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Abstract

We propose a new family of distributions called the exponentiated Kuma-
raswamy-G class with three extra positive parameters, which generalizes the
Cordeiro and de Castro's family. Some special distributions in the new class
are discussed. We derive some mathematical properties of the proposed
class including explicit expressions for the quantile function, ordinary and
incomplete moments, generating function, mean deviations, reliability, Rényi
entropy and Shannon entropy. The method of maximum likelihood is used to
�t the distributions in the proposed class. Simulations are performed in or-
der to assess the asymptotic behavior of the maximum likelihood estimates.
We illustrate its potentiality with applications to two real data sets which
show that the extended Weibull model in the new class provides a better �t
than other generalized Weibull distributions.

Key words: BFGS method; Exponential distribution; Exponentiated Kuma-
raswamy-G; Kumaraswamy distribution; Maximum likelihood estimation.

aPhD. E-mail: ronaldovenanciorvs@gmail.com
bPhD. E-mail: franksinatrags@gmail.com
cPhD. E-mail: wallace.ifpb@gmail.com
dPhD. E-mail: gauss@de.ufpe.br
ePhD. E-mail: pedro.rafael.marinho@gmail.com
fPhD. E-mail: thiagoan.andrade@gmail.com

1



2 Silva, Gomes-Silva, Ramos, Cordeiro, Marinho and Andrade

Resumen

Proponemos una nueva clase de distribuciones llamada la clase de Kuma-
raswamy-G exponenciada con tres parámetros positivos adicionales, que gen-
eraliza la familia de Cordeiro y de Castro. Se discuten algunas distribuciones
especiales en la nueva clase. Derivamos algunas propiedades matemáticas de
la clase propuesta, incluyendo expresiones explícitas para la función cuartil,
momentos ordinarios e incompletos, función generadora, desviaciones me-
dias, con�abilidad, entropía de Rényi y entropía de Shannon. El método de
máxima verosimilitud se utiliza para ajustar las distribuciones en la clase
propuesta. Se realizaron simulaciones para evaluar el comportamiento asin-
tótico de las estimaciones de máxima verosimilitud. Ilustramos su potencial-
idad con dos aplicaciones a dos conjuntos de datos reales que muestra que el
modelo extendido de Weibull en la nueva clase proporciona un mejor ajuste
que otras distribuciones generalizadas de Weibull.

Palabras clave: Distribución exponencial; Distribución Kumaraswamy; Es-
timación de máxima verosimilitud; Kumaraswamy-G Exponenciada; Método
BFGS.

1. Introduction

One of the preferred area of research in the �led of distribution is that of ge-
nerating new distributions starting with a baseline distribution by adding one
or more additional parameters. A generalized distribution may be important
because it is connected with other special distributions in interesting ways (via
transformations, limits, conditioning, etc.). In some cases, a parametric family
may be important because it can be used to model a wide variety of random phe-
nomena. In many cases, a special parametric family of distributions will have
one or more distinguished standard members, corresponding to speci�ed values
of some of the parameters. Usually the standard distributions will be math-
ematically simpler, and often other members of the family can be constructed
from the standard distributions by simple transformations on the underlying stan-
dard random variable. An incredible variety of special distributions have been
studied over the years, and new ones are constantly being added to the lite-
rature. Notable among them are the Azzalini's skewed family (Azzalini 1985),
Marshall-Olkin extended (MOE) family (Marshall & Olkin 1997), exponentiated
family of distributions (Gupta, Gupta & Gupta 1998), or the composite meth-
ods of combining two or more known competing distributions through transfor-
mations like beta generated family (Eugene, Lee & Famoye 2002, Jones 2004),
gamma-generated familiy (Zografos & Balakrishnan 2009, Ristic & Balakrishnan
2012), Kumaraswamy-G (Kw-G) family (Cordeiro & de Castro 2011), McDonald-
G family (Alexander, Cordeiro, Ortega & Sarabia 2012), beta extended-G fa-
mily (Cordeiro, Silva & Ortega 2012), Kumaraswamy-beta generalized family
(Pescim, Cordeiro, Demetrio, Ortega & Nadarajah 2012), exponentiated trans-
formed transformer family (Alzaghal, Felix & Carl 2013), exponentiated gene-
ralized family (Cordeiro, Ortega & Cunha 2013), geometric exponential-Poisson
family (Nadarajah, Cancho & Ortega 2013), truncated-exponential skew sym-
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metric family (Nadarajah, Jayakumar & Ristic 2013), logistic generated family
(Torabi & Montazari 2014), Kumaraswamy Marshall-Olkin-G family (Alizadeh,
Tahir, Cordeiro, Zubair & Hamedani 2015), generalized gamma-Weibull distri-
bution (Meshkat, Torabi & Hamedani 2016), generalized odd log-logistic family
(Cordeiro, Alizadeh, Tahir, Mansoor, Bourguignon & G. 2017), generalized transmuted-
G family (Nofal, A�fy, Yousof & Cordeiro 2017) and odd Lindley-G family (Gomes-
Silva, Percontini, Brito, Ramos, Silva & Cordeiro 2017). While the additional
parameter(s) bring in more �exibility at the same time they also complicate the
mathematical form of the resulting distribution, often considerably enough to ren-
der it not amenable to further analytical and numerical manipulations. But with
the advent of sophisticated powerful mathematical and statistical softwares more
complex distributions are getting accepted as useful models for data analysis.
Tahir & Nadarajah (2015) provided a detail review of how new families of univari-
ate continuous distributions can be generated through introduction of additional
parameter(s).

Cordeiro & de Castro (2011) de�ned the Kw-G family as follows. If G(x)
denotes the cumulative distribution function (cdf) of a random variable, the Kw-
G cdf family is

Ha,b(x) = 1−
[
1−Ga(x)

]b
, (1)

where a > 0 and b > 0 are two additional shape parameters to the G distribution,
whose role is to govern skewness and tail weights. The cdf (1) compares extremely
favorably in terms of simplicity with the beta cdf. The probability density function
(pdf) corresponding to (1) is

ha,b(x) = a b g(x)Ga−1(x)
[
1−Ga(x)

]b−1
, (2)

where g(x) = dG(x)/dx. Equation (2) does not involve any special function, such
as the incomplete beta function, as is the case of the beta-G family pionnered by
Eugene et al. (2002). So, the Kw-G family is obtained by adding two shape para-
meters a and b to the G distribution. The generalization (2) contains distributions
with unimodal and bathtub shaped hazard rates. It also contemplates a broad
class of models with monotonic hazard rate functions (hrf's).

In this paper, we de�ne a new class of distributions that extends the Kw-G
family and derive some of its structural properties. Based on a continuous cdf
Ha,b(x) given by (1), the class of exponentiated Ha,b distributions is de�ned by

Fa,b,c(x) = Hc
a,b(x) =

{
1−

[
1−Ga(x)

]b}c
, (3)

where a > 0, b > 0 and c > 0 are three additional shape parameters to the G
distribution. The pdf corresponding to (3) is

fa,b,c(x) = a b c g(x)Ga−1(x)
[
1−Ga(x)

]b−1 {
1−

[
1−Ga(x)

]b}c−1
(4)

and the associated hrf reduces to

τa,b,c(x) =
a b c g(x)Ga−1(x)

[
1−Ga(x)

]b−1{
1−

[
1−Ga(x)

]b}c−1
1−

{
1−

[
1−Ga(x)

]b}c .
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The exponentiated Kw-G class (�EKw-G� for short) of densities (4) allows for
greater �exibility of its tails and can be widely applied in many areas of engineering
and biology. We study some structural properties of (4) because it extends several
well-known distributions in the literature. In the next sections some mathematical
properties of the new class are derived. The density function (4) will be most
tractable when the cdf G(x) and pdf g(x) have simple analytic expressions. Note
that even if g(x) is a symmetric distribution, the distribution f(x) will not be
symmetric. The three extra parameters in (4) can control both tail weights and
possibly adding entropy to the center of the EKw-G density function. Henceforth,
X ∼EKw-G(a, b, c) denotes a random variable having density function (4). Each
new EKw-G distribution can be obtained from a speci�ed G model. For a = b =
c = 1, the G distribution is a special model of the EKw-G class with a continuous
crossover towards cases with di�erent shapes (e.g., a particular combination of
skewness and kurtosis). Some cases of EKw-G have been discussed and explored
in recent works. Here, we refer to the papers and baseline distributions: Huang &
Oluyede (2014) for the Dagum, Rodrigues & Silva (2015) for the exponential and
Rodrigues, Silva & Hamedani (2016) for the inverse Weibull. One major bene�t
of the family (4) is its ability of �tting skewed data that can not be properly �tted
by existing distributions.

We de�ne the exponentiated-G (Exp-G) random variable Z with power pa-
rameter c > 0 from an arbitrary baseline distribution G, say Z ∼ ExpcG, if Z
has cdf and pdf given by Πc(x) = G(x)c and πc(x) = cg(x)G(x)c−1, respectively.
This model is also called the Lehmann type I distribution. Note that there is a
dual transformation Expc(1−G) referred to as the Lehmann type II distribution
corresponding to the cdf F (x) = 1− [1−G(x)]

c
. Thus, equation (3) encompasses

both Lehmann type I (ExpcG for a = b = 1) and Lehmann type II (Expc(1−G) for
a = c = 1) distributions (Lehmann 1953). Clearly, the triple construction Expc

{
1-

Expb
[
1-ExpaG

]}
generates the EKw-G class of distributions. Several properties

of the EKw-G class can be derived using this triple transformation.

The EKw-G class shares an attractive physical interpretation whenever a, b and
c are positive integers. Consider a device made of c independent components in a
parallel system. Further, each component is made of b independent subcomponents
identically distributed according to G(x)a in a series system. The device fails if
all c components fail and each component fails if any subcomponent fails. Let
Xj1, . . . , Xjc denote the lifetimes of the subcomponents within the jth component
(j = 1, . . . , b) with common cdf G(x). Let Xj denote the lifetime of the jth
component and let X denote the lifetime of the device. Thus, the cdf of X is given
by

P (X ≤ x) = P (X1 ≤ x, . . . ,Xc ≤ x) = P c(X1 ≤ x) = [1− P (X1 > x)]
c

=
{

1−
[
1− P (X1 ≤ x)

]}c
=
{

1−
[
1− P (X11 ≤ x, . . . ,X1b ≤ x)

]}c
=
{

1−
[
1− P (X11 ≤ x)

]b}c
=
{

1−
[
1− P (X111 ≤ x, . . . ,X11a ≤ x)

]b}c
=
{

1−
[
1− P a(X111 ≤ x)

]b}c
.
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So, the lifetime of the device follows the EKw-G family of distributions.

The rest of the paper is organized as follows. In Section 2, we present four
special models of the EKw-G class by extending the Weibull, Gumbel, gamma and
Burr XII distributions. Section 3 provides two useful expansions for the EKw-G
class. The quantile function and moments of X are derived in Sections 4 and 5,
respectively. Generating function and mean deviations are obtained in Sections
6 and 7, respectively. The Rényi and Shannon entropies and the reliability are
determined in Sections 8 and 9, respectively. Maximum likelihood estimation
is discussed in Section 10. In Section 11, we provide a simulation study. An
application to a real data set is performed in Section 12. Some concluding remarks
are addressed in Section 13.

2. Special Models

Next, we present four EKw-G distributions.

2.1. Exponentiated Kumaraswamy Weibull (EKwW)

The Weibull cdf with parameters β > 0 and α > 0 is G(x) = 1 − e−(βx)
α

(for
x > 0). The cdf of a random variable X having the EKwW distribution, say X∼
EKwW(a, b, c, α, β), can be expressed as

FEKwW(x) =
{

1−
[
1−

(
1− e−(βx)

α)a]b}c
,

and the associated density function reduces to

fEKwW(x) = a b c α βα xα−1 e−(βx)
α[

1− e−(βx)
α]a−1 {

1−
[
1− e−(βx)

α]a}b−1
×

{
1−

[
1−

(
1− e−(βx)

α)a]b}c−1
. (5)

The hrf corresponding to (5) is given by

τEKwW(x) = a b c α βα xα−1 e−(βx)
α[

1− e−(βx)
α]a−1 {

1−
[
1− e−(βx)

α]a}b−1
×
{

1−
[
1−

(
1− e−(βx)

α)a]b}c−1
×
{

1−
[
1−

(
1−

[
1− e−(βx)

α]a)b]c}−1
.

For c = 1, we obtain as a special model the Kw-Weibull (KwW) distribution. The
most important case of (5) is the exponentiated Weibull (EW) (when b = c = 1)
pioneered by Mudholkar and Srivastawa (Mudholkar & Srivastava 1993). Plots
of the density and hrf of the EKwW distribution for some parameter values are
displayed in Figures 1 and 2, respectively.
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Figure 1: Plots of the EKwW density function for some parameter values.
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Figure 2: Plots of the EKwW hrf for some parameter values.

2.2. Exponentiated Kumaraswamy Gumbel (EKwGu)

The Gumbel cdf (for x real) is G(x) = exp
{
− exp

[
−
(
x−µ
σ

)]}
, where the

parameters are µ real and σ > 0. The EKwGu cdf can be expressed as

FEKwGu(x) =
{

1−
[
1− exp

(
− a

{
exp
[
−
(x− µ

σ

)]})]b}c
and the associated density function is

fEKwGu(x) = a b c σ−1 exp
{
−
(x− µ

σ

)
− a exp

[
−
(x− µ

σ

)]}
×
[
1− exp

{
− a exp

[
−
(x− µ

σ

)]}]b−1
×
{

1−
[
1− exp

(
− a exp

[
−
(x− µ

σ

)])]b}c−1
.

Plots of the EKwGu density function for some parameter values are displayed
in Figure 3.
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Figure 3: Plots of the EKwGu density function for some parameter values.

2.3. Exponentiated Kumaraswamy Gamma (EKwGa)

The gamma cdf (for x > 0) with shape parameter α > 0 and scale parameter
β > 0 is G(x) = γ(α, β x)/Γ(α), where Γ(α) =

∫∞
0
wα−1e−wdw is the gamma

function and γ(α, x) =
∫ x
0
wα−1e−wdw is the lower incomplete gamma function.

The EKwGa cdf can be written as

FEKwGa(x) =
{

1−
[
1−

(γ(α, β x)

Γ(α)

)a]b}c
,

and the associated density function reduces to

fEKwGa(x) =
a b c βα

Γ(α)
xα−1 e−β x

[γ(α, β x)

Γ(α)

]a−1 {
1−

[γ(α, β x)

Γ(α)

]a}b−1
×
{

1−
[
1−

(γ(α, β x)

Γ(α)

)a]b}c−1
.

The corresponding hrf is

τEKwGa(x) =
a b c βα

Γ(α)
xα−1 e−β x

[γ(α, β x)

Γ(α)

]a−1 {
1−

[γ(α, β x)

Γ(α)

]a}b−1
×
{

1−
[
1−

(γ(α, β x)

Γ(α)

)a]b}c−1
×
{

1−
[
1−

(
1−

[γ(α, β x)

Γ(α)

]a)b]c}−1
.

Plots of the pdf and hrf of the EKwGa distribution for some parameter values
are displayed in Figures 4 and 5, respectively.
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Figure 4: Plots of the EKwGa density function for some parameter values.
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Figure 5: Plots of the EKwGa hrf for some parameter values.

2.4. Exponentiated Kumaraswamy Burr XII (EKwBXII)

Zimmer, Keats &Wang (1998) introduced the three parameter Burr XII (BXII)

distribution with cdf and pdf (for x > 0): G(x; s, k, p) = 1 −
[
1 +

(
x
s

)p]−k
and

g(x; s, k, p) = p k s−p xp−1
[
1 +

(
x
s

)p]−k−1
, respectively, where k > 0 and p > 0

are shape parameters and s > 0 is a scale parameter. The EKwBXII cdf is

FEKwBXII(x) =
{

1−
[
1−

(
1−

[
1 +

(x
s

)p]−k)a]b}c
,

and the associated density function reduces to

fEKwBXII(x) = a b c p k s−p xp−1
[
1 +

(x
s

)p]−k−1 {
1−

[
1 +

(x
s

)p]−k}a−1
×
{

1−
(

1−
[
1 +

(x
s

)p]−k)a}b−1
×
{

1−
[
1−

(
1−

[
1 +

(x
s

)p]−k)a]b}c−1
.
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Figure 6: Plots of the EKwBXII density function for some parameter values.

The corresponding hrf is given by

τEKwBXII(x) = a b c p k s−p xp−1
[
1 +

(x
s

)p]−k−1 {
1−

[
1 +

(x
s

)p]−k}a−1
×
{

1−
(

1−
[
1 +

(x
s

)p]−k)a}b−1
×
{

1−
[
1−

(
1−

[
1 +

(x
s

)p]−k)a]b}c−1
×
{

1−
[
1−

(
1−

{
1−

[
1 +

(x
s

)p]−k}a)b]c}−1
.

Plots of the density and hrf of the EKwBXII distribution for some parameter
values are displayed in Figures 6 and 7, respectively.
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Figure 7: Plots of the EKwBXII hrf for some parameter values.
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3. Useful Expansions

The pdf (4) can be expressed as a linear combination of Kw-G density functions.
Using the generalized binomial expansion, we can rewrite (4) as

f(x) =

∞∑
j=0

vj ha,(j+1) b(x), (6)

where

vj = (−1)j
(
c− 1

j

)
, j = 0, 1, . . .

The cdf corresponding to (6) can be expressed as

F (x) =
∞∑
j=0

vj Ha,(j+1) b(x). (7)

Based on equations (6) and (7) some structural properties of the EKw-G class
can be obtained from well-established Kw-G properties. These equations can also
be expressed as linear combinations of Exp-G distributions. Substituting (2) in
equation (6) and using the binomial expansion, we obtain

f(x) =

∞∑
k=0

wk π(k+1) a(x), (8)

where

wk =
(−1)k b

k + 1

∞∑
j=0

(−1)j
(
c− 1

j

)(
(j + 1) b− 1

k

)
.

Integrating (8), we have

F (x) =

∞∑
k=0

wk Π(k+1)a(x), (9)

where Π(k+1) a(x) denotes the Exp-G cdf with power parameter (k + 1) a. Equa-
tion (8) reveals that the EKw-G density function is a linear combination of Exp-G
densities. Thus, some structural properties of the EKw-G class such as the ordi-
nary and incomplete moments and generating function can be obtained from well
known Exp-G properties.

Several Exp-G properties have been studied by many authors in recent years,
see Mudholkar and Srivastava (Mudholkar & Srivastava 1993) and Mudholkar
et al. (Mudholkar, Srivastava & Kollia 1996) for exponentiated Weibull, Gupta
et al. (Gupta et al. 1998) for exponentiated Pareto, Gupta and Kundu (Gupta
& Kundu 1999) for exponentiated exponential, Nadarajah (Nadarajah 2005) for
exponentiated Gumbel, Nadarajah and Gupta (Nadarajah & Gupta 2007) for
exponentiated gamma and Lemonte et al. (Lemonte, Barreto-Souza & Cordeiro
2013) for exponentiated Kumaraswamy distributions. See, also, Nadarajah and
Kotz (Nadarajah & Kotz 2006), among others. Equations (6)-(9) are the main
results of this section.
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4. Quantile Function

The EKw-G quantile function, say Q(u) = F−1(u), is straightforward to be
computed by inverting (3) provided a closed-form expression for the baseline quan-
tile function QG(u) = G−1(u) is available. From equation (3), we can write

Q(u) = QG

([
1−

(
1− u1/c

)1/b]1/a)
. (10)

For example, the EKwBXII quantile function comes by inverting the cdf in
Section 2.4 as

Q(u) = s
{(

1−
[
1−

(
1− u1/c

)1/b]1/a)−1
k − 1

} 1
p

. (11)

The shortcomings of the classical kurtosis measure are well-known. There
are many heavy-tailed distributions for which this quantile is in�nite. So, it be-
comes uninformative precisely when it needs to be. Indeed, our motivation to
use quantile-based measures stemmed from the non-existence of classical skewness
and kurtosis for several generalized distributions. The Bowley skewness (Kenney
& Keeping 1962) is based on quartiles

B =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
,

whereas the Moors kurtosis (Moors 1988) is based on octiles

M =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
,

where Q(·) denotes the quantile function given by (10). Plots of the B and M
functions for the EKwBXII distribution computed from (11) are displayed (for
some parameter values) in Figures 8 and 9, respectively. These plots indicate a
high dependence of these measures on the generator parameters of the new class.

Here, we derive a power series for the quantile function (10). If the baseline
quantile function QG(u) = G−1(u) does not have a closed-form expression, it can
usually be expressed in terms of a power series

QG(u) =

∞∑
i=0

ai u
i, (12)

where the coe�cients ai are suitably chosen real numbers which depend on the
parameters of the G distribution. For several important distributions, such as the
normal, Student t, gamma and beta distributions, QG(u) does not have explicit
expressions, but it can be expanded as in equation (12). As a simple example, for
the normal N(0, 1) distribution, ai = 0 for i = 0, 2, 4, . . . and a1 = 1, a3 = 1/6,
a5 = 7/120 and a7 = 127/7560, . . .
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Figure 8: The B function for s = 5.0, k =
7.0 and p = 2.0.
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Figure 9: The M function for s = 5.0,
k = 7.0 and p = 2.0.

Using the binomial expansion, we obtain

[
1− (1− u1/c)1/b

]i/a
=

∞∑
j,k=0

(−1)j+k
(
i/a

j

)(
j/b

k

)
uk/c,

and then using (12), the EKw-G quantile function can be expressed as

Q(u) =

∞∑
i,j,k=0

(−1)j+k ai

(
i/a

j

)(
j/b

k

)
uk/c =

∞∑
k=0

gk u
k/c, (13)

where

gk =

∞∑
i,j=0

(−1)j+k ai

(
i/a

j

)(
j/b

k

)
.

For 0 < u < 1, we have an expansion for uρ which holds for ρ > 0 real non-
integer

uρ =

∞∑
l=0

sl(ρ)ul, (14)

where

sl(ρ) =

∞∑
m=l

(−1)m+l

(
ρ

m

)(
m

l

)
.

Setting ρ = k/c in (14) and substituting in (13), we can write

Q(u) =

∞∑
k=0

gk

∞∑
l=0

sl(k/c)u
l =

∞∑
l=0

ql u
l, (15)

where ql =
∑∞
k=0 gk sl(k/c).

Equation (15) is the main result of this section since it allows to obtain vari-
ous mathematical quantities for the EKw-G class as proved in the next sections.
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The formula derived throughout the paper can be easily handled in most sym-
bolic computation software platforms such as Maple and Mathematica since they
have currently the ability to deal with analytic expressions of formidable size and
complexity. The in�nity limit in the sums can be substituted by a large positive
integer such as 20 or 30 for most practical purposes.

5. Moments

Hereafter, we shall assume that G is the cdf of a random variable Y and that
F is the cdf of a random variable X having density function (4). The moments of
X can be obtained from the (r, s) th probability weighted moments (PWMs) of Y
de�ned by

τr,s = E[Y r G s(Y )] =

∫ ∞
−∞

yr G s(y) g(y) dy.

An alternative formula for τr,s can be based on the baseline quantile function
QG(x) = G−1(x). Setting G(x) = u, we obtain

τr,s =

∫ 1

0

Q r
G(u)us du. (16)

We use throughout the paper a result of Gradshteyn and Ryzhik (Gradshteyn
& Ryzhik 2007) for a power series raised to a positive integer k (for k ≥ 1)( ∞∑

l=0

bl u
l

)k
=

∞∑
l=0

ck,l u
l, (17)

where the coe�cients ck,l (for l = 1, 2, . . .) are easily obtained from the recurrence
equation (with ck,0 = bk0)

ck,l = (l b0)−1
l∑

m=1

[m(k + 1)− l] bm ck,l−m. (18)

Clearly, ck,l can be determined from ck,0, . . . , ck,l−1 and then from the quantities
b0, . . . , bl.

We can write using (12), (17) and (18)

Q r
G(u) =

( ∞∑
i=0

ai u
i

)r
=

∞∑
i=0

er,i u
i, (19)

where er,i = (i a0)−1
∑i
m=1 [m(r + 1) − i] am er,i−m and er,0 = ar0 and then an

alternative expression for τr,s follows as

τr,s =

∞∑
i=0

er,i
i+ s+ 1

. (20)
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From equation (8), we can write

E(Xr) =

∞∑
k=0

pk τr,(k+1)a−1, (21)

where

pk = (−1)k a b c

∞∑
j=0

(−1)j
(
c− 1

j

)(
(j + 1) b− 1

k

)
.

Thus, the EKw-G moments can be expressed as an in�nite weighted sum of the
baseline PWMs. The ordinary moments of several EKw-G distributions can be
determined directly from equations (16) and (21). Expressions for moments of
several exponentiated distributions are given by Nadarajah and Kotz (Nadarajah
& Kotz 2006), which can be useful to produce E(Xr). Table 1 gives some values
from equation (21) for the EKw-exponential model (parameter λ) with di�erent
parameter values.

Table 1: The moments of EKw-exponential for (a = 2, b = 1 and c = 1) and some
values of r and λ.

λ 1 2 3 4

r

1 1.5 0.75 0.5 0.37

2 3.5 0.87 0.389 0.218

3 11.25 1.41 0.41 0.17

4 46.5 2.91 0.56 0.18

For lifetime models, it is usually of interest to compute the hth incomplete
moment of X de�ned by mh(z) =

∫ z
0
xh f(x)dx. The quantity mh(z) can be

calculated from (8) as

mh(z) =

∞∑
k=0

pk

∫ z

0

xh g(x)G(k+1) a−1(x) dx.

Setting u = G(x), we obtain

mh(z) =

∞∑
k=0

pk ϑh,k(z), (22)

where

ϑh,k(z) =

∫ G(z)

0

QhG(u)u(k+1) a−1 du.

The quantity ϑh,k(z) is available for some baseline distributions and can also
be computed numerically for most of them.
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6. Generating Function

The moment generating function (mgf) M(t) = E(etX) of X comes from (8)
as an in�nite weighted sum

M(t) =

∞∑
k=0

wkM(k+1) a(t),

where M(k+1) a(t) is the mgf of Y(k+1) a ∼ Exp-G((k + 1)a). Hence, M(t) can be
determined from the mgf of Y(k+1) a given by

M(k+1) a(t) = (k + 1) a

∫ ∞
0

etxg(x)G(x)(k+1)a−1dx.

Setting G(x) = u, we can write Mk(t) in terms of the baseline quantile function
QG(x)

M(k+1) a(t) = (k + 1) a

∫ 1

0

exp[tQG(u)]u(k+1)a−1du.

Now, we provide four representations for M(t). The �rst one comes from (8)
as

M(t) =

∞∑
k=0

wkM(k+1) a(t).

A second representation for M(t) is obtained from

f(x) = g(x)

∞∑
k=0

tkG
(k+1) a−1(x), (23)

where tk = (−1)k a b
∑∞
j=0(−1)j

(
c
j+1

)(
(j+1)b−1

k

)
. Thus,

M(t) = E
(
etX
)

=

∞∑
k=0

tk ξk(t; a),

where ξk(t; a) =
∫∞
−∞ etx g(x)G(k+1) a−1(x) dx.

Setting x = QG(u) = G−1(u) in (23), a third representation follows as

M(t) =

∞∑
k=0

tk ρ(k+1) a−1(t),

where

ρa(t) =

∫ 1

0

exp[tQG(u)]ua du.
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A fourth representation can be determined from (19) by expanding the expo-
nential function in the last equation

ρa(t) =

∞∑
n,i=0

en,i t
n

(i+ a+ 1)n!
.

The best representation to derive a closed-form expression for M(t) depends
essentially on the forms of the pdf, cdf and quantile function of G.

7. Mean Deviations

The mean deviations about the mean δ1(X) = E(|X − µ′1|) and about the
median δ2(X) = E(|X −M |) of X can be expressed as

δ1(X) = 2µ′1F (µ′1)− 2m1(µ′1) and δ2(X) = µ′1 − 2m1(M),

respectively, where µ′1 = E(X) comes from (21) with r = 1, F (µ′1) is easily
calculated from the cdf (3), m1(z) =

∫ z
0
x f(x)dx is the �rst incomplete moment

of X computed from (22) and M is the median calculated from (10) as

M = QG

{[
1−

(
1− 2

−1
c

) 1
b
] 1
a
}
. (24)

Applications of m1(z) include Bonferroni and Lorenz curves de�ned for a given
probability π by B(π) = m1(q)/(πµ′1) and L(π) = m1(q)/µ′1, respectively, where
q = Q(π) comes from (10).

8. Entropies

The entropy of a random variable X with density function f(x) is a measure
of variation of the uncertainty. Two popular entropy measures are due to Shannon
and Rényi (Shannon 1951, Rényi 1961). A large value of the entropy indicates the
greater uncertainty in the data. The Rényi entropy is de�ned by (for γ > 0 and
γ 6= 1)

IR(γ) =
1

1− γ
log

(∫ ∞
0

fγ(x)dx

)
.

Based on the pdf (4), the Rényi entropy of the EKw-G distribution is given by

JR(γ) =
1

1− γ
log

(∫ ∞
0

cγ hγa,b(x)H
(c−1)γ
a,b (x)dx

)
=

1

1− γ
log(cγ Ik),
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where

Ik =

∫ ∞
0

hγa,b(x)H
(c−1)γ
a,b (x)dx.

We can determine the Rényi entropy using the integral∫ ∞
0

fγ(x)dx = (a b c)γ
∫ ∞
0

gγ(x)G(a−1)γ(x)
[
1−Ga(x)

](b−1)γ
×

{
1−

[
1−Ga(x)

]b}(c−1)γ
dx

and then expanding the binomial and changing variables∫ ∞
0

fγ(x)dx = (a b c)γ
∞∑

j,k=0

(−1)j+k
(

(c− 1)γ

j

)(
(j + γ)b− γ

k

)
K(γ, k). (25)

Here, K(γ, k) denotes the integral

K(γ, k) =

∫ 1

0

gγ−1[QG(u)]u(k+γ) a−γ du,

which can be calculated for each G model. If γ > 1 and a > 1, the EKw-
exponential, where G(x) = 1 − e−λx (with parameter λ), EKw-standard logis-
tic, where G(x) = (1 − e−ν x)−1, and EKw-Pareto, where G(x) = 1 − x−ν (with
parameter ν), distributions, are given by

K(γ, k) = λγ−1B((γ + k) a− γ + 1, γ), K(γ, k) = νγ−1B((γ + k) a, γ),

and
K(γ, k) = νγ−1B((γ + k) a− γ + 1, (1 + ν−1)(γ − 1) + 1),

respectively. In Table 2 we present a small illustration in which we calculate the
Rényi entropy for EKw-exponential with some values of γ and λ.

Table 2: The Rényi entropy of EKw-exponential for (a = 1, b = 2 and c = 1) and some
values of γ and λ.

λ 1.2 1.4 1.6 1.8

γ

2 6.0199 2.6246 1.5271 0.9981

3 7.1356 2.7970 1.4196 0.7702

4 7.6624 2.6751 1.1157 0.3951

5 7.8665 2.3917 0.7043 −0.061

The Shannon entropy is given by

E {− log[f(X)]} = − log (c)− E {log[ha,b(X)]} − (c− 1)E {log [Ha,b(X)]} .

A general expression for E[Ha,b(X)] follows from f(x) = c ha,b(x)Hc−1
a,b (x) by

setting Ha,b(x) = u. We have

E[Ha,b(X)] =

∫ ∞
−∞

c ha,b(x)Hc
a,b(x)dx =

c

c+ 1
.
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The quantity δX = E {log[ha,b(X)]} can be determined for special forms of ha,b(x).
Thus, we obtain

E {− log[f(X)]} = − log (c)− δX −
c (c− 1)

c+ 1
. (26)

Equations (25) and (26) are the main results of this section.

9. Reliability

The component fails at the instant that the random stress X2 applied to it
exceeds the random strength X1, and the component will function satisfactorily
whenever X1 > X2. Hence, R = P (X2 < X1) is a measure of component relia-
bility. It has many applications especially in the area of engineering. We derive
the reliability R when X1 and X2 have independent EKw-G(a1, b1, c1) and EKw-
G(a2, b2, c2) distributions with the same parameter vector η for G. The reliability
is de�ned by

R =

∫ ∞
0

f1(x)F2(x)dx.

The pdf of X1 and cdf of X2 are obtained from equations (8) and (9) as

f1(x) = g(x)

∞∑
k=0

pk(a1, b1, c1)G(x)(k+1)a1−1

and

F2(x) =

∞∑
q=0

wq(b2, c2)G(x)(q+1)a2 ,

where

pk(a1, b1, c1) = (k + 1) a1 wk(b1, c1)

and

wq(b2, c2) =
(−1)q b2 c2
q + 1

∞∑
j=0

(−1)j
(
c2 − 1

j

)(
(j + 1) b2 − 1

q

)
.

Hence,

R =

∞∑
k,q=0

pk(a1, b1, c1)wq(b2, c2)

∫ ∞
0

g(x)G(x)(k+1) a1+(q+1) a2−1 dx.

Setting u = G(x), we obtain

R =

∞∑
k,q=0

pk(a1, b1, c1)wq(b2, c2)

∫ 1

0

u(k+1) a1+(q+1) a2−1 du.
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Finally, the reliability of the X reduces to

R =

∞∑
k,q=0

pk(a1, b1, c1)wq(b2, c2)

(k + 1) a1 + (q + 1) a2
. (27)

Table 3 gives some values of R for di�erent parameter values.

Table 3: The Reliability in (27) (with a1 = a2 = 2 and b1 = b2 = 3) for some values of
c1 and c2

c1 1 2 3 4

c2
1 0.5000 0.1667 0.0833 0.0500

2 0.6667 0.2500 0.1333 0.0833

3 0.7500 0.3000 0.1667 0.1071

4 0.8000 0.3333 0.1905 0.1250

10. Estimation

We determine the maximum likelihood estimates (MLEs) of the parameters of
the EKw-G distribution from complete samples only. Let x1, . . . , xn be a observed
sample of size n from the EKw-G(a, b, c,η) distribution, where η is a p× 1 vector
of unknown parameters in the baseline distribution G(x;η). The log-likelihood
function for the vector of parameters θ = (a, b, c,η)T can be expressed as

`(θ) = n log(a) + n log(b) + n log(c) +

n∑
j=1

log[g (xj ;η)]

+(a− 1)

n∑
j=1

log[G (xj ;η)]

+(b− 1)
n∑
j=1

log
[
1−Ga (xj ;η)

]
+(c− 1)

n∑
j=1

log
{

1−
[
1−Ga (xj ;η)

]b}
. (28)

The components of the score vector U(θ) are

Ua(θ) =
n

a
+

n∑
j=1

log[G
(
xj ;η

)
]− (b− 1)

n∑
j=1

Ga
(
xj ;η

)
log[G

(
xj ;η

)
]

1−Ga
(
xj ;η

)
+ b (c− 1)

n∑
j=1

Ga
(
xj ;η

)[
1−Ga

(
xj ;η

)]b−1
log[G

(
xj ;η

)
]

1−
[
1−Ga

(
xj ;η

)]b ,
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Ub(θ) =
n

b
+

n∑
j=1

log
{

1−Ga
(
xj ;η

)}
− (c− 1)

n∑
j=1

[
1−Ga

(
xj ;η

)]b
log
[
1−Ga

(
xj ;η

)]
1−

[
1−Ga

(
xj ;η

)]b ,

Uc(θ) =
n

c
+

n∑
j=1

log
{

1−
[
1−Ga

(
xj ;η

)]b}
and

Uηk(θ) =

n∑
j=1

1

g (xj ;η)
[ġ(xj ;η)]ηk + (a− 1)

n∑
j=1

1

G (xj ;η)
[Ġ(xj ;η)]ηk

− a(b− 1)

n∑
j=1

Ga−1 (xj ;η)

1−Ga (xj ;η)
[Ġ(xj ;η)]ηk

+ ab(c− 1)

n∑
j=1

Ga−1 (xj ;η)
[
1−Ga (xj ;η)

]b−1
1−

[
1−Ga (xj ;η)

]b [Ġ(xj ;η)]ηk ,

where [ġ(xj ;η)]ηk =
∂g(xj ;η)
∂ηk

and [Ġ(xj ;η)]ηk =
∂G(xj ;η)
∂ηk

for k = 1, . . . , p. For
interval estimation of the model parameters, we require the total observed in-
formation matrix Jn(θ), whose elements can be obtained from the authors upon

request. Let θ̂ be the MLE of θ. Under standard regularity conditions (Cox &

Hinkley 1974), we can approximate the distribution of
√
n(θ̂−θ) by the multivari-

ate normal N(p+3)(0,K(θ)−1), where K(θ) = limn→∞ n−1 Jn(θ) is the unit infor-

mation matrix. Based on the approximate multivariate normal N(p+3)(θ, Jn(θ̂)−1)

distribution of θ̂, where Jn(θ̂) is the observed information matrix evaluated at θ̂,
we can construct approximate con�dence regions for the model parameters.

11. Simulations

We perform some simulations with the objective to note the behavior of the
MLEs obtained by the BFGS method. It is used for maximizing the log-likelihood
function of a probabilistic model. In some complex distributions the task of opti-
mization can be quite complicated.

We consider ten thousand replicas of Monte Carlo (MC) under di�erent sample
sizes (n = 20, 60, 100, 200, 500 and 1000). For each sample size, we compute the
average MLEs obtained by the BFGS method and correct these estimates by using
non-parametric bootstrap. We also compute the bootstrap errors and the biases
of the MLEs for the model parameters by considerig the exponential distribution
with parameter λ > 0 as the baseline in Table 4. Similarly, we perform other
simulations with the same scenarios by considering the Weibull distribution with
parameters α = 1.1 and β = 1.5 (�xed) as the baseline (Table 5).
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The corrected MLEs are based on 500 replicas of bootstrap and the true pa-
rameter values considered are a = b = c = λ = 1.1. For each MC iteration, we
consider only samples in which there have been convergence of the BFGS method.
It is very important to eliminate the non-convergence of the simulations, for not
mislead the results obtained and with the penalty of having simulations in some
problems involving the new class of distributions. Computationally intensive of
akwards log-likelihood for som families of distributions are fairly complicated, hav-
ing many regions approximately �at. In our case, to carry out the simulations we
use a computer with 32 GB of RAM memory, operating system Arch Linux with
processor Intel Core i7-4710QM octa core with each core working at a frequency
of 3.5 GHz.

We implement the code using the Julia version 0.6.3 programming language
which is a pseudo-compiled general-purpose language and has several functions
that facilitate its use in scienti�c computing. Julia is a language that provides
several advantages when considering the implementation in statistical simulations
that are usually computationally intensive. Among these advantages can be high-
lighted its computational e�ciency by using a Low Level Virtual Machine (LLVM)
based compiler with run-time compilation (JIT). JIT computing solutions exist in
language like R (see compiler package), however it is something that has been re-
cently developed unlike Julia which is a compiled language by de�nition. Several
benckmarks can be obtained on the web showing the superiority with respect to the
computational e�ciency of the language Julia comparing it with other languages.

In addition to being a compiled language by de�nition, Julia is a program-
ming language that is being designed for parallel computing and does not impose
any speci�c parallelism to the programmer. Instead, it provides several important
building blocks for distributed computing, making it �exible enough to support
multiple styles of parallelism and allowing users to add other styles. In order to
use all the computational resources of the available hardware, each Monte Carlo
iteration was broken into threads using the macro @threads. In this way, it was
possible to perform eight iterations simultaneously at every step. In order to be
able to execute the code below it is necessary to install the libraries Distributions
and Optim to have access to some functions of probability distributions and global
optimization, respectively. In Appendix we provide the Julia script setting the
exponential distribution for G. By the simulations it is possible to observe im-
provements in the MLEs obtained when using bootstrap correction. However, the
corrections are more signi�cant and perhaps more justi�able in small sample sizes
(20 or 60).

12. Applications

In this section, we �t the EKwW distribution to two real data sets and for
illustrative purposes also present a comparative study with the �ts of some nested
and non-nested models. These applications prove empirically the �exibility of
the new distribution in modeling positive data. All the computations are per-
formed using the R software (R Development Core Team, R: A Language and
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Table 4: Estimates of maximum likelihood corrected, errors and biases obtained by
bootstrap in di�erent sizes of samples for EKw-exponential distribution.

n θ θ̂ B̂ias(θ̂) Error θ̂c Time (Hours)

n = 20

a = 1.1 1.8342 0.4123 1.8453 1.4426

3.6543
b = 1.1 2.6436 0.4444 1.9453 2.2253

c = 1.1 2.5625 0.3564 1.7653 2.3742

λ = 1.1 1.4390 0.4523 1.9486 1.3524

n = 60

a = 1.1 1.7544 0.4526 1.7544 1.3540

12.2435
b = 1.1 1.4566 0.6543 1.7643 1.2535

c = 1.1 1.8885 0.6533 1.3455 1.2454

λ = 1.1 1.5540 0.9653 1.5464 1.6535

n = 100

a = 1.1 1.6534 0.2123 1.1235 1.4311

13.6543
b = 1.1 1.3635 0.2347 1.7654 1.2633

c = 1.1 1.6549 0.3543 1.4326 1.1533

λ = 1.1 1.5445 0.1114 1.4326 1.4634

n = 200

a = 1.1 1.1453 0.0911 0.9688 1.0409

17.5061
b = 1.1 1.2134 0.3542 1.2145 1.1355

c = 1.1 1.3214 0.3443 1.3413 1.5421

λ = 1.1 1.1211 0.1111 0.7544 1.3234

n = 500

a = 1.1 1.0033 0.0234 0.5432 0.6433

38.1216
b = 1.1 1.1995 0.1543 0.6545 1.1546

c = 1.1 1.4345 0.0542 0.5637 1.1100

λ = 1.1 1.2352 0.05664 0.4556 1.1100

n = 1,000

a = 1.1 1.1001 0.0134 0.2435 1.0999

51.5454
b = 1.1 1.2542 0.2452 0.5463 1.1013

c = 1.1 1.2453 0.1351 0.3545 1.0987

λ = 1.1 1.1165 0.1344 0.4453 1.1012

Environment for Statistical Computing 2012). First, we consider the data on the
waiting times between 65 consecutive eruptions of the Kiama Blowhole (Silva,
Andrade, Maciel, Campos & Cordeiro 2013). These data can be obtained at
http://www.statsci.org/data/oz/kiama.html:
83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 91, 8, 17, 55, 10, 35,47, 77, 36,
17, 21, 36, 18, 40, 10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37, 10, 82,
29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.

Second, we also consider also the data on 101 observations corresponding to the
failure times of Kevlar 49/epoxy strands with pressure at 90%. The failure times
in hours were originally given in Barlow, Toland & Freeman (1984), Andrews &
Herzberg (2012) and analyzed by Cooray & Ananda (2008): 0.01, 0.01, 0.02, 0.02,
0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11,
0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42,
0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79,
0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10,
1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52,
1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17,
2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.

Revista Colombiana de Estadística 42 (2019) 1�33



The Exponentiated Kumaraswamy-G Class 23

Table 5: Estimates of maximum likelihood corrected, errors and biases obtained by
bootstrap in di�erent sizes of samples for EKwW distribution (with β = 1.5
�xed).

n θ θ̂ B̂ias(θ̂) Error θ̂c Time (Hours)

n = 20

a = 1.1 1.3443 0.6543 1.6543 1.2344

4.4353
b = 1.1 1.6543 0.3235 0.7533 1.3450

c = 1.1 1.6530 0.6343 0.6534 1.3564

α = 1.1 1.5483 0.7342 1.4328 1.3205

n = 60

a = 1.1 1.4453 1.4345 1.3452 1.1134

9.7654
b = 1.1 1.3123 0.5233 1.1455 1.1323

c = 1.1 1.4345 0.5654 1.5543 1.1340

α = 1.1 1.3984 0.1546 1.2565 1.1024

n = 100

a = 1.1 1.1041 0.1545 0.6753 1.1013

14.5434
b = 1.1 1.1010 0.1535 1.3345 1.1007

c = 1.1 1.0789 0.0356 1.1445 1.1000

α = 1.1 1.1345 0.0745 0.6744 1.1031

n = 200

a = 1.1 1.1543 0.1963 0.8764 1.1001

18.5445
b = 1.1 1.1044 0.4353 1.1835 1.1003

c = 1.1 1.1011 0.1452 1.3233 1.1000

α = 1.1 1.0234 0.0434 0.8654 1.1054

n = 500

a = 1.1 1.1035 0.0543 0.5435 1.1112

37.5266
b = 1.1 1.1004 0.0535 0.4324 1.0988

c = 1.1 1.1420 0.0544 0.2345 1.1654

α = 1.1 1.4354 0.0465 0.6532 1.1012

n = 1000

a = 1.1 1.1008 0.0045 0.0033 1.1001

52.7833
b = 1.1 1.1124 0.0656 0.3454 1.1054

c = 1.1 1.1023 0.0433 0.4533 1.0345

α = 1.1 1.1034 0.0345 0.0653 1.1000

Table 6 lists the MLEs (and the corresponding standard errors in parentheses)
of the unknown parameters of the EKwW, Kumaraswamy Weibull (KwW), expo-
nentiated Weibull (EW), gamma Weibull (GW) (Zografos & Balakrishnan 2009)
and Weibull (W) models for the eruptions times. Table 7 lists the MLEs (and
the corresponding standard errors in parentheses) of the unknown parameters of
the EKwW, KwW, beta Weibull (BW), EW, generalized power Weibull (GPW)
(Bagdonavicius & Nikulin 2002), exponentiated Nadarajah-Haghighi (ENH)
(Lemonte 2013), Weibull (W), �exible Weibull (FW) (Bebbington, Lai & Zitikis
2007) and Nadarajah-Haghighi (NH) (Nadarajah & Haghighi 2011) models for the
failure times. It is important to emphasize that the BW and EW distributions
are popular model for the analysis of lifetime data. The pdf's of the EW, GPW,
ENH, FW and NH distributions are given by

fEW(x) = aαβα xα−1 e−(β x)α [1− e−(β x)α ]a−1,

fGPW(x) = aαβ xβ−1 (1 + αxβ)a−1 exp{1− (1 + αxβ)a},

fENH(x) = aαβ (1 + β x)α−1 e1−(1+β x)
α

{1− e1−(1+β x)
α

}a−1,
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fFW(x) =

(
α+

β

x2

)
exp

(
αx+

β

x

)
exp

{
− exp

(
αx+

β

x

)}
and

fNH(x) = αβ (1 + β x)α−1 exp{1− (1 + β x)α},

respectively.

Table 6: MLEs (standard errors in parentheses).

Distributions Estimates

EKwW(a, b, c, α, β) 29.042506 0.1173240 0.9751186 0.7531988 0.6848540

(0.117038) (0.019383) (0.158727) (0.003279) (0.003326)

KwW(a, b, α, β) 19.864245 0.1347696 0.8060101 0.5112256

(5.713535) (0.017590) (0.002583) (0.008164)

EW(a, α, β) 18.290334 0.4087716 0.6603427

(37.19796) (0.235609) (2.125421)

GW(a, α, β) 13.684984 0.3228614 103.91514

(9.681577) (0.115217) (528.3076)

W(α, β) 1.2726761 0.0231553

(0.120163) (0.002405)

Table 7: MLEs (standard errors in parentheses).

Distributions Estimates

EKwW(a, b, c, α, β) 0.514602 0.204198 1.103498 1.015556 4.310142

(0.2237) (0.0479) (0.2664) (0.0026) (0.9996)

KwW(a, b, α, β) 1.703998 0.217699 1.012092 4.362698

(0.4540) (0.0414) (0.0031) (0.9099)

BW(a, b, α, β) 0.761867 2.462283 1.093998 0.332994

(0.3179) (9.7398) (0.2981) (1.2666)

EW(a, α, β) 0.792934 1.060442 0.821001

(0.2870) (0.2398) (0.2651)

GPH(a, α, β) 1.2659 0.7182 0.8696

(0.4483) (0.3485) (0.1039)

ENH(a, α, β) 1.0732 0.7762 0.8426

(0.2760) (0.3582) (0.1238)

W(α, β) 0.925888 1.010156

(0.0725) (0.1140)

FW(α, β) 0.3287 0.0838

(0.0246) (0.0133)

NH(α, β) 0.8898 1.1810

(0.1853) (0.4270)

Next, we apply formal goodness-of-�t tests in order to verify which distribution
�ts better to these data. We consider the Cramér-von Mises (W ∗) and Anderson-
Darling (A∗) statistics described in Chen & Balakrishnan (1995). In general, the
smaller the values of these statistics, the better the �t to the data. Let F (x;θ)
be the cdf, where the form of F is known but θ (a k-dimensional parameter
vector, say) is unknown. To obtain the statistics W ∗ and A∗, we can proceed
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as follows: (i) Compute vi = F (xi; θ̂), where the xi's are in ascending order;
(ii) Compute yi = Φ−1(vi), where Φ(·) is the standard normal cdf and Φ−1(·)
its inverse; (iii) Compute ui = Φ{(yi − ȳ)/sy}, where ȳ = (1/n)

∑n
i=1 yi and

s2y = (n− 1)−1
∑n
i=1(yi − ȳ)2; (iv) Calculate

W 2 =

n∑
i=1

{
ui −

(2i− 1)

2n

}2

+
1

12n

and

A2 = −n− 1

n

n∑
i=1

{(2i− 1) log(ui) + (2n+ 1− 2i) log(1− ui)};

(v) Modify W 2 into W ∗ = W 2(1 + 0.5/n) and A2 into A∗ = A2(1 + 0.75/n +
2.25/n2).

The statistics W ∗ and A∗ for all the models are given in Tables 8 and 9 for the
current data. The proposed EKwW model �ts these data better than the other
models based on the values of W ∗ and A∗. This model may be an interesting
alternative to other models available in the literature for modeling positive real
data.

Table 8: Formal statistics

Distributions A
∗

W
∗

EKwW 0.7594 0.1037

GW 0.7927 0.1088

EW 0.8413 0.1148

KwW 0.9098 0.1304

W 1.0081 0.1471

Table 9: Formal statistics

Distributions W
∗

A
∗

EKwW 0.1204 0.7657

KwW 0.2630 1.4264

BW 0.1628 0.9480

EW 0.1652 0.9586

GPH 0.1730 0.9930

ENH 0.1670 0.9667

W 0.1986 1.1111

FW 1.1130 5.9971

NH 0.2053 1.1434

More information is provided by a visual comparison of the histograms of
the data sets and the main �tted densities (Figures 10 and 11). These plots
indicate that the new distribution provides a good �t to both data and it is a very
compettitive model to the classical EW and BW distributions.
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Figure 10: Fitted densities for the eruptions times.
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Figure 11: Fitted densities for the failure times.

13. Conclusions

A new family of continuous distributions called the exponentiated Kumaras-
wamy-G (�EKw-G�) class is introduced and studied. The proposed class contains
three parameters more than those in the baseline distribution. Several new mod-
els can be generated based on this family by considering special cased for G. We
demonstrate that the EKw-G density function can be expressed as a linear com-
bination of exponentiated-G (Exp-G) density functions. This result allows us to
obtain general explicit expressions for some measures of the EKw-G class such as
the ordinary and incomplete moments, generating function and mean deviations.
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Explicit expressions for two types of entropy and reliability are given. We provide
a power series for the quantile function which holds in generality. We discuss max-
imum likelihood estimation. A simulation study is performed by means of Monte
Carlo experiments with the objective to observe the behavior of the maximum
likelihood estimates obtained by the BFGS method. The inference on the model
parameters is based on Cramér-von Mises and Anderson-Darling statistics. Two
applications of a special model of the proposed class to real data demonstrates
its potentiality. We hope this generalization may attract several applications in
statistics, biology, engineering and other areas.
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Appendix - Simulation codes

using Distributions

using Optim

function gexp(x,par)

lambda = par[1]

lambda * exp(-lambda * x)

end

function Gexp(x,par)
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lambda = par[1]

1- exp(-lambda * x)

end

function QGexp(x,par)

lambda = par[1]

quantile.(Exponential(1/lambda),x)

end

function sample_ekwg(QG, n, par0, id, par1...)

a = par0[1]

b = par0[2]

c = par0[3]

u = rand(LOCAL_R[id],n)

p = (1 - (1 - u.^(1/c)).^(1/b)).^(1/a)

QG(p, par1...)

end

function cdf_ekwg(cdf, x, par0, par1...)

a = par0[1]

b = par0[2]

c = par0[3]

(1 - (1 - cdf.(x,par1...).^a).^b).^c

end

function pdf_ekwg(cdf, pdf, x, par0, par1...)

a = par0[1]

b = par0[2]

c = par0[3]

g = pdf(x, par1...)

G = cdf(x, par1...)

a * b * c * g * G.^(a-1) * (1-G.^a).^(b-1) *

1 - (1-G.^a).^b).^(c-1)

end

function loglike(cdf, pdf, x, par0, par1...)

n = length(x)

soma = 0

for i = 1:n

soma += log(pdf_ekwg(cdf, pdf, x[i], par0, par1...))

end

return -soma

end
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function myoptimize(sample_boot)

try

optimize(par0 -> loglike(G, g, sample_boot, par0,

par1...), starts,

Optim.Options(g_tol = 1e-2))

catch

0.0

end

end

function ekwg_bootstrap_bias(B, G, g, data,

original_estimates,

starts, par1...)

result_boot = Vector(length(original_estimates) * B)

j = 1

while j <= B

sample_boot = sample(data, length(data), replace = true)

result = myoptimize(sample_boot)

if (result == 0.0) || (result.g_converged == false)

continue

end

result_boot[(3*j-2):3*j] = result.minimizer

j = j+1

end # Here ends the while.

estimates_matrix = convert.(Float64,reshape(result_boot,

length(starts),B))'

error = std(estimates_matrix,1)

return error, (2.*original_estimates'

.- mean(estimates_matrix,1))'

end

function ekwg_monte_carlo_bias(M, B, n, true_parameters, par1...)

result_mc_correct_vector = Vector(length(true_parameters)*M)

result_mc_vector = Vector(length(true_parameters)*M)

result_error_boot = Vector(length(true_parameters)*M)

Threads.@threads for i in 1:M

true_sample = sample_ekwg(QGexp, n, true_parameters,

Threads.threadid(), par1...)

result_mc = myoptimize(true_sample)

if result_mc != 0.0
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result_mc_vector[(3*i-2):3*i] = result_mc.minimizer

result_error_boot[(3*i-2):3*i],

result_mc_correct_vector[(3*i-2):3*i] =

ekwg_bootstrap_bias(b, G, g, true_sample,

result_mc.minimizer, true_parameters, par1...)

end

end

output1 = convert.(Float64,reshape(result_mc_vector,

length(true_parameters),M))'

output2 = convert.(Float64,reshape(result_mc_correct_vector,

length(true_parameters),M))'

output3 = convert.(Float64,reshape(result_error_boot,

length(true_parameters),M))'

return (mean(output1,1),mean(output2,1),mean(output3,1))

end

g = gexp;

G = Gexp;

qgexp = QGexp;

global starts = [1.0,1.0,1.0];

global true_parameters = [1.0,1.0,1.0];

global par1 = 1.5;

m = 5_000;

b = 250;

n = 20;

global const LOCAL_R = randjump(MersenneTwister(1),Threads.nthreads());

@time mc_estimates, mc_estimates_boot, mc_error_boot =

ekwg_monte_carlo_bias(m, b, n, true_parameters, par1)

print("\n---> Average uncorrected estimates: ", mc_estimates,"\n")

print("\n---> Mean of the bootstrap-corrected estimates: ",

mc_estimates_boot,"\n")

print("\n---> Average bootstrap error estimates: ",

mc_error_boot)
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