

A1,1     

       A3,1  S< 3 > 

     A2,2 

       A3,2  S< 4 >  

 

       A3,1  S< 5 >  

     A2,1

       A3,2  S< 6 >  

A1,2     

       A3,1  S< 7 > 

     A2,2 

       A3,2  S< 8 >  

 

 

 
(Ϙ, A2,2, A3,1). To illustrate,

W
(
S〈3〉

)
=


1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 1 1 0


W
(
S〈9〉

)
=

(
1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1

)

W
(
S〈10〉

)
=

 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 1 0


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If C1 =
{
S〈1〉, . . . , S〈8〉

}
, the design matrix will be of full rank for the systems

C2 = C1 ∪
{
S〈9〉, S〈10〉

}
and C3 =

{
S〈1〉, S〈3〉, . . . , S〈7〉

}
∪
{
S〈9〉, S〈10〉

}
provided each sequence in the system is administered to at least one subject. Other
systems for which the design matrix is of full rank are possible when both q = 3
and l1 = l2 = l3 = 2. For instance, in the de�nition of S〈10〉 in C2, A2,1 could be
used in place of A2,2.

Appendix C. Description of Supplementary
Material (Computer Code)

The author wrote a Stata command (asdesign) which creates the design matrix
using three input variables: the subject identi�er, the stage and the treatment
variables. A help �le for asdesign is also included, which additionally shows code
for �tting antichronic systems.

The included �les are:

asdesign.ado: Stata program that runs as a regular command.

asdesign.sthlp: Help �le for asdesign.

Instructions for asdesign.docx: Word �le with instructions to install
asdesign.

The above �les are available from the author on request.
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