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Abstract
One of the most important property of the mixture normal distributions-

model is its flexibility to accommodate various types of distribution functions
(df’s). We show that the mixture of the skew normal distribution and its
reverse, after adding a location parameter to the skew normal distribution,
and adding the same location parameter with different sign to its reverse
is a family of df’s that contains all the possible types of df’s. Besides, it
has a very remarkable wide range of the indices of skewness and kurtosis.
Computational techniques using EM-type algorithms are employed for iter-
atively computing maximum likelihood estimates of the model parameters.
Moreover, an application with a body mass index real data set is presented.

Key words: Mixture distributions; Kurtosis; Skewness; Skew normal
distribution.

Resumen
Una de las propiedades más importantes de la mezcla del modelo de

distribuciones normales es su flexibilidad para acomodar varios tipos de fun-
ciones de distribución (fd). Mostramos que la mixtura de la distribución
normal sesgada y su inversa, después de agregar un parámetro de ubicación
a la distribución normal sesgada, y agregar el mismo parámetro de ubi-
cación con un signo diferente a su inversa, es una familia de fd que contiene
todos los tipos posibles de fd. Además, posee una muy amplia gama de
índices de asimetría y curtosis. Las técnicas computacionales que se utilizan
para calcular de forma iterativa las estimaciones de máxima verosimilitud de
los parámetros del modelo es el algoritmo de esperanza-maximización (EM).
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Además, se presenta una aplicación con un conjunto de datos reales de índice
de masa corporal.

Palabras clave: Distribuciones de mezclas; Kurtosis; Oblicuidad; Distribu-
ción normal sesgada.

1. Introduction

There has been an increased interest in constructing generalized families of
distributions by inserting one or more additional shape parameter to the baseline
distribution. Usually, the generalized family is more flexible to analyzing data
than its baseline distribution provided that the following conditions are fulfilled:

1. Inclusion a large number of the possible nine types 00, 0+, 0−,+0, ++,+−,
−0,−+ ,−− of df’s.

2. Wide range of the indices of skewness and kurtosis,

where 00, 0+, 0−,+0,++,+−,−0,−+ and −− are the abbreviations of symmetric
and mesokurtic, symmetric and leptokurtic, symmetric and platykurtic, positive
skewness and mesokurtic and negative skewness and platykurtic.

Nowadays, there are many generalized families of distributions can be found
in the literature. Among those famous generalized families is the Marshall and
Olkin family, which is obtained by adding a shape parameter, see Marshall & Olkin
(1997). This family has the property that the minimum of a geometric number
of independent random variables (rv’s) with common distribution in the family
has a distribution again in the family. For more general results on the Marshall
and Olkin family, the reader is referred to Barakat, Ghitany & Al-Hussaini (2009),
Jose (2011), Barreto-Souza, Lemonte & Cordeiro (2013) and Cordeiro, Lemonte
& Ortiga (2014a).

One of the most known distribution families is the exponentiated family, which
is obtained by raising the baseline distribution to a positive power. The genesis
of the exponentiated family can be traced back to the first half of the nineteenth
century, but the characters of this family was studied in detail for the first time by
Box & Tiao (1973) (see, also Nadarajah 2005). For more detail about this family,
see Al-Hussaini & Ahsanullah (2015).

Another important generalized family, which is extensively studied by Jones
(2004) and it is considered as a generalization of the exponentiated family is the
beta-distribution family. This family is obtained by substituting the independent
variable in the incomplete beta function by the baseline distribution. For more
general results on the beta-distribution family, see Eugene, Lee & Famoye (2002),
Mameli & Musio (2013), Lemonte (2014) and Barakat & Nigm (2014).

A more flexible generalized family than the beta-distribution family is the
Kumaraswamy family, which was suggested by Cordeiro & Castro (2011). The
Kumaraswamy family is built by replacing the independent variable in the Ku-
maraswamy distribution by any baseline distribution. The Kumaraswamy dis-
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tribution is relatively much appreciated in comparison to the beta distribution,
and has a simple form which can be unimodal, increasing, decreasing or constant,
depending on the parameter values. However, the Kumaraswamy family almost
has the same mathematical properties of the beta-distribution family except it
does not depend on any special function, which making it more tractable than
the beta family. For more general results on this family, the reader is referred to
Correa, Nogueira & Ferreira (2012), Cordeiro, Ortiga & Silva (2014) and Barakat
& Khaled (2017).

One of important generalized families is the Azzalini’s family, which is built on
the skew normal distribution, which is proposed by Azzalini (1985). This family
was generalized by adding an extra shape parameter, by Arellano-Valle, Gomez
& Quintana (2004). For more detail about the Azzalini’s family, see Correa et al.
(2012), Martínez-Flórez, Vergara-Cardozo & González (2013), Azzalini & Capi-
tanio (2014), Pérez-Rodríguez, Villaseñor, Pérezc & Suárez (2017) and Popović,
Cordeiro & Pascoa (2017).

Alzaatreh (2011) suggested a generalized distribution family based on the
gamma distribution. Moreover, in Alzaatreh, Famoye & Lee (2013) proposed
a general way to extend any baseline distribution to a generalized family that
contains its baseline distribution.

It is known that the mixture model, which is a convex combination of two
probability density functions (pdf’s), is a powerful and flexible tool for modeling
complex data for being it combines the properties of the individual pdf’s. Besides
this advantage, the mixture models are frequently used in many applications, e.g.,
see, Titterington, Smith & Makov (1986) and Doğru & Arslan (2017). Barakat
(2015) suggested a generalized distribution family, which is simpler than the most
well-known families for being it is a mixture of a baseline distribution and its
reverse (i.e., the distribution of the negative rv), after adding a location parameter
to the baseline distribution, and adding the same location parameter with different
sign to the reverse of the baseline distribution. By this way the utilized location
parameter turns to a shape parameter and we get a two-parameter generalized
distribution family. This family has an individual trait, on which it has been built,
that if this family contained any distribution, it should contain also its reverse
distribution. This trait makes us to name this family, the stable symmetric family.

Barakat (2015) suggested a new generalized family, denoted by ASSN, by tak-
ing the standard normal distribution as the baseline distribution of the stable sym-
metric family. Barakat (2015) showed that the ASSN (additive stable-symmetric
normal) family contains all the possible types of df’s, except the type 0+, besides
it has very remarkable wide range of the indices of skewness and kurtosis. There-
fore, it is capable of describing many types of statistical data than many other
known families.

Doğru & Arslan (2017) called any generalized family that contains all the pos-
sible types of df’s (nine types), a full family. Moreover, Doğru & Arslan (2017)
suggested two full families, via the mixture of the ASSN family and the standard lo-
gistic or Laplace distributions (note that both of these df’s are symmetric leptokur-
tic, i.e., have the type 0+). Barakat, Aboutahoun & El-kadar (2019) suggested
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a more tractable full family with three parameters, denoted MSSN (multiplica-
tive stable-symmetric normal) family via the mixture of the normal distribution
(ν, 1), ν ̸= 0 and its reverse, after multiplying and dividing, respectively, to them
the same scale parameter. Barakat et al. (2019) showed that via the theoretical
and practical studies the family MSSN is more capable of fitting different types of
data than the ASSN family.

In this paper, we suggest another full family with three parameters, denoted
ASSA (additive stable-symmetric Azzalini), by using the skew normal distribution
instead of the normal distribution (ν, 1), ν ̸= 0, in the definition of ASSN family.
We show that the ASSA family is full and it has a very remarkable wide range of
the indices of skewness and kurtosis. Moreover, we show that it outperforms both
the ASSN and MSSN families.

2. The New Extended Azzalini Distribution-ASSA
Family

Azzalini (1985) introduced a skew-normal distribution by adding a shape pa-
rameter to the normal df. namely, the pdf of the skew-normal distribution is given
by

A(z;λ) = 2ϕ(z)Φ(λz), −∞ < λ < ∞,−∞ < z < ∞,

where ϕ and Φ are the standard normal pdf and df, respectively. The df of the
skew-normal distribution is given by

A(z;λ) = 2

∫ z

−∞

∫ λt

−∞
ϕ(t)ϕ(u)dudt.

Clearly A(x; 0) = ϕ(x). Moreover, A(−x;λ) = 1−A(−x;λ) = A(x;−λ), A(x; 1) =
Φ2(x) (which is the df of the maximum of i.i.d two rv’s from Φ) and if W ∼ A(x;λ),
then W 2 = Z2, i.e., |W | ∼ |Z|, where Z ∼ Φ(x). This implies that the even
moments of η and Z are identical. Also, this implies the existence of the odd
moments of W. Moreover, Azzalini (1985) derived the moment generating function
of W, which is given by

MW (t) = 2 exp(
t2

2
)Φ(δt), δ =

λ√
1 + λ2

. (1)

Using (1), we can easily derive the mean, variance, the third and the fourth central
moments, as

E(W ) := µW = bδ, b =
√

2
π ,

E(W − µW )2 = σ2
W := C

[2]
W = 1− (bδ)2,

E(W − µW )3 := C
[3]
W = (2b2 − 1)bδ3,

E(W − µW )4 := C
[4]
W = 3 + (4δ2 − 3b2δ2 − 6)b2δ2.

 (2)
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For any 0 ≤ ᾱ = 1 − α ≤ 1 and −∞ < c < ∞, the suggested new family,
denoted by ASSA family, is defined via the mixture of the df A(x;λ) and its
reverse A(−x;λ) = A(x;−λ), by

G(y;α, c, λ) = αA(y + c, λ) + ᾱĀ(−y + c, λ) = αA(y + c, λ) + ᾱA(y − c,−λ). (3)

In the sequel, we attach the df G with its rv (say Y ) and write GY (y;α, c, λ) in-
stead of G(y;α, c, λ) (especially, when we talk about the moments of G(y;α, c, λ)).
The pdf and the survival function of GY (y;α, c, λ) are given by

gY (y;α, c, λ) = αA(y + c, λ) + ᾱA(y − c,−λ) (4)

and

ḠY (y;α, c, λ) = 1−GY (y;α, c, λ) = α+ ᾱ− αA(y + c, λ)− ᾱĀ(−y + c, λ)

= αĀ(y + c, λ) + ᾱA(−y + c, λ)

= αĀ(y + c, λ) + ᾱĀ(y − c,−λ).

The following lemma gives the mean, the variance, the coefficient of skewness
and the coefficient of kurtosis of the ASSA family. It is well-known that the
aforementioned statistics uniquely determine the vast majority of the known df’s.

Lemma 1. For the ASSA family, we have

1. The mean is µY = (2α− 1)(bδ − c).

2. The variance is σ2
Y = 1 + 4(bδ − c)2αᾱ− (bδ)2.

3. The coefficient of skewness is

γ
[1]
Y =

C
[3]
Y

σ3
Y

=
(2α− 1)[(2b2 − 1)bδ3 − 8(bδ − c)3αᾱ]

(1 + 4(bδ − c)2αᾱ− (bδ)2)
3
2

.

4. The coefficient of kurtosis is

γ
[2]
Y =

C
[4]
Y

σ4
Y

=
3 + (4δ2 − 3b2δ2 − 6)b2δ2

(1 + 4(bδ − c)2αᾱ− (bδ)2)2

+
4(bδ − c)αᾱ[4(bδ − c)3(ᾱ3 + α3) + 6(1− (bδ)2)(bδ − c) + 4(2b2 − 1)bδ3]

(1 + 4(bδ − c)2αᾱ− (bδ)2)2
.

Proof . The proof follows directly by using the relation (2) and applying Theorem
2.1 in Barakat (2015), after routine calculations.

Note 1. It is easy to check that, when λ = 0 all the parameters µY , σ
2
Y , γ

[1]
Y and

γ
[2]
Y are equal to those corresponding parameters pertaining the ASSN family.
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Note 2. For the ASSA family, the coefficients of skewness and kurtosis satisfy the
following implications:

γ
[1]
Y



= 0, if α = 1
2 ±

√
1
4 − (2b2−1)bδ3

8(bδ−c)3 , (2b2 − 1)bδ3 ≤ 2(bδ − c)3;

> 0, if


α = 1 , λ ≥ 1 or

c > ξ(α, ᾱ, b, δ), 1 > α > 1
2 , or

c < ξ(α, ᾱ, b, δ), 1 > α > 0;

< 0, if


α = 0 , λ ≥ 1 or

c < ξ(α, ᾱ, b, δ), 1 > α > 1
2 , or

c > ξ(α, ᾱ, b, δ), 1
2 > α > 0.

and

γ
[2]
Y



= 3, if



λ = 0 , α > 1
2 , c > 0, or λ = 0, α < 1

2 , c < 0, or

λ = 0 , α > 1
2 , c < 0, or λ = 0, α < 1

2 , c > 0, or

λ = 0, α = 1, orλ = 0, α = 0 , or λ = 1, α = 1
2 , c = 0, or

α = ±
√

1
4 − Z̄ + 1

2 , 1 ≥ 4Z̄, 0 < α < 1, or

α = ±
√

1
4 − Z

¯
+ 1

2 , 1 ≥ 4Z
¯
, 0 < α < 1;

< 3, if

 α ∈
(√

1
4 − Z̄ + 1

2 ,
√

1
4 − Z

¯
+ 1

2

)
, 1
4 > Z̄ > Z

¯
, α > 1

2 , or

α ∈
(

1
2 −

√
1
4 − Z

¯
, 1

2 −
√

1
4 − Z̄

)
, 1
4 > Z̄ > Z

¯
, 0 < α < 1

2 ;

> 3, if


δ ̸= 0, α = 0, or δ ̸= 0, α = 1, or

α /∈
(√

1
4 − Z̄ + 1

2 ,
√

1
4 − Z

¯
+ 1

2

)
, 1
4 > Z̄ > Z

¯
, 1 > α > 1

2 , or

α /∈
(

1
2 −

√
1
4 − Z

¯
, 1

2 −
√

1
4 − Z̄

)
, 1
4 > Z̄ > Z

¯
, 0 < α < 1

2 ;

where ξ(α, ᾱ, b, δ) = (b− 1
2

3

√
2b2−1
αᾱ )δ,

Z̄=
((bδ−c)3+(2b2−1)bδ3)+

√
((bδ−c)3+(2b2−1)bδ3)2−3(bδ−c)2(3b2−2)b2δ4

12(bδ − c)3

and

Z
¯
=

((bδ−c)3+(2b2−1)bδ3)−
√
((bδ−c)3+(2b2−1)bδ3)2−3(bδ−c)2(3b2−2)b2δ4

12(bδ − c)3
.

Moreover, in the above implications, concerning γ
[2]
Y , if the condition 1

4 > Z̄ >
Z
¯

is changed to 1
4 > Z

¯
> Z̄, we will obtain the corresponding implications by

changing every Z
¯

to Z̄ and vice versa.
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Proof . First, consider the assumption γ
[1]
Y = 0, which implies (by using Lemma

1) the equation (2α− 1)[(2b2 − 1)bδ3 − 8(bδ− c)3αᾱ = 0. It is easily checking that
the last equation has the distinct roots α = 1

2 and α = 1
2±

√
1
4 − (2b2−1)bδ3

8(bδ−c)3 , (2b2−
1)bδ3 < 2(bδ − c)3. Clearly, the aforementioned roots can be uniquely described
by the relation α = 1

2 ±
√

1
4 − (2b2−1)bδ3

8(bδ−c)3 , (2b2 − 1)bδ3 ≤ 2(bδ − c)3. The proof of

the remaining cases for γ
[1]
Y are obvious. Finally, all the cases concerning α = 0 or

α = 1, convert the family (3) to the skew normal distribution due to Azzalini (1985)
or its reverse, respectively.Therefore, all the given implications, which pertain to
these cases can directly be proved from the well know properties of the skew normal
distribution. On the other hand, for proving the relations satisfied by γ

[2]
Y = 3,

consider the equation γ
[2]
Y = 3. By using Lemma 1 and after some algebra, we get

96(bδ − c)4(αᾱ)2 − 16(bδ − c)[(bδ − c)3 + (2b2 − 1)bδ3]αᾱ+ 2(3b2 − 2)b2δ4 = 0.

It is easily verifying that the preceding quadratic equation in αᾱ has the following
roots

αᾱ =
−B ±

√
B2 − 4AC

2A
,

where A = 96(bδ − c)4, B = −16(bδ − c)((bδ − c)3 + (2b2 − 1)bδ3) and C =
2(3b2 − 2)b2δ4. Therefore, we have the two roots αᾱ = 1

4 − (α − 1
2 )

2 = Z̄ and
αᾱ = 1

4 − (α− 1
2 )

2 = Z
¯
. This in turns implies that γ

[2]
Y = 3, if α = ±

√
1
4 − Z̄ + 1

2 ,

α = ±
√

1
4 − Z

¯
+ 1

2 , provided that 0 ≤ α ≤ 1. Bearing in mind, when α > 1
2 , the

only two roots α =
√

1
4 − Z̄ + 1

2 and α =
√

1
4 − Z

¯
+ 1

2 can be obtained, while
when α < 1

2 , the other two roots can be obtained, the proof of the remaining cases
for γ

[2]
Y , which are concerning to these roots, are obvious. Finally, all the cases

concerning λ = 0, convert the family (3) to the SSN family. Therefore, all the
given implications, which pertain to these cases can directly be proved from the
results of Barakat (2015).

Theorem 1. The family ASSA is full. Moreover, it has a very remarkable wide
range of the indices of skewness and kurtosis, comparing with the skew normal
distribution.

Proof . The proof is directly follows from Table 1, in which we selected some
values of γ[1]

Y and γ
[2]
Y that covered all possible types of df’s. The selections of the

different values of the parameters α, c and λ were done in the light of Lemma 2,
while the computing the corresponding values of γ[1]

Y and γ
[2]
Y were done in the light

of Lemma 1. Moreover, we constructed a simple code by Matlab 8.2 on laptop
Intel 1.8 GHZ processor.

Table 1 does not only show that the ASSA family contains all the possible
types of df’s, i.e it is a full family, but it possesses very remarkable wide range of
the indices of skewness and kurtosis. For example, γ[2]

Y reached to 7.5435, while the
maximum value of the coefficient of kurtosis of Azzalini’s family is 3.869. Actually,
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Table 1: Some selected values of γ[1]
Y and γ

[2]
Y that cover all possible types of df’s.

Types 0 ≤ α ≤ 1 −∞ < c < ∞ −∞ < λ < ∞ γ
[1]
Y γ

[2]
Y σ2

Y µY

00 0 -5 0 0 3 1 -5
00 0.5 0 1 0 3 1 0
0+ 0.5 0.1 1 0 3.0981 0.8972 0
0+ 0.5 0.3 2 0 3.6233 0.6618 0
0− 0.5 -5 1 0 1.0870 31.6419 0
0− 0.5 1 1 0 2.7659 0.8716 0
+0 0.211324865 -2 0 0.8771 3 3.6667 -1.1547
+0 0.788675134 2 0 0.8771 3 3.6667 -1.1547
++ 0.1 -5 1 2.4380 7.5435 11.8273 -4.4513
++ 0.6 0.5 1 0.027 3.1014 0.6856 0.0128
+− 0.4 -5 1 0.3945 1.2498 30.4035 -1.1128
+− 0.6 1 2 0.0936 2.6625 0.5694 -0.0573
−0 0.788675134 -2 0 -0.8771 3 3.6667 1.1547
−0 0.211324865 2 0 -0.8771 3 3.6667 1.1547
−+ 0.9 -4 1 -2.3378 7.3028 8.1811 3.6514
−+ 0.4 0.5 1 -0.027 3.1014 0.6856 -0.0128
−− 0.6 -5 1 -0.3945 1.2498 30.4035 1.1128
−− 0.3 1 1 -0.1121 2.8365 0.8412 0.1743

since the ASSA family is belonging to the family ASSN, Table 2 in Barakat (2015)
shows that γ

[2]
Y reached to the 13.585, when c = ±10, α = 0.05 and λ = 0. On the

other hand, −2.3378 ≤ γ
[1]
Y ≤ 2.4380, while for the skew normal distribution, we

have −0.995 ≤ the coefficient of skewness ≤ 0.995. Above all this, due to the re-
sults of Barakat (2015), the value of both skewness and kurtosis of the ASSA family
may increase infinitely with increasing the value of some parameters. Finally, since
for the skew normal distribution, we have 3 ≤ the coefficient of kurtosis ≤ 3.869
(cf., Azzalini 1985), then the skew normal distribution contains at most {00, 0+,
+0,++, −0,−+} types of df’s.

We include the graphs of the pdf defined by (4), survival function, and the
hazard function (defined by gY (y;α,c,λ)

ḠY (y;α,c,λ)
) of the ASSA family for some selected

values of γ[1]
Y and γ

[2]
Y that covered all possible types of df’s. These graphs (Figures

1-3) shows that this family is extremely rich and prolific.

2.1. Study of the effect of the parameter λ on γ
[1]
Y and γ

[2]
Y

For studying the effect of the shape parameter λ on the skewness and the
kurtosis of the ASSA family in each of the possible types of df’s, we fix the two
other parameters α, c and check the value of γ[1]

Y and γ
[2]
Y , when the parameter λ

varies. Of course all the types, for which the parameter λ should be constant are
excluded from this study. Namely, in the type +0, we have λ = 0, α > 1

2 , c > 0,
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Figure 1: The graphs of pdf (left panel), survival function (middle panel) and hazard
function (right panel) of ASSA family for types 00, 0+, 0−.
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Figure 2: The graphs of pdf (left panel), survival function (middle panel) and hazard
function (right panel) of ASSA family for types +0, ++, +−.
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Figure 3: The graphs of pdf (left panel), survival function (middle panel) and hazard
function (right panel) of ASSA family for types −0, −+, −−.

or λ = 0, α < 1
2 , c < 0 (cf. Azzalini 1985). Also, the type −0 is obtained, when

λ = 0, α > 1
2 , c < 0, or λ = 0, α < 1

2 , c > 0 (cf. Azzalini 1985). Besides the two
types +0 and −0, the type 00 should be excluded, since both the skewness and
the kurtosis have fixed values 0 and 3, respectively. This study is summarized in
Table 2. Table 2 reveals a very interesting property of the ASSA family, that both
values of the skewness and the kurtosis increase (or decrease) with increasing λ if
the sign of the corresponding type is + (or −). This property is remarkable useful
in maneuvering the skewness and kurtosis via the parameter λ.

3. Statistical Inference for the Parameters of the
ASSA Family

in this section, we implement a simulation study with different sample sizes
and different parameter values of the location-scale ASSA family (the standard
ASSA family is defined by (3)). Namely,

G⟨ASSA⟩(z;α, c, λ, µ, σ) = αA(
z − c1

σ
, λ) + ᾱA(

z − c2
σ

,−λ), (5)

where
c1 = µ− σc,

c2 = µ+ σc, σ > 0, 0 6 α 6 1.

}
(6)
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Table 2: The effect of the parameter λ on γ
[1]
Y and γ

[2]
Y .

Types α c λ γ
[1]
Y γ

[2]
Y Types α c λ γ

[1]
Y γ

[2]
Y

0+ 0.5 0.3 1 0 3.1778 +− 0.6 3 1 0.3455 1.5206

0+ 0.5 0.3 10 0 4.1096 +− 0.6 3 10 0.3680 1.3585

0+ 0.5 0.3 20 0 4.1325 +− 0.6 3 20 0.3684 1.3551

0+ 0.5 0.3 50 0 4.1390 +− 0.6 3 50 0.3686 1.3541

0+ 0.5 0.3 100 0 4.1399 +− 0.6 3 100 0.3686 1.3540

0− 0.5 5 1 0 1.1285 −+ 0.4 0.5 1 -0.0270 3.1014

0− 0.5 5 10 0 1.0703 −+ 0.4 0.5 10 -0.1090 4.6710

0− 0.5 5 20 0 1.0693 −+ 0.4 0.5 20 -0.1108 4.7251

0− 0.5 5 50 0 1.0690 −+ 0.4 0.5 50 -0.1113 4.7407

0− 0.5 5 100 0 1.0689 −+ 0.4 0.5 100 -0.1113 4.7429

++ 0.6 0.5 1 0.0270 3.1014 −− 0.4 3 1 -0.3455 1.5206

++ 0.6 0.5 10 0.1090 4.6710 −− 0.4 3 10 -0.3680 1.3585

++ 0.6 0.5 20 0.1108 4.7251 −− 0.4 3 20 -0.3684 1.3551

++ 0.6 0.5 50 0.1113 4.7407 −− 0.4 3 50 -0.3686 1.3541

++ 0.6 0.5 100 0.1113 4.7429 −− 0.4 3 100 -0.3686 1.3540

Our focus in this study will be on the main two shape parameters c and λ. We
compute the maximum likelihood estimates (MLE) of the parameters by using
the simulated samples and the EM algorithm. The EM algorithm is an iterative
method for approximating the maximum of a likelihood function. In particular,
the EM algorithm is applied when we have unobserved latent variables. A typical
example is that the mixture of df’s (as in this paper), for more details see McLach-
lan & Peel (2000). It is worth mentioning that the EM algorithm is guaranteed to
monotonically converge to local optima under mild continuity conditions (cf. Wu,
1983).

In our study, we were careful that the study covers all the possible types of
df’s. Actually, we select the second case of each type in Table 1 (with given
values of α, c, λ). Moreover, for each case, we choose appropriate values of the
two locations parameters c1 and c2, in the model (5) (e.g, in the second case of
the first type we should have −∞ < c1 = c2 < ∞). Finally, by using the two
relations defined by (6), we compute the values of the remaining parameters µ
and σ. On the other hand, we could now generate three groups of random samples
each of size 100, 1000 and 2000 from the family (5). Furthermore, we repeat this
simulation 10 time for each group. For every replication in each group, we compute
the MLE of the parameters c1, c2, σ, λ and again by using the two relation defined
by (6), we compute the estimate of c. Moreover, we compute the average estimate
values for each parameter and group (each average estimate is computed for the 10
replications of each group). Finally, we attache these averages (as the estimates of
the parameters) with their mean square errors (MSE). All the computation were
implemented by using the package mixsmsn in the R package. The summary of
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this study is shown in Table 3, where the MLE estimate (average estimate) of the
parameters c, σ and λ are denoted by ĉ, σ̂ and λ̂.

In Table 3 and in each sample size group (100, 1000 and 2000), the superscript
“⋆” and the suberscript “⋆” mean that the MSE is the better one and the worst
one, respectively. The results in Table 3 show that with increasing the sample size
the estimated values become more close to the true values. Moreover, the order
of the average MSE (AMSE) for the estimate of the parameters C, σ and λ from
the best (i.e., smallest) to the worst (i.e., largest) are:

AMSE(ĉ): ++ −+ −− 0+ 00 +− +0 0− −0

AMSE(σ̂): 00 0− +− −− −+ −0 ++ +0 0+

AMSE(λ̂): −+ +− ++ 00 0+ 0− −− −0 +0.
Finally, based on the total average of MSE, the three best estimates (in order)

are obtained for the types −+,+− and 00, while the two worst estimates are
appeared in the types +0 and −0.

Note 3. One major concern in estimating the parameters of the mixture df’s is
the identifiability problem. Namely, by definition (see, Teicher, 1963) the family
(4) not being identifiable if we have, for at least two values θ̄′ and θ̄′′ of the vector
θ̄ = (α, c, λ), gY (y; θ̄

′) = gY (y; θ̄
′′), while θ̄′ ̸= θ̄′, where gY (y; θ̄) = gY (y;α, c, λ).

On the other hand, it is known that (cf., Teicher, 1963) in general the class of
mixture of normal df’s is not identifiable, i.e., when we put λ = 0 in the family
(4). This directly implies that the family (4) in general is not identifiable. However,
in our study, the absence of identifiability is not “bad” because our main focus is
not the estimation problem itself, but to pick up a suitable family (with estimated
parameters) to describe the given data (even if this family is not unique). For
more detail about the identifiability problem and the problems of convergence in
the estimation process that are presented in the mixture of normal df’s (which is
a particular model of (4), when λ = 0) see, (Ho & Nguyen 2016) and (Ho 2017).
Note 4. Information matrix essentially describes the amount of information data
provide about an unknown parameter. It has applications in finding the variances
of given estimators. It is known that the skew-normal df has singularity in its
information matrix at λ = 0. Therefore, we expect that the ASSA family has
a singularity at λ = 0. However, singularities are common in mixture models,
including finite mixtures. For more detail on the singularities in the information
matrix of the mixture of the general skew-normal df’s, as well as normal df, see
Ho and Nguyen (2016). It is worth mentioning that, a full picture of singularity
structures in mixture models remain largely unknown. For example, till nowadays
theres no asymptotic theory for finite mixtures of location-scale Gaussian mixtures
(cf., Ho & Nguyen 2016).

4. Application (Real Data Example)

We have seen in Section 3, that at least theoretically that the proposed ASSA
family is capable of fitting a wide spectrum of real world data set for being it
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Table 3: Simulation study.

Types n c ĉ MSE(ĉ) σ σ̂ MSE(σ̂) λ λ̂ MSE(λ̂)

00 100 0 0.4715 0.74344 1 0.7145 0.43289 1 1.0788 0.72483

00 1000 0 0.0503 0.06133
⋆

1 0.9837 0.11927 1 1.3909 0.44727

00 2000 0 0.0417 0.05686 1 0.9819 0.07319 1 1.3523 0.38122

0+ 100 0.3 0.51764 0.53190 5 5.258 2.62339⋆ 2 2.7411 1.00250

0+ 1000 0.3 0.34517 0.07445 5 4.6721 0.63130 2 1.6669 0.50451

0+ 2000 0.3 0.39861 0.13620 5 4.5561 0.60610 2 1.6208 0.48005

0− 100 1 1.3401 0.72540 1 1.098 0.580780 1 1.8068 1.87999

0− 1000 1 0.9881 0.18335 1 0.9987 0.11351
⋆

1 0.9929 0.14934

0− 2000 1 0.964 0.06959 1 1.0451 0.08127 1 0.9366 0.08110

+0 100 2 1.2456 0.85973 2 3.4741 1.89524 0 1.666 1.88112⋆

+0 1000 2 1.3874 0.67550 2 2.8791 0.90890 0 0.9634 0.96617

+0 2000 2 1.2784 0.74123⋆ 2 2.853 0.86179 0 1.1332 1.28640⋆

++ 100 0.5 0.6373 0.36436
⋆

3 2.8175 1.01850 1 1.433 1.33180

++ 1000 0.5 0.51044 0.07300 3 3.00290 0.37604 1 0.94289 0.08778
⋆

++ 2000 0.5 0.4919 0.03552
⋆

3 3.0947 0.20412 1 0.985 0.04050
⋆

+− 100 1 1.31442 0.63748 2 1.8064 0.37302
⋆

2 1.8888 0.53229
⋆

+− 1000 1 0.1156 0.16640 2 1.8561 0.22214 2 1.8211 0.34905

+− 2000 1 1.0686 0.15566 2 1.9413 0.22447 2 1.8937 0.34765

−0 100 2 1.6484 1.0339⋆ 2 3.0432 1.72500 0 1.3027 1.44027

−0 1000 2 1.2957 0.739747 2 3.0409 1.07756 0 1.0233 1.03767

−0 2000 2 1.3482 0.70960⋆ 2 2.9046 0.95301⋆ 0 0.9535 0.95890⋆

−+ 100 0.5 0.6841 0.47867 2 2.1959 1.02785 1 1.0145 0.54222

−+ 1000 0.5 0.43637 0.08594 2 2.2127 0.29756 1 0.9646 0.09372

−+ 2000 0.5 0.51521 0.073446 2 1.9922 0.19136 1 0.9319 0.10826

−− 100 1 1.03821 0.364832 2 2.3823 0.88085 1 2.118 2.07397

−− 1000 1 1.04436 0.16356 2 2.0302 0.19247 1 1.0228 0.13439

−− 2000 1 1.04514 0.13306 2 1.9822 0.05387
⋆

1 0.9504 0.07409

contains all the possible types of data (i.e., it is a full family). Moreover, it
possesses a very wide range of the indices of skewness and kurtosis. In this section
we will confirm its outperforming than the two competitors families ASSN and
MSSN via an example of a real data. The standard ASSN and MSSN families are
respectively defined by G+(x;α, c) = αΦ(x+c)+αΦ(x−c) (cf., Barakat 2015) and
G⋆(x;α, c, ν) = αΦ(xc −ν)+ ᾱΦ(cx+ν), ν ̸= 0 (cf. Barakat, Nigm & Harpy 2017).
In this example, we use the location-scale ASSA, ASSN and ASSM families, which
are respectively defined by (5),

G⟨ASSN⟩(x;α, c, µ, σ) = αΦ(
x− c1
σ1

) + ᾱΦ(
x− c2
σ2

), (7)

where σ1 = σ2 = σ, c1 = µ− c, c2 = µ+ c, 0 6 α 6 1, and

G⟨MSSN⟩(x;α, c, ν, µ) = αΦ(
x− c1
σ1

) + ᾱΦ(
x− c2
σ2

), (8)

where c = σ1 = 1
σ2
, c1 = µ+ cν, c2 = µ− ν

c , 0 6 α 6 1.

Revista Colombiana de Estadstica 42 (2019) 167–183



180 H. M. Barakat, A. W. Aboutahoun & N. N. El-kadar

We fit the families (5), (7) and (8) to the body mass index data “BMI ”,
which is incorporated in the package mixsmsn in the R-Package. The body mass
index data set was collected for men aged between 18 to 80 years old. It came
from the national health and nutrition examination survey, which was made by the
National Center for Health Statistics (NCHS) of the Center for Disease Control
(CDC) in the USA. Actually, with the increase of chronic diseases around the
USA, attention was attracted to the obesity problem in the past few years. It is
known that people with obesity have higher chances of developing chronic diseases.
To quantify overweight and obesity, the BMI, which is defined as the ratio of
body weight in kilograms and body height in squared meters, was selected as the
standard measure, where people with high BMI (> 25) are considered to have
overweight and people with BMI > 30 are considered to be obese. The summary
statistics for this data set, which has size n = 2107, is given in Table 4.

Table 4: Summary statistics for the BMI data set.

minimum maximum median mean variance SK=skewness KU=kurtosis
14.86 64.16 26.89 28.19 56.2279 0.7135727 3.294964

Table 4 shows that, this data most probably belongs to the distribution type
+ + . In view of Figure 2, this data may come from a bimodal df bimodal (this
is of course is not certain, because Figure 2 is just an example for the type ++).
However, relying on Sarle’s bimodality coefficient (cf., Ellison 1987), B = 1+(γ[1])2

γ[2] ,

γ[1] and γ[2] are the skewness and kurtosis, respectively. While, we have 0 ≤ B ≤ 1,
the value of B when is greater than 5/9 may indicate a bimodal or multimodal
distribution. The sample value of B is

B̃ =
1 + (SK)2

(Ku− 3) + 3(n−1)2

(n−2)(n−3)

= 0.5023456 <
5

9
.

Thus, this data most probably belongs to a unimodal distribution, which is of type
++ .

We compared the performances of the three families defined in (5), (7) and (8)
in fitting the given data sets by using the Akaike information criterion (AIC)
Akaike, Petrov & Csaki (1973) and the Bayesian information criterion (BIC)
Schwarz (1978). These criteria are based on the likelihood value of the model,
the number of observations and the number of parameters thereof. The computa-
tions of the estimates of the parameters and the values of AIC and BIC criteria
were carried out by using the mix.print() function in the mixsmsn Package in the
R-Package (see Table 5). Table 5 shows that based on these criteria, the ASSA
family has the best performance, followed by the MSSN family. Moreover, the
fitting test is implemented by using the K-S test statistic. The result of the fitting
test is given in Table 5 (in last two columns). The result of this study shows that
the three considered families were able to fit the given data. On the other hand,
the ASSA family is the best one followed by MSSN.
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Table 5: Comparison of the fits of the ASSN, MSSN, and ASSA families.

Family Parameter estimations log-likelihood estimate AIC BIC K-S test P-value
ASSN ĉ1 = 32.663

ĉ2 = 21.429 -9771.748 19551.5 19568.46 0.0218 0.2674
σ̂ = 40.39

MSSN ĉ1 = 32.663

ĉ2 = 21.429 -7659.919 15329.84 15346.80 0.0163 0.6329
σ̂1 = 40.39 = 1

σ̂2

ASSA ĉ1 = 20.136

ĉ2 = 28.489 -7206.371 14422.74 14445.35 0.0160 0.6507
σ̂ = 8.418

λ̂ = 1.070
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