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Abstract

With the advent of high throughput technologies, the high-dimensional
datasets are increasingly available. This has not only opened up new insight
into biological systems but also posed analytical challenges. One important
problem is the selection of informative feature-subset and prediction of the
future outcome. It is crucial that models are not overfitted and give accu-
rate results with new data. In addition, reliable identification of informative
features with high predictive power (feature selection) is of interests in clin-
ical settings. We propose a two-step framework for feature selection and
classification model construction, which utilizes a nested and repeated cross-
validation method. We evaluated our approach using both simulated data
and two publicly available gene expression datasets. The proposed method
showed comparatively better predictive accuracy for new cases than the stan-
dard cross-validation method.

Key words: Area under ROC curve; Cross-validation; Elastic net; Random
forest; Support vector machine.

Resumen

Con la llegada de las tecnologías de alto rendimiento, los conjuntos de
datos de alta dimensión están cada vez más disponibles. Esto no sólo ha
abierto una nueva visión acerca de los sistemas biológicos, sino que tam-
bién plantea desafíos analíticos. Un problema importante es la selección de
subconjuntos de variables y la predicción de resultados futuros. Es crucial
que los modelos no sean sobreajustados y que den resultados precisos con
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nuevos datos. Además, la identificaci ón confiable de variables informati-
vas con alto poder predictivo (selección de características) es de interés en
entornos clínicos. Proponemos un procedimiento de dos etapas para la se-
lección de variables y la construcción de modelos de clasificación, el cual
utiliza un método de validación cruzada anidada y repetida. Evaluamos nu-
estro enfoque utilizando tanto datos simulados como dos conjuntos de datos
de expresión génica disponibles públicamente. El método propuesto mostró
una precisión predictiva comparativamente mejor para casos nuevos en com-
paración con el método estándar de validación cruzada.

Palabras clave: Área bajo la curva ROC; Validación cruzada; Red elástica;
Bosque aleatorio; Máquina de vectores de soporte.

1. Introduction

Genetic basis of research for complex diseases such as cancer has been increas-
ingly popular in recent years due to the invent of high throughput technologies such
as microarray and sequencing technologies. Such technologies query the expression
of thousands of genes simultaneously (Trevino, Falciani & Barrera-Saldana 2007).
Many cancer researches over the past several years have been devoted to determine
differentially expressed genes between tumor cells and normal cells (Zhang, Zhou,
Velculescu, Kern, Hruban, Hamilton, Vogelstein & Kinzler 1997). The information
obtained from gene expression analysis often helps in predicting patients’ clinical
outcomes.

Also there have been researches aiming to explore the possibilities of cancer
diagnostics and classification using gene expression data (Van’t Veer, Dai, Van
De Vijver, He, Hart, Mao, Peterse, Van Der Kooy, Marton, Witteveen et al. 2002,
Pomeroy, Tamayo, Gaasenbeek, Sturla, Angelo, McLaughlin, Kim, Goumnerova,
Black, Lau et al. 2002). However, due to the unique structure of gene expression
data, researchers are facing some major challenges. First, gene expression datasets
have very high dimensionality; they usually contain thousands of genes assayed on
only a few subjects, usually a couple of hundreds. Second, most genes are irrele-
vant to disease classification. Therefore, selecting a few genes that are associated
with disease is important. Selecting subset of genes not only helps reducing the
dimensionality of data but also helps improving the classification accuracy (Golub,
Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loa, Downing, Caligiuri,
Bloomfield & Lander 1999, Lu & Han 2003).

There are three general methods of feature selection including filter methods,
wrapper methods, and embedded methods (Guyon 2006). Filter methods use
variable ranking techniques for variable selection. For example, the Chi-square
statistic is computed for each feature, and these features are ranked based on the
Chi-square statistics, then a threshold is determined to remove irrelevant features.
Wrapper methods use search strategies (exhaustive search, forward selection, etc.)
to generate various combinations of feature subsets. Then, the best combination
of features is evaluated by a learning algorithm. Wrapper methods keep adding
and/or removing features to find the best feature subsets that maximizes the model
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performance (Dash & Liu 1997). Embedded methods build a predictive model and
select features simultaneously. For embedded methods, the feature subset is deter-
mined by the predictive model when the final model is chosen (Guyon 2006). For
example, least absolute shrinkage and selection operator (Lasso) is an embedded
feature selection method, in which the feature subset is chosen by the final model.
There are many articles published discussing about the feature selection meth-
ods. For example, Hira & Gillies (2015) reviewed the details of three methods,
and listed several practical algorithms of feature selection methods. Saeys, Inza &
Larranaga (2007) summarized the three feature selection methods, and introduced
the application of feature selection methods in biostatistics. Kumar & Minz (2014)
illustrated the processes of feature selection methods, and also detailed the algo-
rithms for each feature selection method with their computational details. Each
method has its own advantages and disadvantages. In this manuscript, we utilize
embedded methods because of the following strengths: (1) embedded methods
consider the correlation among predictor variables as well, rather than the rela-
tionship between outcome and predictors only like filter methods; (2) embedded
methods are computationally less intensive than wrapper methods; (3) embedded
methods can select features and build classification model simultaneously so that
we can study the selected features, as well as predict the future outcome when
new data are introduced.

For embedded methods, building the predictive model is the most critical part.
After the predictive model is built, the subset of features is also selected. To
build the predictive model, the original gene expression dataset is partitioned
into training and test datasets. The training dataset is used to build the model
while the test dataset is used to assess the test error (generalization error) of the
chosen final model. Cross-validation is generally used to find the optimal model
by controlling the overfitting of data (Hastie, Tibshirani & H. 2009, Braga-Neto &
Dougherty 2004). However, the implementation of a single cross-validation may
not perform well, mainly due to the randomness of generation the cross-validation
folds (Krstajic, Buturovic, Leahy & Thomas 2014). Krstajic et al. (2014) indicated
some pitfalls of using a single cross-validation and have proposed a repeated cross-
validation to replace single cross-validation in model selection. Also they have
demonstrated that repeated cross-validation method can result in a more robust
and stable model. On the other hand, nested cross-validation creates multiple
layers of cross-validation which can be used in both model selection and model
assessment (Stone 1974). For example, in a two-layer cross-validation, a set of
tuning parameters is tuned in the inner loop, and the other tuning parameters are
estimated to determine the final predictive model in the outer loop. Another way
to use nested cross-validation for model assessment is that the tuning parameters
are estimated and the final model is selected in the inner loop, and the model
performance is evaluated in the outer loop. Whelan, Watts, Orr, Althoff, Artiges,
Banaschewski, Barker, Bokde, Büchel, Carvalho et al. (2014) applied a three-layer
nested cross-validation technique to optimize the imaging threshold in the inner
loop, to select the tuning parameters of logistic regression via elastic net penalty
in the middle loop, and to assess the model performance using the area under the
ROC (receiver operating characteristics) curve from the outer loop.
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As mentioned before, both nested cross-validation and repeated cross-validation
are designed for model selection. Nested cross-validation utilizes multi-layer cross-
validation to tune more parameters, and repeated cross-validation repeats the
procedure of generating K-folds to alleviate the randomness of fold generation. In
this manuscript, we propose a new two-step framework for feature selection and
model selection, and apply the proposed algorithm in microarray gene expression
data analysis. The training data is first partitioned in K folds, then, within each
kth fold, V folds are nested. Our proposed method has two steps: in step 1, we uti-
lize above mentioned classifiers (linear regression via elastic net, Support vector
machine, and random forest) to select the features in the inner layer of cross-
validation loop; in the step 2, we utilize the classifiers to build classification model
using the selected feature subset in the step 1. In addition, we implement the
proposed approach both in the simulated data and real life data assessing its per-
formance and present the comparison with different embedded variable selection
methods (elastic net, SVM, random forest) with respect to predictive performance
and selection accuracy. To the best of our knowledge, although the idea of using
nested/repeated cross-validation has been mentioned elsewhere, (i.e. Stone, 1974
firstly briefed the idea of double cross-validation in the research) no existing liter-
ature has proposed or assessed a systematic framework to utilize nested/repeated
cross validation at computational level.

This manuscript has been organized as follows: in Section 2, we briefly intro-
duce relevant statistical concepts and models; in Section 3, we propose the frame-
work of nested/repeated cross-validation for model selection and feature selection;
in section 4, we present a simulation study to investigate and compare the dif-
ference between using single cross-validation and nested/repeated cross-validation
to build the predictive model; in Section 5, two publicly available gene expres-
sion datasets on leukemia by Golub et al. (1999) and The Cancer Genome Atlas
Studies (TCGA Network 2017) on cervical cancer data are used to demonstrate
the applicability of repeated/nested cross-validation method in analyzing real high
dimensional data.

2. Background

A typical gene expression dataset can be presented as D = {(x1, y1) , (x2, y2) ,
. . . , (xn, yn)}, where i = 1, 2, . . . , n, indicating n subjects or samples. yi ∈ {−1, 1}
denotes the outcome of ith subject, and the p-dimensional vector xi defines the ob-
served independent variables of subject i. The dataset is usually high-dimensional
with many variables or features, but a relatively small sample size of n. Then a
predictive model can be defined as a statistical model f̂ , an estimate of the true
function f , where f is a function that maps from the gene expression data to the
class of the subjects:

f : X → Y (1)

In embedded feature selection, the model optimization and variables selection
are carried out simultaneously using the coefficient shrinkage or variable ranking
criteria. For example, Lasso shrinks some coefficients of variables to zero, and

Revista Colombiana de Estadística 43 (2020) 103–125



Nested and Repeated Cross Validation 107

these variables are eliminated from the model. Usually, the statistical model f̂
is estimated by optimization of the objective function, which is similar to empir-
ical risk function minimization. In our work, three different embedded methods
are implemented in building the predictive model and feature selection, includ-
ing regularization regression via elastic net, support vector machine, and random
forest.

2.1. Regression via Elastic Net Penalty

The elastic net combines the L-1 norm penalty of Lasso and L-2 norm penalty
of ridge regression (Zou & Hastie 2005). Elastic net does an automatic variable
selection and allows for more than n (number of observations) variables to be se-
lected. This is because Lasso can automate the variable selection by shrinking
some coefficients to zero, while ridge regression helps in regularizing the process,
and the elastic net can achieve both advantages of these two methods. In classifica-
tion applications, the negative binomial likelihood function is used with elastic net
penalty. The model is estimated by minimizing the following objective function.

arg min
β0,β

{[
1

N

N∑
i=1

yi

(
β0 + xT

i β
)
− log

(
1 + eβ0+xT

i β
)]

+ λ

[
(1− α) ∥β∥ 2

2
+ α ∥β∥

]}
(2)

In the above expression, the first component is the loss function which penalizes
the misclassification rate, and the second component is the regularization term.
In (2), α and λ are called tuning parameters. The elastic net penalty is controlled
by α, which bridges between lasso (α = 1) and ridge regression (α = 0), whereas
the overall strength of the penalty is controlled by λ. The optimal value of α
and λ are estimated by minimizing the above objective function. Some of the
small coefficients are shrunk towards zero, and the corresponding predictors will
be excluded from final model, denoted as “irrelevant” features. The remaining
features are considered as “informative” features. The final model f̂ can be used
to predict the future outcome when new data is available.

2.2. Support Vector Machine

Support vector machine (SVM) creates a classifier function by constructing
hyperplanes that separate different categories of the training data, and choosing
the hyperplane with the maximal margin between two classes (Cortes & Vapnik
1995). Given labelled pairs (xi, yi) ,xi ∈ Rp, yi ∈ {1,−1} , i = 1, 2, 3, . . . , n, all
the hyperplanes can be written as wTx + b = 0. Two parallel hyperplanes can
separate two classes of data, the region between these two hyperplanes is called
“margin”, and the distance between these two hyperplanes is 2

∥w∥ . SVM aims to
find the hyperplane with the maximal margin by solving the following unconstraint
optimization problem:

arg min
w,ξi,b

∥w∥2 + C

N∑
i=1

max(0, 1− yi
(
wTϕ(xi) + b

)
(3)
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In the expression (3), w is the weight function that we want to minimize
in order to maximize the distance 2

∥w∥ . C is a tuning parameter which is a
trade-off between misclassification and size of margin. For example, a large C
results in a relatively smaller-margin while most of samples are correctly classi-
fied, whereas a small value of C results in a relatively larger-margin but it allows
more samples to be misclassified. SVM usually utilizes the kernel function, as
ϕ (xi) in (3), to transform the original data from input space to the feature space,
which enables linearly inseparable data in low-dimension to be linearly separa-
ble in high-dimension to find the best hyperplane. One commonly used kernel
function is Gaussian kernel (also called Radial Base Function), which is given by
K (x, x′) = ϕ (x′

i)ϕ (xi) = exp
(
−γ∥x− x′∥ 2

)
. The Gaussian kernel is used in our

work.
In the optimization problem presented in expression (3), the tuning parameters

for SVM with Gaussian kernel are C and γ. C is penalty parameter for misclassified
samples and γ is kernel parameter. During the iterative process, the variables are
ranked according to some criteria such as area under curve (AUC). The importance
of each feature can be explained by the change in AUC when the feature is removed
(Nguyen & de la Torre F. 2010). We determine the importance of each feature by
assessing how the performance is influenced with or without having the feature. If
removing a feature worsen the classification performance, the feature is considered
important. The top-ranked features thus selected are the final feature subset.

2.3. Random Forest

Random forest for classification is an ensemble method that constructs multi-
ple bootstrapped decision trees using training samples and combines all the boot-
strapped trees to build the predictive model. In random forest, multiple boot-
strapped dataset are generated from raw training set. Each bootstrapped dataset
will be used to grow a separate decision tree. Then, all the decision trees are
combined using the voting strategies (e.g. majority vote, which is the mode of all
single decision trees (Breiman 2001). The detailed steps of random forest can be
described as follows (1) Bootstrap samples of size nare drawn from data D denoted
as Db = {(x1b, y1b) , . . . , (xnb, ynb)}, to create a decision tree; (2) the second step
is to train the decision tree fb based on the bootstrap samples Db to get f̂b. In
growing the single decision tree, m variables are randomly selected at each node of
the tree. The m selected variables split the tree to achieve the minimum error; (3)
the third step is to grow the tree to largest extent possible (no pruning tree); (4)
repeat the previous three steps to build B bootstrapped decision trees. Then, the
final ensemble model is obtained by combining the different decision trees using
majority vote, denoted as f̂ = mode(f̂1, . . . , f̂B).

Variable importance (also known as predictor ranking) is a critical measure-
ment in both decision trees and random forests which depends on the contribution
to the tree by each predictor. The Random forest utilizes variable importance
to rank the variables. Permutation techniques can be used with random forests
to measure the variable importance, the details of computing the variable impor-
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tance for each variable are not given here, but can be found elsewhere (Strobl,
Boulesteix, Kneib, Augustin & Zeileis 2008). Features which produce large values
for this score are ranked as more important than features which produce small
values. The important variables are then selected by ranked variable importance.

3. Methods

In this section, we introduce the proposed method of feature selection and
model selection using nested and repeated cross-validation. When building the
predictive model, the most critical part for the model is to identify the optimal
values of the tuning parameters to achieve the minimum test set error.

One of the widely-used techniques for model selection is K-fold cross-validation,
for which the final model is chosen when the minimum cross-validation error is
achieved (Hastie et al. 2009). In the K-fold cross-validation, the original training
dataset is randomly divided into K subsets of equal size then the following step
repeats K times: K − 1 of the subsets are combined to build the model, and the
remaining one subset is used to compute the prediction errors. The K sets of
predication errors are averaged to produce the cross-validation error. To estimate
the optimal value of tuning parameters, a grid of m candidate values of tuning pa-
rameters are created, and m models are built, indexed by different value of tuning
parameters. The cross-validation error of each of m models is computed, and the
final model is then determined by the model with minimum cross-validation error.
Furthermore, the feature subset also can be determined by the model using some
criteria, such as coefficients shrinkage.

As mentioned in the introduction section, the commonly used single cross-
validation is not efficient in dealing with overfitting of the data in general (Varma
& Simon 2006). Repeated cross-validation is an improved method by generating
multiple sets of K folds. Also, the cross-validation error is calculated as the average
across the repeated partitions. On the other hand, we sometimes want to select
features, and use the selected features to build a predictive model. In this case,
nested cross-validation can be very useful. To achieve the above goals, we propose a
systematic framework of combining nested and repeated cross-validation to build
the final model. In the proposed method, the cross-validation is carried out in
two different layers: inner loop and outer loop. In the inner loop, the subset of
features is selected as candidate features. In the outer loop, only the candidate
features selected in the inner loop are carried forward to build the final model.
The performance of nested and repeated cross-validation has not been extensively
explored and discussed in the past mainly because of the computational costs. In
this article, we show that the nested and repeated cross-validation can improve
the predictive performance and selection accuracy over the traditional single cross-
validation method.
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3.1. Repeated Cross-Validation

In the repeated cross-validation method, instead of generating only single set of
K-folds, multiple sets of K folds are generated. Also, the standard cross-validation
error

CV (θ) =
1

N

K∑
k=1

∑
i∈F−k

L
(
yi, f̂

−k(i)
θ (xi, θ)

)
(4)

is replaced with the repeated cross-validation error

CVr (θ) =
1

RN

R∑
r=1

K∑
k=1

∑
i∈F−k

L
(
yi, f̂

−k(i)
θ (xi, θ)

)
(5)

Then, the value of tuning parameters is chosen as:

θ̂ = argmin
θ∈{θ1,...,θm}

CVr (θ) (6)

In the equations above, N represents the total sample size of the training data,
f
−k(i)
θ (·) is the function to estimate the coefficients, and L(·) is the loss function.

3.2. Nested cross-validation

Nested cross-validation for model selection is usually used in the case when
multiple tuning parameters are estimated. In this approach, instead of generating
only a single layer of K-folds, multiple layers of cross-validation loops are cre-
ated. The numbers of multiple layers are determined by the numbers of tuning
parameters to be estimated. If a parameter is tuned in inner loop, the value of
this parameter is fixed, and assigned the fixed value in outer loop to estimate the
additional tuning parameters.

In the outer layer of cross-validation, training data is partitioned into three
folds (see Figure 1). Each fold will use two third of the training data (66.7% of
original training) to train the model, and the remaining data (33.3% of original
training) is used to estimate the CV error in the outer loop. In the inner layer of
cross-validation, each fold will use two thirds of the training data generated by the
outer layer (66.7%× 66.7% = 44.4% of original training data), and the remaining
data (66.7% × 33.3% = 22.2% of original training) will be used to compute the
CV error for the inner loop.

3.3. Model Selection Using Nested and Repeated
Cross-Validation

We now introduce the details of our proposed method: nested and repeated
cross-validation for classification model. The method has two steps: feature se-
lection step and classification model construction step. In the proposed method,
there are two layers of cross-validation, the training data is partitioned into K
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folds of roughly equal size; this layer is called outer loop of cross-validation, and
each dataset with Kth part removed is called inner training dataset, so there are
K different inner training dataset; then, each inner training dataset is partitioned
into V folds. Therefore, there are V sub-folds nested within each of the K folds.
Figure 2 shows the process of our proposed method.

Figure 1: Showing the illustration of nested cross-validation, when K,V = 3.

Figure 2: The flowchart showing the nested/repeated cross-validation in model
selection.
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The details of the algorithm are given as follow: The inner layer CV creates K
times V models and determines the feature subset by combining all the models.
The selected feature subset is then used in outer loop to estimate the tuning
parameter. After the model is chosen, the model performance is evaluated using
the held-out test data.

Next, an individual classifier (logistic regression via elastic net, SVM, and
random forest) is used to train inner training dataset to select feature subsets
using selection criteria (coefficient shrinkage method for logistic regression and
variable ranking for SVM, and random forest). The classifier will select a set of
informative feature subset. We then repeate cross-validation method to repeat the
abovementioned step to re-partition inner training dataset to generate another V
folds, R times. The individual classifier is also used to generate R different feature
subsets. The final feature subset is determined using voting strategy, where any
feature is selected more than 50% times (> R

2 ) is selected as the informative
feature. After the feature subset is determined, the irrelevant features are removed
and only the selected features are used in the next step. The step 2 is to build
the final classification model in the outer loop. The simplified training data is
used in this step, while the irrelevant features are removed, and only the selected
features from step 1 are remaining. We build the final classification model using
three different classification methods (logistic regression via elastic net, SVM, and
random forest), the final classification model can predict the future outcome when
new data is introduced, as well as evaluate the performance of selected model. The
details of the proposed method is given as follows:

3.4. Step 1: Variable Selection

1. Divide the training dataset D into K folds of roughly equal size. For k = 1
to K, define data D−k with kth part removed for outer training data, and
Dk with only kth part remained for outer test data.

a) Repeat the following steps R times (R is a predetermined number).
Randomly divide dataset D−k into V folds of roughly equal size. For
v = 1 to V .

i. Define V different data D−kv with vth part removed for inner train-
ing data, and Dkv with only vth part remained for inner test data.
For m = 1 to M (M is the number of grid value of the tuning
parameters).
A) Build statistical model f̂θm

= f̂(D−kv; θm).
B) Apply f̂θm on inner test data Dkv, and compute the error using

the loss function in inner test set.

Errθm =
∑

i∈D−kv

L
(
yi, f̂

(
D−kv; θm

))
ii. Compute the V -fold cross-validation error for each m, therefore,

there are m different CV errors. Nv is the number of samples in
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inner loop for kth part.

CV
(
f̂ ; θm

)
=

1

Nv

V∑
v=1

∑
i∈D−kv

L
(
yi, f̂

(
D−kv; θm

))
iii. By repeating the above step Rtimes, we derive CV error for the

repeated cross-validation procedure for each m. Nv is the number
of samples in inner loop for kth part.

CVR

(
f̂ ; θm

)
=

1

NvR

R∑
r=1

V∑
v=1

∑
i∈D−kv

L
(
yi, f̂

(
D−kv; θm

))
b) Determine the optimal value of tuning parameter from all possible m

θ̂m = argmin
θ∈{θ1,θm}

CVR

(
f̂ ; θm

)
c) The optimal values of tuning parameters are then fixed in the objective

function, and the objective function is minimized using gradient descent
algorithm (Zhang 2004, Shalev-Shwartz, Singer, Srebro & Cotter 2011).
When the final model is then chosen, and feature subset is determined
by variable ranking method or coefficient shrinkage methods. Let s(·)
be an indicator function, represented by:

s(x) =

{
1 if pi is selected by the final model i = 1, 2, . . . , p

0 if pi is not selected

Then, the feature subset can be denoted as: FS = {s(p1), s(p2), . . . , s(pp)},
where for each of k-fold, we derive a “winner” feature subset, denoted
as FSk = {s(p1), s(p2), . . . , s(pp)}

2. For these K “winner” feature subsets, we compute the number of times
that each feature is selected. Then, the final feature subset is defined as:
FSfinal = {fs(p1), fs(p2), . . . , fs(pp)}, where fs(·) is an indicator function,
indicating whether the pth feature is selected, and represented by

fs(x) =

{
1 if pi is selected greater or equal to K

2 times, i = 1, 2, . . . , p

0 if pi is selected less than K
2 times i = 1, 2, . . . , p

3. The previous step creates a subset of p′ selected variables, where p′th is
the number of selected variables. The training data is subsetted for these
selected variables for model building.

3.5. Step 2: Classification Model Building

1. Reduce the training dataset D to D′, where D′ = (D; p′). Only the variables
selected in Step 1 are kept in D′
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2. Using same fold that was generated in step 1. For k = 1 to K

a) Define data D′(−k) with kth part removed for training, and D′(k) that
kth part remained for test data. Repeat the following step R times (R
is predetermined scaler, representing the repeat times). For m = 1 to
M (M is the numbers of grid value of tuning parameters)

i. Build statistical model f̂θm
= f̂(D′(−k)

; θm)

ii. Apply f̂θm
on inner test data D′(k), and compute the error using

the loss function for each m.

Errθm
= L

(
yi, f̂(D

′(−k)
; θm)

)
b) Compute the K-fold cross-validation error for each of the M values of

the tuning parameters

CV
(
f̂ ; θm

)
=

1

N

K∑
k=1

∑
i∈D′(−k)

L
(
yi, f̂(D

′(−k)
; θm)

)

c) Derive CV error for the repeated cross-validation procedure

CVR

(
f̂ ; θm

)
=

1

KR

R∑
r=1

K∑
k=1

∑
i∈D′(−k)

L
(
yi, f̂(D

′(−k)
; θm)

)
3. Determine the optimal value of tuning parameter from all possible m points

θ̂ = argmin
θ∈{θ1,...,θm}

CVR

(
f̂ ; θ

)
4. The optimal value of tuning parameters is then fixed in the objective func-

tion, and the objective function is minimized by some optimization methods,
such as gradient descent methods, in order to obtain the final model.

To sum up, the method to build and select the predictive model using re-
peated and nested cross-validation has more steps than standard single step cross-
validation. The complete process is illustrated in Figure 2. The inner loop is
created to select a candidate subset of features. While training the model in the
inner loop, the V -folds are generated and repeated R times to alleviate the ran-
domness of generation of each fold. This will reduce the variance. The outer
loop will use subset of selected variables to build the final classification model. A
simulation study has been presented evaluating the efficiency and comparing its
performance with other standard methods. Also, the application of this approach
has been presented with two real datasets.
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4. Simulation Study

Suppose Yi is a binary disease outcome, representing the normal cell or cancer
cell for the ith sample and suppose Xi is p-vector that represents the gene ex-
pression for the ith sample. According to the nature of genetic pathology, there
were several characteristics we needed to consider in our simulation study: (1)
some genes are critical to the disease outcome, and those genes are differentially
expressed between cancerous and non-cancerous cells; (2) a few genes may work as
a group to influence the disease outcome and those genes are mutually correlated
(Hira & Gillies 2015). We carry out a cross-sectional simulation study consid-
ering the above essential biological settings. We apply the aforementioned three
classification and feature selection methods in the simulated data to assess the per-
formance of the proposed methods and compare to the standard cross-validation
method.

4.1. Generating the Predictors

We simulated our microarray data set with a fixed number of (n = 100) sam-
ples. We consider a small pool (p = 2000) and a large pool (p = 5000) of features.
The simulated design matrix X consists of three groups of informative features and
remaining are irrelevant features. The first group is the most important group,
which has 1% of all p predictors. The numbers of the features of the three im-
portant feature groups are 1%, 2%, and 2% of all p predictors, respectively. We
use three different strengths of correlations coefficient (ρ = 0.3, 0.5 and 0.8) for
the genes (predictors) within the group but assume that the predictors between
different groups are independent. Thus, we define that Xg, g = 1, 2, 3, indicating
the gene expression for the three groups of important genes. The data is simulated
from a multivariate normal distribution:

Xg ∼ MVN
(
µg,Σg

)
, g = 1, 2, 3 (7)

where, µg = 0, and Σg = T
1
2ΓT

1
2 , where

Γ =

1 · · · ρ
...

. . .
...

ρ · · · 1

 , and T =

 σ2 · · · 0
...

. . .
...

0 · · · σ2

 ,

ρ is the pre-determined correlation coefficient. The remaining 95% predictors
are simulated from the standard normal distribution Xi ∼ N (0, 1) , i = (0.05p +
1), . . . , p. Then, we combine the Xg and Xi to create our final design matrix X. In
reality, the structure of noise terms could be very complex. They can be mutually
correlated and even correlated with the informative features. To investigate these
complicated scenarios, the more complicated design is required. We do not address
these situations in our simulation study.
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4.2. Generating the Outcomes

We assume that Y follows a logistic regression with Logit [P (Yi = 1 | Xi, Xtrue)]
= Xtrueβtrue, where Xtrue indicates a subset vector of “informative” variables of
Xi. Therefore, the outcome Yi is simulated from a Bernoulli distribution, where
Yi ∼ Bern(Pi). Pi is the Pr(subject i has disease), where Pi = Pr (Yi = 1|Xi) =
exp (Zi)

1+exp (Zi)
. The model of Zi = Xiβ is used to derive the value of Zi. Xi is the ith

vector of the design matrix as defined in the previous section, β is the vector of
coefficients. The value of β is set to 5 for important feature group, 3 for secondary
feature group, 2 for third feature group, and 0 for all the noise term, denoted as
ϵi ∼ N(0, 0.01).

In the simulation study, we consider the following six scenarios by consid-
ering the number of pool of variables (small and large), and within-group cor-
relation (low, medium, and high). The final simulated data looks like as D =
{(x1, y1) , (x2, y2) , . . . , (xn, yn)} , i = 1, 2, . . . , n.

After simulating the data for six cross-sectional scenarios, we apply three differ-
ent methods to build the predictive model, including regularization methods with
elastic net penalty, support vector machine, and random forest. The simulation
study will investigate the following questions:

1. Whether applying repeated and nested cross-validation method improves the
predictive performance than applying single cross-validation only.

2. Comparative study among three different methods to build the predictive
model

3. Comparative study among six different data structures and correlation
settings.

Table 1 presents the summary of AUC for three different predictive modelling
methods: regularization methods with elastic net penalty, SVM, and random for-
est. Method 1 refers to the AUC for standard CV method. Method 2 refers to
the AUC when method of repeated and nested CV is used. The last line of each
scenario, labelled as “True” represents only true simulated variables are used in
classification model building with standard cross-validation method. We consider
the six different scenarios to investigate the performance when repeated and nested
CV is used. Figure 3 presents the results using a box plot.

In the simulation study, we investigated the six scenarios to compare the model
performance of building predictive model using standard cross-validation and using
repeated and nested cross-validation. Table 1 summarizes the area under ROC
curve (AUC) for the simulation study. We define the building predictive model
using standard cross-validation as Method 1, whereas using repeated and nested
cross-validation as Method 2. Table 1 shows that the AUC from Method 2 are
consistently higher than AUC from Method 1, for three different statistical learning
Methods (regularization Method, SVM, RF). This indicates that when Method 2
is used, the generalization error (test error) is lower than Method 1. Therefore,
when Method 2 is applied, it provides a better estimated model than Method 1 is
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used. In Figure 1, the gray bar represents the Method 2 and white bar represents
the Method 1. The mean of AUC for Method 2 is consistently higher than AUC
for Method 1.

Figure 3: Boxplot of AUC comparing the simulation result. The white bar represents
Method 1 (M1) and gray bar represents Method 2 (M2). M1 refers to the
applying of standard cross-validation, whereas M2 refers to the applying of
proposed method. The black line of each box is the mean of AUC. The six
side-by-side box is the comparison of the AUC between using different models,
including regularization methods via elastic net (ENET), SVM, and random
forest(RF).

Table 1 also enables the comparative study for different statistical modelling
strategies to build the predictive model. The overall AUC is the one of such cri-
teria to compare among regularization Methods. The simulation study shows the
regularization Methods with elastic net has the best prediction performance than
other two modelling strategies. However, since the model performance is data-
driven, the evidence is weak, and it can only justify that regularization methods

Revista Colombiana de Estadística 43 (2020) 103–125



118 Yi Zhong, Jianghua He & Prabhakar Chalise

with elastic net has better predictive results for this specific simulated dataset.
As well known, the SVM and random forest perform well when data is non-linear,
thus, these two methods can be more appropriate when using in the real data
having nonlinear trend.

Table 1: Summary of area under curve (AUC) for three feature selection methods for
six different simulation scenarios.

Elastic net Support Vector Machine Random Forest
Scenario 1, n = 100, p = 2000, correlation = 0.3

Method 1 0.8856 0.8646 0.8215
Method 2 0.8930 0.8968 0.8532
True 0.9688 0.9767 0.9566
Scenario 2, n = 100, p = 5000, correlation = 0.3

Method 1 0.9029 0.9151 0.8432
Method 2 0.9197 0.9153 0.8612
True 0.9736 0.9777 0.9518
Scenario 3, n = 100, p = 2000, correlation = 0.5

Method 1 0.8823 0.8648 0.7983
Method 2 0.8823 0.8802 0.8381
TRUE 0.9612 0.9757 0.9483
Scenario 4, n = 100, p = 5000, correlation = 0.5

Method 1 0.8900 0.8838 0.7936
Method 2 0.8905 0.8916 0.8457
TRUE 0.9719 0.9778 0.9520
Scenario 5, n = 100, p = 2000, correlation = 0.8

Method 1 0.8922 0.9017 0.8570
Method 2 0.9171 0.9205 0.8840
TRUE 0.9774 0.9793 0.9537
Scenario 6, n = 100, p = 5000, correlation = 0.8

Method 1 0.9324 0.9345 0.8877
Method 2 0.9422 0.9403 0.8989
TRUE 0.9874 0.9878 0.9648

The computation time of the proposed method, however, is longer than the
standard cross validation method. Table 2 2 shows the comparison of the com-
putation times for the proposed and standard cross validation methods for each
of the elastic net, SVM and random forest using the simulated data. With the
six-simulation scenarios, the proposed method took around 10-15 times more time
than the standard method. The method with elastic net and random forest took
around 10-12 times and SVM took around 13-15 times more time. Elastic net
took shorter time as compared to Support Vector Machine and Random Forest.
The computation time also depends on the dimension of the data as shown by
scenarios 4-6 vs scenarios 1-3. As the dimension increases the computational time
also increases. Overall, the better accuracy can be achieved at the cost of longer
computation time. The computational burden can be minimized by using parallel
and cloud computing.
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Table 2: Table showing the comparison of the computation times (in seconds) between
the standard and proposed method.

Elastic net Support Vector Machine Random Forest
Scenario 1, n = 100, p = 1000, correlation = 0.3

Method 1 2.225 6.299 19.37
Method 2 25.183 82.612 204.812
Scenario 2, n = 100, p = 1000, correlation = 0.5

Method 1 1.718 4.809 16.076
Method 2 19.655 63.661 171.104
Scenario 3, n = 100, p = 1000, correlation = 0.8

Method 1 1.952 5.385 16.733
Method 2 22.744 71.355 177.236
Scenario 4, n = 100, p = 5000, correlation = 0.3

Method 1 3.151 24.001 89.263
Method 2 35.605 327.013 942.643
Scenario 5, n = 100, p = 5000, correlation = 0.5

Method 1 3.555 25.364 91.98
Method 2 35.899 338.954 963.974
Scenario 6, n = 100, p = 5000, correlation = 0.8

Method 1 3.174 23.584 83.389
Method 2 35.236 321.502 908.563

5. Application to Real Life Data

5.1. Application to Leukemia Gene Expression Data

Two important approaches of data analysis of microarray data include group-
ing the genes to discover broad patterns of biological process, and selecting impor-
tant genes that are associated with disease. We use the gene expression dataset
from leukemia and cervical cancer to investigate the performance of our proposed
method.

The leukemia data, presented in Golub et al. (1999), consists of 47 patients
with acute lymphoblastic leukemia (ALL) and 25 patients with acute myeloid
leukemia (AML). Each of the 72 patients had a bone marrow samples obtained
at the time of diagnosis. Furthermore, the observations have been assayed with
Affymetrix Hgu6800 chips, resulting in 7129 gene expressions (Affymetrix probes).
The Golub data set is possibly the most widely studied and cited microarray data
set [6]. In this real data study, we also implement two different methods: Method
1 and Method 2 as mentioned above. The models are trained using training set
(38 samples), the AUC and misclassification rate are calculated by using held-out
test set (34 samples).

Figure 4 shows the comparison of AUC between two Methods using three
statistical modelling approaches. The blue line is ROC for Method 1 whereas the
red line is ROC for Method 2. The AUC values are shown at the bottom of right
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corner. We can see that the AUC from Method 2 is higher than the AUC from
Method 1, which indicates that Method 2 has better prediction performance than
Method 1.

RNCV, AUC = 0.9964
SCV,    AUC = 0.9643

RNCV, AUC = 0.9821
SCV,    AUC = 0.9536

RNCV, AUC = 0.9964
SCV,    AUC = 0.9964
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Figure 4: Comparison of AUC between two methods using three statistical modelling.
The red line refers to the proposed repeated/nested cross-validation, whereas
the blue line refers to standard cross-validation. In all three methods, the
AUC from the proposed method has uniformly better than standard way.

Besides looking at ROC and AUC, the misclassification rate is also an im-
portant criteria to assess the model performance. The misclassification rate is
computed as: misclass.rate = FP+FN

TP+TN+FP+FN . The terminologies are described
in the table below:

Table 3: Cross-tabulation of true and predicted classification scenarios.

Predicted
Positive Negative

Actual
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

A total of 34 bone marrow test samples were used to compute the misclassifi-
cation rate. Among the 34 samples, 20 samples are ALL, defined as positive class,
and 14 samples are AML, defined as negative class. The predictive performance
measurements can be estimated from Table 3, for example, the true positive (TP)
can be explained as the predictive class is ALL and actual labelled class is also
ALL. The misclassification rate then is calculated when the predictive performance
measurements are known.

Table 4 compares AUC result between using single cross-validation (Method
1) in building the predictive model and using repeated and nested cross-validation
(Method 2) in building the predictive model for leukemia cancer gene expression
data. For both methods, three different classifiers are implemented into the frame-
work. For Method 1, the misclassification rates for generalized linear model with
elastic net penalty, SVM, and random forest are 23.5%, 11.8%, and 23.5%, re-
spectively. In contrast, for Method 2, the misclassification rates for generalized
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linear model with elastic net penalty, SVM, and random forest are 14.7%, 5.9%,
and 11.8%, respectively. Therefore, to achieve more accurate prediction accuracy
when new data is introduced, the predictive models built using repeated and nested
cross-validation would be better.

Table 4: Misclassification rate for three different methods.
TP FN FP TN Misclassification rate

Enet
Method 1 20 8 0 6 23.50%
Method 2 20 5 0 9 14.70%

SVM
Method 1 20 4 0 10 11.80%
Method 2 19 1 1 13 5.90%

RF
Method 1 20 8 0 6 23.50%
Method 2 20 4 0 10 11.80%

5.2. Application to Cervical Cancer Gene Expression Data

Our second example is on The Cancer Genome Atlas (TCGA) studies on cer-
vical cancer (TCGA Network 2017). Cervical cancer consists of primarily of two
different types: squamous cell carcinoma and adenocarcinoma. A limited number
also consists of both squamous and glandular cancer cells, termed as adenosqua-
mous carcinoma. The data consists of 178 samples including 144 squamous cell
carcinoma, 31 adenocarcinoma and 3 adenosquamous carcinoma. We excluded
the 3 adenosquamous samples for this example. There were 20,533 genes assayed
using RNAseq technology on those 175 subjects. After quality control and pre-
processing 19,037 genes were left for the analyses. The main purpose of the use
of this data was to assess the performance of our method rather than substantial
analyses of the data. TCGA study has shown that the gene expression pattern
is very different between the squamous and adenocarcinoma histology. In our im-
plementation of the method, we aim to classify the two histologic subtypes based
on the informative subset of gene expression data. We splitted the data into two
pieces and 80% of the samples (140 samples) were used as training data and 20%
(35 samples) were utilized to assess the model.

Table 5 shows the summary of the AUC and the accuracy/misclassification of
classifying the two types of cervical cancer: squamous and adenosquamous carci-
noma. The results are consistent with first example on leukemia gene expression
data. The AUCs are higher with the proposed repeated and nested cross valida-
tion method as compared to the standard cross validation method. Similarly, the
mis-sclassification rate is lower with the proposed method. The results demon-
strate that the repeated and nested cross validation method performs better as
compared to the standard k-fold cross validation method.

In addition, for both examples, we carried out the differential expression (DE)
analyses of the genes between the two groups to select the genes prior to fitting
our proposed method. Then, we used only those genes in our method in order to
investigate how that would affect the results. The results showed that the relative
efficiency of the Method 1 and Method 2 were exactly the same to that of using
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all genes in both leukemia and cervical cancer examples. This was because our
method selected only the subsets of DE genes when using all the genes in the
model.

Table 5: Showing the AUC and misclassification rate for three different methods.

AUC TP FN FP TN Misclassification rate

Enet
Method 1 91.05 22 7 0 6 20.00
Method 2 94.11 22 5 0 8 14.29

SVM
Method 1 85.47 22 6 0 7 17.14
Method 2 88.23 21 4 0 10 11.43

RF
Method 1 87.25 22 8 0 5 22.86
Method 2 91.44 22 6 0 9 16.22

6. Discussion

In this article, we explored a more robust cross validation method for vari-
able selection and outcome classification. We also demonstrated its application
using two gene expression datasets. The method can be applied to any type of
high dimensional data where the concern is to classify the outcomes using a few
important variables. The proposed method applies a repeated and nested cross-
validation framework to build a predictive model and select the subsets of features
for classification. The proposed approach completes the two important tasks: vari-
able selection and outcome prediction. The outcome of the proposed method can
be utilized further where the research question is concerned about predicting the
outcome class using only a few important biomarkers.

There are several works done for the model selection and classification (Hernán
dez & Correa 2009, Salazar 2012). Our proposed method uses a combination of
repeated and nested cross-validation technique instead of standard cross-validation
method. In our method, double layers of cross-validation are created. In the
inner loop, we perform variable selection and determine the subset of informative
variables, then, the subset of informative variables is used in the outer loop to
estimate the parameters. After the parameters are estimated, the final model is
then chosen with the cross-validation error minimized.

In the simulation study, we present different scenarios under the cross-sectional
biological settings. The simulated dataset is used to build predictive models using
three different statistical methods with two different cross-validation techniques
including single cross-validation and repeated nested cross-validation. From the
results of the simulation study, we have shown that our proposed method can
provide better prediction accuracy in all three different statistical modeling ap-
proaches.

In the application, we used two gene expression datasets, the leukemia dataset
from (Golub et al. 1999) and the TCGA cervical cancer. We used three different
statistical modeling approaches including generalized linear model via elastic net
penalty, SVM, and random forest for this classification task. We found that our
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proposed method reduces the generalization error compared to the single cross-
validation method.

The proposed method also has some limitations. Rather than using the normal
K fold cross-validation for model selection, the nested cross-validation requires V
folds nested in K fold, thus, the total K × V folds are generated for selecting the
features and estimating the tuning parameters. Therefore, the computation time
is significantly increased. There is trade-off between the accuracy and computa-
tional cost. However, with the development of modern computing facilities, the
computational burden can be minimized using sophisticated technologies such as
the parallel and cloud computing.

Our proposed method can be extended in several ways. (1) the result of feature
selection from the predictive model determines a set of informative genes. When
other critical clinical characteristics are collected, an integrative model can be cre-
ated by combining the genes and those clinical covariates. (2) the cross-validation
is a commonly used technique for model selection and model assessment. In our
method, we use nested and repeated cross-validation to select the parameters and
to perform model selection. It is also possible to extend the nested repeated
cross-validation in model assessment and to estimate variation of the prediction
accuracy.

In summary, we describe a framework for using nested and repeated cross-
validation to perform feature selection and building a predictive classification
model for high dimensional data. The proposed method is able to provide an
improved prediction, and is also able to extract a subset of informative features
from the pool of thousands of features.
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