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Abstract

Gamma regression models are a suitable choice to model continuous vari-
ables that take positive real values. This paper presents a gamma regression
model with mixed e�ects from a Bayesian approach. We use the parametri-
sation of the gamma distribution in terms of the mean and the shape pa-
rameter, both of which are modelled through regression structures that may
involve �xed and random e�ects. A computational implementation via Gibbs
sampling is provided and illustrative examples (simulated and real data) are
presented.
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Resumen

Los modelos de regresión gamma son una opción adecuada para modelar
variables continuas que toman valores reales positivos. Este artículo pre-
senta un modelo de regresión gamma con efectos mixtos desde un enfoque
bayesiano. Utilizamos la parametrización de la distribución gamma en tér-
minos de la media y el parámetro de forma, los cuales se modelan a través
de estructuras de regresión que pueden involucrar efectos �jos y aleatorios.
Se proporciona una implementación computacional a través del muestreo de
Gibbs y se presentan ejemplos ilustrativos (datos simulados y reales).
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1. Introduction

Mixed models are used in a wide variety of disciplines: physical, biological
and social sciences, among others. These models have been particularly useful to
represent clustered and, therefore, dependent data, arising for example when data
are collected hierarchically, when observations are taken about related individuals,
or when data are gathered over time regarding the same individuals (Ronquist
& Huelsenbeck 2003, Vonesh 2006, Brown & Prescott 2014, Demidenko 2013).
The study of hierarchical data has been largely framed for variables with normal
distribution or at least symmetric distributions. However, models may not be
appropriate when the response variable takes only positive values, such as, in
the process of rate setting in the framework of heterogeneous insurance portfolios
(vehicles, personal injury, etc.) (De Jong, Heller et al. 2008), where one possibility
is to use a gamma regression model.

The substantial advantage of considering a gamma model is due to their �exi-
bility compared to other models, such as exponential and Poisson, among others.
Thus, gamma regression models allow for monotone models with no constant haz-
ard in survival.

McCullagh & Nelder (1989) presented a gamma regression model where the
coe�cient of variation is assumed constant for all observations. Cepeda (2001)
and Cepeda & Gamerman (2005) proposed an extension of the gamma regression
models, assuming regression structures for both mean and dispersion parameters,
and presented a Bayesian method to �t regression models in the two-parameter
exponential family of distributions. Speci�cally for gamma observations, they
modeled the mean and shape or variance parameters.

Following Cepeda (2001), our proposed model uses a parameterization of the
gamma distribution in terms of the mean and the shape parameters. In this paper,
we model the mean and the shape of a gamma distribution taking into account
that, in this model, the variance is a function of the mean and shape parameters
and that the mean and shape parameters are orthogonal in the Box-Cox sense
(Cox & Reid 1987, Cepeda 2001). This property is not satis�ed by the mean and
variance.

The mean of the response variable is linked to a mixed-e�ects regression struc-
ture by the log and identity functions. An extended version of this model is also
considered, assuming the shape parameter is not constant over the observations,
but rather is related to a mixed-e�ects regression through the log link, similar to
the mean.

This paper proposes a Bayesian method to �t gamma regression models, that
include �xed and random e�ects in the mean and in the shape parameters. This
paper is organized as follows: after an introduction, Section 2 present the Bayesian
mixed gamma regression. In Section 3 a Bayesian method to �t the proposed mod-
els is presented. Section 4 show results of simulation studies. Section 5 include one
aplication to real data set. Finally, in section 6 some conclutions are formulated.
The outline of the OpenBUGS software (Thomas 2006) used, is presented in an
appendice.

Revista Colombiana de Estadística 42 (2019) 81�99



A Bayesian Approach to Mixed Gamma Regression Models 83

2. Bayesian mixed gamma regression models

Due of its �exibility and other characteristics, the gamma distribution is fre-
quently used to model continuous data taking only positive values. The probability
density function of a variable y that follows a gamma distribution, parameterized
in terms of its mean µ (µ > 0) and shape parameter α (α > 0), is given by:

f(y|µ, α) =
1

Γ(α)

(
αy

µ

)α
e−αy/µ

(
1

y

)
I(0,∞)(y) (1)

where α > 0 and Γ(.) is the gamma function (Cepeda-Cuervo, 2001). In this case,

E(y) = µ and Var(y) = µ2

α . If y has density function (1), we write y ∼ G(µ, α).

Now, let y1, . . . yn be independent random variables such that yi ∼ G(µi, α).
The gamma regression model is de�ned assuming that

ηi = g(µi) = x′
iβ

where β = (β1, . . . , βp)
′ is a vector of unknown regression parameters (p < n),

xi = (xi1, . . . , xip)
′ is a vector of covariates of the i-th observation and ηi is a

linear predictor. Usually xi1 = 1 for all i, so that the model has a mean intercept.

From generalized linear models, the canonical link function g(.) : (0,∞)→ R,
is the inverse function g(µ) = 1/µ. However, the usual link functions in the
gamma regression models are g(µ) = log(µ) and g(µ) = µ, due to the underlying
constraints in the canonical link .

In the gamma regression model presented by Cepeda (2001), the shape param-
eter is not constant for every observation and it is modeled like the mean. Here, we
assume n independent random variables, yi ∼ G(µi, αi), i = 1, . . . , n, with mean
and shape parameters given by

ηi = g(µi) = x′
iβ τi = h(αi) = w′

iδ

where β = (β1, . . . , βp)
′ and δ = (δ1, . . . , δk)′, p+ k < n, are the sets of regression

parameters, xi and wi are observed values of the covariates, and ηi and τi are the
linear predictors at the i-th observation.

Since the shape parameter is strictly positive, the log link function is a natural
choice for h. It is then assumed that log(αi) = w′

iδ where wi is a vector of
covariates and δ denotes a vector of unknown regression coe�cients. Again, it
is convenient to take the �rst component of the wi vector as 1 to allow for an
intercept in the shape regression structure. There is no restriction on whether or
not the wi

′s contain the same predictor variables as the xi
′s.

The gamma regression model described above does not involve random ef-
fects. To extend work in Bayesian generalized linear models and speci�cally in
Bayesian gamma regression (Cepeda 2001, Cepeda & Gamerman 2004, Cepeda-
Cuervo, Migon, Garrido & Achcar 2014), in this paper we propose two gamma
mixed regression models, the �rst assuming that the shape parameter is constant
for all observations and the second involving a mixed-e�ects model for the shape
parameter.
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Let y1, . . . , ym be independent continuous random vectors, where

yi = (yi1, . . . , yini
)′

represents a vector of responses observed (with ni measurements) for a sample unit
i (in chronological order) and for which each of its components yij , j = 1, . . . ni
takes positive real number values.

Also consider a regression model with the following structure:

G[E(yi|bi)] = Xiβ +Zibi, (2)

with i = 1, . . . ,m, where G(.) is a vector-function, linking the response vector of
the conditional mean with the mixed linear model

ηi = Xiβ +Zibi

where Xi is the ni × p design matrix, β = (β1, . . . , βp)
′ are regression coe�cients

or �xed e�ects, and Zi is the ni × q design matrix associated with the vector of
random e�ects bi = (bi1, . . . , biq)

′.

For the identity link function, the j-th component of (2) is

µij = ηij = x′
ijβ + z′ijbi (3)

where µij = E(yij |bi), xij = (xij1, . . . , xijp)
′ and zij = (zij1, . . . , zijq)

′.

For the log link function, the j-th component of (2) is:

log(µij) = ηij = x′
ijβ + z′ijbi

where µij = E[yij |bi], xij = (xij1, . . . , xijp)
′ and zij = (zij1, . . . , zijq)

′, which is
equivalent to

µij = exp(ηij) = exp(x′
ijβ + z′ijbi) (4)

In this paper, we �rst assume that conditional on bi, β and α, that yij , i =
1, . . . ,m; j = 1, . . . , ni, are independent and have probability density function

yij |bi, β, α
ind∼ G(µij , α)

given by (1) with µ replaced by µij (speci�ed by (3) or (4) ), depending on a set of
explanatory variables through the selected link. In this formulation, α represents
a constant shape parameter.

In mixed models, the random e�ects, b1, . . . , bm, are typically assumed to be
independent and normally distributed:

bi|Σb
ind∼ Nq(0,Σb), i = 1, . . . ,m,

where Σb is a q × q positive-de�nite matrix. The normality assumption may be
questionable in some practical situations when there are outliers, when the data
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exhibit fat tails or the behavior of the data turns out to be asymmetric. An
alternative is to consider other types of distributions such as the multivariate t-
distribution with νb > 0 degrees of freedom, location vector µb ∈ Rq and positive-

de�nite dispersion matrix Σb to model the random e�ects bi
′s, i.e., bi|νb,Σb

ind∼
tq(νb, 0,Σb), i = 1, . . . ,m (Figueroa-Zúñiga, Arellano-Valle & Ferrari 2013).

For a more general formulation of this model, we consider a di�erent shape
parameter, αij , for each response yij . Let us now assume a mixed model for the
logarithm of αij . This is

log(αij) = τij = w′
ijδ + h′

ijdi (5)

wherewij = (wij1, . . . , wijp∗)′ is the design vector corresponding to the vector p∗×
1, δ, of �xed e�ects, and hij = (hij1, . . . , hijq∗)′ is the design vector corresponding
to the vector, di, of random e�ects. It may be noted that the matrices Wi =
(wi1, . . . , wini

) and Hi = (hi1, . . . , hini
) can contain the same covariate matrices

Xi = (xi1, . . . , xini
) and Zi = (zi1, . . . , zini

), but this is not required.

Here it can be assumed that di|Σb
ind∼ Nq(0,Σb), i = 1, . . . ,m, where Σd is a

positive-de�nite matrix. Alternatively, we can assume that di|Σd
ind∼ tq(νd,0,Σb), i =

1, . . . ,m.

In order to apply Bayesian methods to �t the gamma Bayesian mixed model,
we assume multivariate normal prior distributions for the �xed e�ects, that is

β ∼ Np(µβ,Σβ)

Vague priors are speci�ed by taking large values for the prior variances. An
alternative strategy is to consider a multivariate t-distribution, i.e.,

β ∼ tp(νβ ,µβ,Σβ)

and to specify an appropriate value for νβ , the degrees of freedom parameter. If
the vector of random e�ects is assumed to follow a multivariate t-distribution, i.e.,
bi|νb,µb,Σb ∼ tq(νb,0,Σb), then the prior distribution for the degrees of freedom
can be discrete as in Albert & Chib (1993) and Besag, Green, Higdon & Mengersen
(1995), or continuous as in Geweke (1992). We have chosen the latter alternative.
More speci�cally, we consider an exponential prior distribution with mean 1/a,
for the degrees of freedom, which we denote ε(a). The prior distribution for the
scale matrix of random e�ects Σb is chosen, mainly for computational simplicity,
to be an inverted Wishart distribution as in Fong, Rue & Wake�eld (2010), i.e.,
Σb ∼ IWq(Ψ, c).

In summary, in this paper we study two gamma mixed regression models,
where:

1. Model 1: The mean follows a mixed regression structure given by equation
(2) modeled as in (3) or (4) (Model 1A and Model 1B, respectively) and
both have a constant shape parameter α.
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2. Model 2: The mean follows a mixed regression structures given by (2) and
the shape follows a regression structures given by (5).

3. Fitting Bayesian Mixed Gamma Regression Mod-

els

Let y = (y′1, . . . ,y
′
m)′ where yi = (yi1, . . . , yini

)′, and η = (η′1, . . . ,η
′
m)′,

where ηi = (ηi1, . . . , ηini
)′. By assumption, conditionally on β,Σb and νb, the ηi

′s
are independents and have density function f(ηi|β,Σb, νb) ∝ f(bi|β,Σb, νb), i =
1, . . . ,m.

3.1. Model 1

Assuming that the parameters Σb, νb, α and β are independents, the joint
posterior distribution is given by:

f(β,Σb, νb, α,η|y) ∝

[
m∏
i=1

ni∏
j=1

f(yij |ηij , α)

][
m∏
i=1

f(ηij |β,Σb, νb)

]
f(Σb)f(νb)f(α)f(β)

Thus, samples of f(β,Σb, νb, α,η|y) are obtained by an iterative process from
the full conditional distributions:

f(Σb|νb,β, α,η, y), f(νb|Σb, β, α,η, y), f(β|Σb, νb, α,η, y)

f(α|νb,β,Σb,η, y), f(ηi|ηk,Σb, β, α, νb,y), i, k = 1, . . . ,m, i 6= k

The algorithm can be implemented using OpenBUGS and this software can
also be used to obtain posterior parameter inferences.

3.2. Model 2

De�ning τ = (τ ′1, . . . , τ
′
m)′, where τ i = (τi1, . . . , τini)

′, and assuming (con-
ditional independence of yij) δ,Σd and νd, the τ

′
is are independent and have

density function f(τi|δ,Σd, νd) ∝ f(di|δ,Σd, νd), i = 1, . . . ,m, and assuming in-
dependent prior distribution for Σb, νb,Σd, νd, δ and β, the posterior distribution
of (β,Σb, νb, δ,Σd, νd) is given by:

f(β,Σb, νb, δ,Σd, νd,η, τ |y) ∝

[
m∏
i=1

ni∏
j=1

f(yij |ηij , τij)

][
m∏
i=1

f(ηi|β,Σb, νb)

]

×

[
m∏
i=1

f(τi|δ,Σd, νd)

]
f(Σb)f(νb)f(δ)f(Σd)f(νd)f(β)
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Thus, a Gibbs sampling algorithm also can be used to generate samples from:

f(β,Σb, νb, δ,Σd, νd,η, τ |y)

through iteratively sampling from the following full conditional distributions:

f(β|Σb, νb, δ,Σd, νd,η, τ, y), f(Σb|β, νb, δ,Σd, νd,η, τ ,y)

f(νb|β,Σb, δ,Σd, νd,η, τ ,y), f(δ|β,Σb, νb,Σd, νd,η, τ, y)

f(Σd|β,Σb, νb, δ, νd,η, τ, y), f(νd|β,Σb, νb, δ,Σd, η, τ, y)

f(ηi|ηk, τk, β,Σb, νb, δ,Σd, νd,yi), f(τi|τk,ηk, β,Σb, νb, δ,Σd, νd,yi)
for i, k = 1, . . . ,m, and i 6= k. The algorithm for this model can also be imple-
mented in OpenBUGS, and posterior inferences for the parameters can be made
with this software.

4. Simulation studies

We conducted a simulation study to examine how similar the estimates of the
parameters of the models are, compared with the true values of the parameters.

4.1. Model type 1

In this section we consider two classes of models:

Model 1A. In this section, we assume the model:

yij |bi, α,β ∼ G(µij , α), i = 1, . . . , n, and j = 1, . . . , 5,

where β = (β1, β2, β3)′, bi = (bi1, bi2)′,

ηij = µij = β1 + β2xij2 + β3xij3 + bi1 + bi2zij2,

and bi|νb,Σb ∼ t2(νb,0,Σb), assuming as link function the inverse of the canonical
link.

For n = 50, 100 and 150, values of the explanatory variables X2, X3 and Z2

were generated from uniform distributions U[0,30], U[0,15] and U[10,20] respec-
tively, and we set νb = 5, α = 13,β = (1.5, 2.0, 3.0)′ and

Σb =

[
1 0.1

0.1 0.3

]
.

The following prior speci�cations were adopted: νb ∼ ε(0.1),Σb ∼ IW2(Ψ, c),
and β = (β1, β2, β3)′ ∼ t3(νβ ,µβ,Σβ) with c = 5, and α ∼ IG(ε, ε), with ε =
0.001,

Ψ =

[
20 0

0 20

]
, νβ = 5, µβ = (0, 0, 0)′, Σβ =

 10 0 0

0 10 0

0 0 10
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The true values of the parameters and their estimations and standard devi-
ations are presented in Table 1. In this model we consider 100,000 iterations,
discarding the �rst 10,000 iterations as burn-in. The parameter estimates improve
and standard deviations decline as sample size increases.

Table 1: True and estimated parameter values, and standard deviations for model 1A.

β1 β2 β3 α νb Σb11 Σb12 Σb13

n True 1.50 2.00 3.00 13.00 5.00 1.00 0.10 0.30

50 Estimated s.d. 1.23 2.10 3.13 17.77 4.92 0.93 0.12 0.27

0.53 0.05 0.10 2.03 1.72 0.11 0.02 0.06

100 Estimated s.d. 1.39 2.07 3.15 15.25 5.19 1.03 0.11 0.29

0.33 0.05 0.09 2.13 1.62 0.12 0.02 0.07

150 Estimated s.d. 1.53 2.05 3.11 15.37 4.95 1.03 0.10 0.31

0.31 0.04 0.09 2.10 1.61 0.11 0.02 0.05

To monitor the chains' global convergence, we calculated the potential scale
reduction factor(psrf) proposed by Brooks & Gelman (1998) (the psrf is an esti-
mated factor by which the scale of the current distribution for the target distri-
bution might be reduced if the simulations were continued for an in�nite number
of iterations). When the psrf is high (perhaps greater than 1.1 or 1.2), then we
should run our chains longer to improve convergence to the stationary distribution.
We obtained psrf = 0.995, 0.996 and 0.99 for n = 50, 100 and 150, respectively.
The tests indicated that the Markov chain converged to its stationary distribution.
Also, jumps were performed every 5 iterations to remove e�ects of autocorrelations
in each chain.

The study of the convergence of the individual chains was performed using
the CODA package (Plummer, Best, Cowles & Vines 2006), in the R software (R
Core Team 2017). This package provides di�erent diagnostic methods to check
convergence: Gelman and Rubin's diagnostic (Geweke 1992), Geweke's diagnostic
(Geweke 1992), Heidelberg and Welch's diagnostic (Heidelberger & Welch 1981)
and Lewis´s diagnostic (Ra�ery & Lewis 1992).

Table 2 shows, for n = 50, the posterior correlations between the posterior
parameters chains. Small correlations can be seen between them, with values
between −0.11 and 0.15. Note that the correlations between βi and α are near
zero. The correlations considering the other two sample sizes were similar to those
shown in Table 2.

Table 2: Posterior correlations, model 1A.

β1 β2 β3 α νb Σb11 Σb12 Σb13

β1 1.00

β2 -0.03 1.00

β3 -0.05 -0.07 1.00

α -0.03 0.00 0.00 1.00

νb -0.01 0.01 0.01 0.01 1.00

Σb11 0.06 -0.06 0.03 -0.07 -0.01 1.00

Σb12 -0.06 0.03 0.02 -0.01 -0.03 -0.05 1.00

Σb13 0.00 -0.01 0.00 -0.11 -0.08 0.02 0.15 1.00
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Model 1B. We assume the model:

yij |bi, α,β ∼ G(µij , α), i = 1, . . . , n, and j = 1, . . . , 5,

where β = (β1, β2, β3)′, bi = (bi1, bi2)′,

ηij = log(µij) = β1 + β2xij2 + β3xij3 + bi1 + bi2zij2,

and bi|νb,Σb ∼ t2(νb, 0,Σb).
For n = 50, 100 and 150, values of the explanatory variables X2, X3 and Z2

were generated, again, from uniform distributions U[0,30], U[0,15] and U[10,20],
respectively, and we set νb = 5, α = 13,β = (1, 0.2,−0.03)′, and

Σb =

[
0.8 0.4

0.4 2

]
.

Prior distributions for the parameters νb,Σb, β and α are the same as those pro-
posed for model 1A.

The parameter estimations and standard deviations are given in Table 3. We
consider 100,000 iterations, discarding the �rst 10,000 iterations as burn-in, like in
the above model. Again we analyze the convergence of the chains with the above
mentioned criteria. These diagnostic tests suggest good multivariate (psrf = 1.02)
and individual behavior of the chains.

Table 3: True parameter values and standard deviations for model 1B.

β1 β2 β3 α νb Σb11 Σb12 Σb13

n True 1.00 0.20 -0.03 13.00 5.00 0.80 0.40 2.00

50 Estimated 0.95 0.17 -0.03 19.33 4.72 0.93 0.32 1.77

s.d. 0.37 0.09 0.01 2.03 0.67 0.11 0.10 0.76

100 Estimated 0.95 0.18 -0.03 17.75 5.19 1.03 0.41 1.89

s.d. 0.33 0.08 0.01 2.01 0.62 0.12 0.10 0.67

150 Estimated 0.97 0.18 -0.03 15.37 4.95 1.03 0.41 1.91

s.d. 0.31 0.09 0.01 2.10 0.61 0.11 0.09 0.65

Table 4 shows for n = 50, posterior correlations between the estimated param-
eters. As above, small correlations can be seen, with values between -0.13 and
0.16. Note, again, that the correlation between samples of β2, β3 and α is equal
to zero. The correlations considering the other two sample sizes were similar to
those shown in Table 4.

4.2. Model 2

In this section we assume the model

yij |bi, δ, β, di ∼ G(µij , αij), i = 1, . . . , n, and j = 1, . . . , 5,

where β = (β1, β2, β3)′, bi = (bi1, bi2)′, δ = (δ1, δ2, δ3)′, di = (di1, di2)′, and mean
and shape structures given by
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Table 4: Posterior correlations, model 1B.

β1 β2 β3 α νb Σb11 Σb12 Σb13

β1 1.00

β2 -0.02 1.00

β3 -0.01 -0.03 1.00

α -0.06 0.00 0.00 1.00

νb -0.02 0.02 0.03 0.03 1.00

Σb11 0.07 -0.06 0.03 -0.07 -0.01 1.00

Σb12 -0.09 0.06 0.04 -0.01 -0.04 -0.07 1.00

Σb13 0.03 -0.01 0.06 -0.13 -0.10 0.07 0.16 1.00

ηij = µij = β1 + β2xij2 + β3xij3 + bi1 + bi2zij2

τij = log(αij) = δ1 + δ2xij2 + δ3xij3 + di1 + di2zij2,

and bi|νb,Σb ∼ t2(νb,0,Σb).

We set νb = 5,β = (0.5, 1.5, 2.5)′, δ = (0.5, 0.2, 0.01)′ and

Σb = Σd =

[
0.8 0.4

0.4 2

]
.

For n = 50, 100 and 150, values of the explanatory variables X2,X3 and Z2, were
generated from the uniform distributions de�ned in model 1A.

Prior distributions for the parameters νb , Σb and β are the same as those
proposed for model 1A. Prior distribution for the parameter δ is the same as the
parameter β: t3(νβ ,µβ,Σβ). Also, for model speci�cations that include random
e�ects for the shape parameter, we assume that the shape random e�ects di have
the same distribution as the location random e�ects bi: t2(νb,0,Σb).

In this model, we again considered 100,000 Monte Carlo iterations and the
estimates were obtained using the samples obtained in the last 90,000 iterations.
Testing the chains indicated very good convergence behavior. Table 6 shows, for
n = 50, posterior correlations between posterior samples of the parameters. There
are small correlations between them, with values between -0.15 and 0.17. Here,
the correlations between posterior samples of β2, β3, and δ1, δ2, δ3 are equal to
zero. The correlations considering the other two sample sizes were similar to those
shown in Table 6. The parameter estimates are given in Table 5.

We considered di�erent values for νb = 3, 7, 10 for the models 1A, 1B and 2.
The results obtained were good enough.

According to the results obtained in the above simulated models, the estimates
obtained are reliable.
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Table 5: True and estimated parameter values, and standard deviations for model 2.

β1 β2 β3 δ1 δ2 δ3 νb Σb11 Σb12 Σb13

n True 0.50 1.50 2.50 0.50 0.20 0.01 5.00 0.80 0.40 2.00

50 Estimated 0.65 1.27 2.36 0.41 0.25 0.01 6.32 1.31 0.73 2.33

s.d. 0.25 0.41 0.57 0.17 0.15 0.00 1.33 0.71 0.41 0.77

100 Estimated 0.61 1.29 2.41 0.43 0.21 0.01 6.09 0.93 0.68 2.11

s.d. 0.15 0.35 0.52 0.13 0.11 0.00 1.22 0.53 0.39 0.75

150 Estimated 0.57 1.37 2.43 0.47 0.21 0.01 6.01 0.73 0.61 2.07

s.d. 0.13 0.24 0.43 0.13 0.10 0.00 1.19 0.39 0.37 0.75

Table 6: Posterior correlations, model 2.

β1 β2 β3 δ1 δ2 δ3 νb Σb11 Σb12 Σb13

β1 1.00

β2 -0.01 1.00

β3 -0.09 -0.03 1.00

δ1 -0.04 0.00 0.00 1.00

δ2 -0.06 0.00 0.00 0.00 1.00

δ3 -0.03 0.00 0.00 0.00 0.00 1.00

νb -0.01 -0.02 0.03 0.03 0.00 0.00 1.00

Σb11 -0.07 -0.09 0.08 0.03 0.02 0.01 0.01 1.00

Σb12 -0.03 0.08 0.05 -0.03 -0.03 -0.07 0.00 0.00 1.00

Σb13 -0.08 0.09 0.06 -0.15 -0.10 0.07 0.17 0.04 0.05 1.00

5. Application

Life insurance is a form of personal insurance that covers the risk of death of
the insured, the occurrence of a serious illness or an unforeseen event that causes
total and permanent disability of the insured.

The insurance data correspond to life insurance premiums (The values are pre-
miums corresponding to contracts perfected or extended in the year, whose receipts
have been issued in the corresponding period), in millions of Colombian pesos, of
19 insurance companies which operate the branches of life and person according
to the Superintendence of Colombia from 2004 to 2015 (Source: Federation of
Insurers of Colombia: FASECOLDA).

The data set is illustrated in Figure 1. This �gure shows incresing behavior
of the mean over time and that, conditional on the time, the data set presents a
skewness like in a gamma distribution. Thus, giving the positivity of the data, it
is assumed that the average life insurance premiums data can be modeled using a
gamma distribution, with an appropriate link function.

5.1. Models with Constant Shape Parameter

Here, a mixed gamma regression model with a constant shape parameter is
considered (Model 1), assuming location regression structure given by: µij =
β1 + β2t + bi1 + bi2t (Model 1A and Model 1B) or µij = β1 + β2t + β3t

2 + bi1 +
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bi2t + bi3t
2 (Model 1C and Model 1D) t = 1, 2, . . . , 12, i = 1, 2, . . . , 19. For the

shape parameter α, an inverse gamma distribution α ∼ IG(ε, ε), with ε = 0.001 is
assumed.
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Figure 1: Premiums data. The darker line represents the �tted posterior mean. Model
1C

• Model 1A:
In this model, the following prior distributions were considered: β = (β1, β2)′ ∼
N2(µβ,Σβ) and bi = (bi1, bi2)′ ∼ N2(µb,Σb), with

Σβ = Σb =

[
1000 0

0 1000

]
, µb = µβ = (0, 0)′.

• Model 1B:
In this model, the following prior speci�cation was assumed: β = (β1, β2)′ ∼
t2(νβ ,µβ,Σβ), bi = (bi1, bi2)′ ∼ t2(νb,µb,Σb), νb ∼ ε(a0) and Σb ∼ IW(Ψ, c),
with a0 = 0.1, c = 5,

Σβ =

[
1000 0

0 1000

]
, Ψ =

[
20 0

0 20
,

]
and

µb = µβ = (0, 0)′.

• Model 1C:
In this model, the following prior distributions were assumed: β = (β1, β2, β3)′ ∼
N3(µβ,Σβ) and bi = (bi1, bi2, bi3)′ ∼ N3(µb,Σb), with
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Σβ = Σb =

 1000 0 0

0 1000 0

0 0 1000

 , and µb = µβ = (0, 0, 0)′.

• Model 1D:
In this model, the following prior distributions were assumed: β = (β1, β2, β3)′ ∼
t3(νβ ,µβ,Σβ), bi = (bi1, bi2, bi3)′ ∼ t3(νb,µb,Σb), νb ∼ ε(a0) and Σb ∼
IW(Ψ, c), with a0 = 0.1, c = 5,

Σβ =

 1000 0 0

0 1000 0

0 0 1000

 , Ψ =

 20 0 0

0 20 0

0 0 20

,


and

µb = µβ = (0, 0, 0)′.

Table 7: Estimated posterior medians and means, 95% credibility intervals (CI) for the
parameters in Model 1C.

Parameter
Posterior inference

Mean MC error Median 95%CI

β1 85.33 1.526 86.52 (62.7,110.0)

β2 50.70 1.831 47.06 (26.5,75.14)

β3 5.33 0.016 0.32 (0.38,12.19)

α 1.85 0.021 1.83 (1.35,2.49)

These models were �tted using the OpenBugs program given in the Appendix.
The correspondign DIC values for the �tted models are given by: for Model 1A,
DIC=2305; for Model 1B, DIC=2376; for Model 1C, DIC=2286 and, for Model
1D, DIC=2293. Table 7 shows the posterior parameter estimates of Model 1C,
which provide the least DIC value.

For the posterior samples of Model 1C (Figure 2), the multivariate version of
Gelman and Rubin's convergence diagnostic (Brooks and Gelman, 1998) indicates
chain convergence (psrf = 0.98 < 1.2).

5.2. Models with Non-Constant Shape Parameter

Here a mixed gamma regression model is considered, assuming that α is not
constant through the observations and that its behavior can be explained by a
time quadratic or a lineal relation. In this section, we consider four di�erent prior
speci�cations for the parameters of models: 2A, 2B, 2C and 2D: Cepeda

• Model 2A

In this model, we assume that mean and shape have regression structures
are given by
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µij = β1 + β2t+ bi1 + bi2t (6)

log(αij) = δ1 + δ2t+ di1 + di2t (7)

with the following prior speci�cations: β = (β1, β2)′ ∼ N2(µβ,Σβ), bi =
(bi1, bi2)′ ∼ N2(µb,Σb), with

Σβ = Σb =

[
1000 0

0 1000

]
, µb = µβ = (0, 0)′

and δ = (δ1, δ2)′ ∼ N2(µδ,Σδ), di = (di1, di2)′ ∼ N2(µd,Σd), with

Σδ = Σd =

[
1000 0

0 1000

]
, µδ = (0, 0)′.

Figure 2: Behavior of the sample path. Model 1C.

• Model 2B

In this model we assume the mean and shape regression structures given
by (6) and (7), and the following prior distributions: β = (β1, β2)′ ∼
t2(νβ ,µβ,Σβ), bi = (bi1, bi2)′ ∼ t2(νb,µb,Σb), νb ∼ ε(a0),Σb ∼ IW2(Ψ, c),
with a0 = 0.1, c = 5, νβ = 10, and

Σβ =

[
1000 0

0 1000

]
, Ψ =

[
20 0

0 20

]
and µb = µβ = (0, 0)′, δ = (δ1, δ2)′ ∼ t2(νδ,µδ,Σδ), di = (di1, di2)′ ∼
t2(νd,µd,Σd), νd ∼ ε(a0),Σd ∼ IW2(Ψ1, c), with a0 = 0.1, c = 5, νδ =
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10, and

Σδ =

[
1000 0

0 1000

]
, Ψ1 =

[
20 0

0 20

]
µd = µδ = (0, 0)′

• Model 2C

In this model, we assume the following regression structures:

µij = β1 + β2t+ β3t
2 + bi1 + bi2t+ bi3t

2 (8)

log(αij) = δ1 + δ2t+ δ3t
2 + di1 + di2t+ di3t

2 (9)

and the following prior dsitributions: β = (β1, β2, β3)′ ∼ N3(µβ,Σβ), bi =
(bi1, bi2, bi3)′ ∼ N3(µb,Σb), with

Σβ = Σb =

 1000 0 0

0 1000 0

0 0 1000

 , µb = µβ = (0, 0, 0)′

and δ = (δ1, δ2, δ3)′ ∼ N3(µδ,Σδ), di = (di1, di2, di3)′ ∼ N3(µd,Σd), with

Σδ = Σd =

 1000 0 0

0 1000 0

0 0 1000

 , µδ = (0, 0, 0)′.

• Model 2D

In this model we assume the mean and shape regression structures given
by (8) and (9), and the following prior distributions: β = (β1, β2, β3)′ ∼
t3(νβ ,µβ,Σβ), bi = (bi1, bi2, bi3)′ ∼ t3(νb,µb,Σb), νb ∼ ε(a0),Σb ∼ IW3(Ψ, c),
with a0 = 0.1, c = 5, νβ = 10, and

Σβ =

 1000 0 0

0 1000 0

0 0 1000

 ,Ψ =

 20 0 0

0 20 0

0 0 20


and µb = µβ = (0, 0, 0)′, δ = (δ1, δ2, δ3)′ ∼ t3(νδ,µδ,Σδ), di = (di1, di2, di3)′

t3(νd,µd,Σd), νd ∼ ε(a0),Σd ∼ IW3(Ψ1, c), with a0 = 0.1, c = 5, νδ =
10, and

Σδ =

 1000 0 0

0 1000 0

0 0 1000

 ,Ψ1 =

 20 0 0

0 20 0

0 0 20

µd = µδ = (0, 0, 0)′

These models were �tted using the OpenBugs program given in the Appendix.
The correspondign DIC values for the �tted models are given by: for Model 2A,
DIC = 3744; for Model 2B, DIC = 3520; for Model 2C, DIC = 3815 and, for
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Model 2D, DIC = 3855. Table 8 gives the posterior estimates of the parameters
associated with model 2B, which provide the least DIC value.

We considered 20000 Monte Carlo iterations (to secure convergence) and our
results were obtained with the posterior samples obtained from last 17000 itera-
tions. Additionally, we performed the diagnostic tests reported for the simulated
data, all of which suggested suitable behavior of the chains. For Model 2B, similar
diagnostic evidences werw obtained (psrf = 1.07).

Table 8: Estimated posterior medians and means, 95% credibility intervals (CI) for the
parameters in model 2B.

Parameter
Posterior inference

Mean MC error Median 95%CI

β1 228.3 0.104 228.5 (203.04,278.61)

β2 8.60 0.152 5.7 (7.73,15.22)

β3 1.5 0.189 1.4 (0.92,2.04)

β4 0.5 0.137 0.4 (0.21,0.93)

Figure 1 shows the posterior mean estimation µ̂ through the time and the esti-
mated trajectory of each of the premiums. The results suggest that the premiums
average tends to increase over time, in non-linear form, as obtained in the model
through a quadratic polynomial time. The Figure 1 shows that the variances are
not homogeneous and tend to increase over time and that this variance can be
modeled by a quadratic or cubic time polynomial. Between the constant shape
model (Model 1C) and the variable shape model (Model 2B), the DIC values
suggest that the �rst model is the best.

6. Conclusions and Extensions

The implementation of the mixed gamma regression model for random e�ects
that are normally distributed and non-normally distributed is very challenging.
In this sense, this approach is more �exible that others, because one can easily
implement it when the distribution of the random e�ects follows the Student-t,
skew normal or another distribution, by using simple and accessible software such
as OpenBUGS. Another advantage of this approach is the easy implementation
for the imputation of missing values, a common situation in longitudinal data for
which a classic approach is much more complicated.

In the application we choose the identity link for the mean parameter. We did
not have problem with this selection. However, other options, like the log link, are
possible.

We selected the exponential distribution for the prior of the degrees of fredom
of the multivariate t distribution, but other distributions may be used. A posterior
study using di�erent distributions can be implemented, such as that proposed by
Fonseca, Ferreira & Migon (2008), and a comparison can be made. In general, a
study of sensitivity to the choice of priors can be done, selecting di�erent types of
distributions, such as hierarchical distributions, among others.
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It also possible to perform the study by modeling the mean and variance,
instead of modeling the mean and shape, and comparing the obtained results.[
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Appendix A. Appendix: BUGS Codes for the Mixed

Gamma Regression

This appendix presents the various pieces of BUGS code used for �tting the
mixed gamma regression in the simulated data example.

Model 1A

model

{

for( i in 1 : m ) {

for( j in 1 : n ) {

Y[i , j] ~ dgamma(a1[i,j] ,a2[i,j])

a1[i,j] <- phi

a2[i,j] <- phi/mu[i , j]

mu[i , j] <- inprod(x[i, j, ], beta[ ])+inprod(z[i, j, ], b[i,1,])

}

b[i,1,1:q ] ~ dmt(cerovec [ ] ,psi[ , ],gl1)
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}

gl1~dexp(a0)

beta[1:p] ~ dmt(alpha[ ] , V1[ , ],gl2)

V1[1:p ,1:p] <- inverse(V[ , ])

psi[1:q,1:q] ~ dwish(R0[ , ], c0)

psiinv[1:q,1:q]<-inverse(psi[1:q,1:q])

phiinv ~ dgamma(a00,a00)

phi<-1/phiinv

}

Model 1B

model

{

for( i in 1 : m ) {

for( j in 1 : n ) {

Y[i , j] ~ dgamma(a1[i,j] ,a2[i,j])

a1[i,j] <- phi

a2[i,j] <- phi/mu[i , j]

log(mu[i , j]) <- inprod(x[i, j, ], beta[ ])+inprod(z[i, j, ], b[i,1,])

}

b[i,1,1:q ] ~ dmt(cerovec [ ] ,psi[ , ],gl1)

}

gl1~dexp(a0)

beta[1:p] ~ dmt(alpha[ ] , V1[ , ],gl2)

V1[1:p ,1:p] <- inverse(V[ , ])

psi[1:q,1:q] ~ dwish(R0[ , ], c0)

psiinv[1:q,1:q]<-inverse(psi[1:q,1:q])

phiinv ~ dgamma(a00,a00)

phi<-1/phiinv

}

Model 2

model

{

for( i in 1 : m ) {

for( j in 1 : n ) {

Y[i , j] ~ dgamma(a1[i,j] ,a2[i,j])

a1[i,j] <- phi[i,j]

a2[i,j] <- phi[i,j]/mu[i , j]

log(phi[i,j])<-inprod(x[i, j, ], delta[ ])+inprod(z[i, j, ], gama[i,1,])

mu[i , j] <- inprod(x[i, j, ], beta[ ])+inprod(z[i, j, ], b[i,1,])

}

b[i,1,1:q ] ~ dmt(cerovec [ ] ,psi[ , ],gl1)

gama[i,1,1:q ] ~ dmt(cerovec [ ] ,psi[ , ],gl1)

}

gl1~dexp(a0)

beta[1:p] ~ dmt(alpha[ ] , V1[ , ],gl2)

delta[1:p] ~ dmt(alpha[ ] , V1[ , ],gl2)

V1[1:p ,1:p] <- inverse(V[ , ])

psi[1:q,1:q] ~ dwish(R0[ , ], c0)

psiinv[1:q,1:q]<-inverse(psi[1:q,1:q])

}
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