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Abstract

In this paper, we propose parametric and nonparametric locally and
asymptotically optimal tests for regression models with superdiagonal
bilinear time series errors in short panel data (large n, small T'). We establish
a local asymptotic normality property— with respect to intercept u, regression
coefficient 3, the scale parameter o of the error, and the parameter b of panel
superdiagonal bilinear model (which is the parameter of interest)— for a given
density fi of the error terms. Rank-based versions of optimal parametric
tests are provided. This result, which allows, by Hajek’s representation
theorem, the construction of locally asymptotically optimal rank-based tests
for the null hypothesis b = 0 (absence of panel superdiagonal bilinear
model). These tests —at specified innovation densities fi1— are optimal (most
stringent), but remain valid under any actual underlying density. From
contiguity, we obtain the limiting distribution of our test statistics under the
null and local sequences of alternatives. The asymptotic relative efficiencies,
with respect to the pseudo-Gaussian parametric tests, are derived. A Monte
Carlo study confirms the good performance of the proposed tests.

Key words: Bilinear process; local asymptotic normality; local asymptotic
linearity; panel data; pseudo-Gaussian tests; rank tests.

Resumen

En este articulo, se proponen pruebas paramétricas y no paramétricas
locales y asintéticamente 6ptimas para modelos de regresiéon con errores
de series temporales bilineales superdiagonales en datos de panel cortos
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144 Aziz Lmakri, Abdelhadi Akharif & Amal Mellouk

(n grande, T pequeiio). Se establece una propiedad de normalidad asintética
local con respecto a la intercepcién u, el coeficiente de regresién [, el
pardametro de escala o del error y el pardmetro b del modelo bilineal
superdiagonal con datos de panel (que es el pardmetro de interés) para
una densidad determinada f; de los términos de error. Se proporcionan
versiones basadas en rangos de pruebas paramétricas 6ptimas. Este resultado
permite, por el teorema de representacion de H&ajek, la construccién de
pruebas locales basadas en rangos asintéticamente 6ptimas para la hipdtesis
nula b = 0 (ausencia del modelo bilineal superdiagonal con datos de
panel). Estas pruebas, en densidades de innovacién especicadas fi, son
Optimas (mds estrictas), pero siguen siendo validas en cualquier densidad
subyacente. A partir de la contigiiidad, se obtiene la distribucién limitante
de las estadisticas de prueba, bajo la hipdtesis nula y una secuencia de
alternativas locales. Se deriva eficiencia relativa asintética de las pruebas,
con respecto a las pruebas paramétricas pseudo-Gaussianas. Un andlisis
basado en simulaciones de Monte Carlo confirma el buen desempeno de las
pruebas propuestas.

Palabras clave: Datos de panel; Linealidad asintética local; Normalidad
asintética local; Proceso bilineal; Prueba pseudo-gaussiana; Pruebas de
rango.

1. Introduction

Recent evolution in theory and applications has provided very powerful
convenient tools for the modelling of time series data, and in the last decades,
we have seen a growing interest in nonlinear models. It has been shown that
nonlinear time series models gives better approximations than higher-order linear
ones simple in modelling nonlinear dynamic systems. One of the approaches to
nonlinear time series modelling is the class of bilinear processes, introduced by
Granger & Andersen (1978). Assuming (&) is i.i.d. (0,02),

P q P Q
X; = Zant_j + ZCje’:‘t_j + Z ijkat—th—k + &
j=1 J Jj=1lk=1

1

defines the bilinear process (X;) of order (p, q; P, @Q)-shortly BL(p, q; P, Q).

This interest is due to its widespread use in various fields, see for example,
Maravall (1983), Rao & Gabr (1984), Weiss (1986). Regardless of theoretical
difficulties, the fundamental probabilistic properties have been solved for several
particular cases, for example, the stationarity and invertibility have been solved
for first-order superdiagonal model by Guegan (1981). Testing problems and there
power properties have been treated for null hypothesis of white noise against
bilinear dependence in Hallin & Mélard (1988), Saikkonen & Luukkonen (1991),
Benghabrit & Hallin (1992), Benghabrit & Hallin (1996) and Guegan & Pham
(1992). The statistical problem of estimation of the parameters for some simple
models have been considered in Pham & Tran (1981), Grahn (1995), Hristova
(2005) and Tan & Wang (2015).
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Optimal Detection of Bilinear Dependence in Regression Data 145

Regression models with correlated errors have been the focus of considerable
attention in econometrics and statistics. Various manuscripts treat the problem
of correlated errors in regression models in which the errors follow the linear
models such as autoregressive (AR), moving average (MA) (e.g., Baltagi & Li,
1995), the mixed autoregressive and moving average (ARMA) models (e.g., Allal
& El Melhaoui, 2006), or the nonlinear models such as RCAR, ARCH, fractional
ARIMA and bilinear models (e.g., Hwang & Basawa, 1993, Dutta, 1999, Hallin,
Taniguchi, Serroukh & Choy, 1999, and Elmezouar, Kadi & Gabr, 2012, etc.).

Consider the following panel data regression model in Pesaran (2015):
Yit :quﬂ/xi’tJrei,t, 1=1,2,...,n; t=1,2,...,T, (1)

where y; ; is the observation on the i*" cross-sectional unit for the t** time period,
z;¢+ denotes the K x 1 vector of observations on the non-stochastic regressors.
(u, B)" € RE+L is the corresponding regression coefficients. Here, the error terms
e;+ are assumed to follow a simple case of bilinear model with panel data, which
takes the following form

€t = bei,tflgiﬁtfk + €t with [ >k > ]., (2)

where ¢; ; ~ i.i.d.(0,0?) for all i and ¢.

Test of homogeneity for panel bilinear time series model have been treated in
Lee, Kim, & Lee (2013) and Kim (2014). Furthermore, probabilistic properties
such as stationarity and invertibility have been studied in Quinn (1982) remains
valid in panel bilinear model (2). Denote by F; .(¢) and F;;(e) the o—algebras
generated by {e; s|s < t} and {e; s|s < ¢}, respectively. Then,

1. Equation (2) admits a unique stationary solution e; ; if and only if b*0? < 1,
and given by

S J
€it=Eit+ E Veii—ij H Eit—k—(s—1)1-
j=1 s=1

2. Equation (2) is invertible if and only if 26?02 < 1, in this case, one can write
00 J
eiv=cirt+ > (=bVeis i [] €iti—(s—1pr-
j=1 s=1

Clearly, model (1) reduces to the classical multiple regression model
Yi = p+ BTy + i,

with constant coefficients p and f if and only if b = 0. The detection problem we
are addressing consists of testing the null hypothesis Ho : b = 0 with unspecified
i, B,0% and f, against the alternative H; : b # 0. Clearly this testing problem
corresponds to testing serial independence against bilinear serial dependence in
model (1).
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In this research, to derive optimal tests, the uniform local asymptotic normality
(ULAN) property is established for a class of panel regression models with
superdiagonal bilinear time series errors via the quadratic mean differentiability
of f1/2 where f is the density of ; ;. This last property (see, Le Cam & Yang,
2000), has recognized success in a variety of testing problems: see, Swensen (1985),
Akharif & Hallin (2003), Cassart, Hallin & Paindaveine (2011), Bennala, Hallin &
Paindaveine (2012) and Fihri, Akharif, Mellouk & Hallin (2020).

Our statistical tests are based on the ULAN property. These tests are shown
to be asymptotically efficient and their asymptotic power is also derived.

ULAN plays a fundamental role in this treatment and leads us to construct
locally and asymptotically optimal parametric tests. The special case of the
pseudo-Gaussian tests (optimal under Gaussian densities but valid under finite-
variance non-Gaussian ones) is derived, but unfortunately, their local asymptotic
power under non-Gaussian ¢; (especially the skew and heavy-tailed ones), can be
extremely poor, which leads us to construct a rank-based optimal tests (van der
Waerden, Wilcoxon, Laplace, data-driven scores, etc.) based on the Hijek-Le Cam
approach.

Asymptotic relative efficiencies with respect to the pseudo-Gaussian procedure
show that the van der Waerden version of our rank-based tests uniformly dominates
its pseudo-Gaussian counterpart.

The paper is organized as follows. In Section 2 we introduce notations,
assumptions and state the ULAN property for model (1)-(2). Section 3 is devoted
to prove a local asymptotic linearity property. These results are used in the
derivation of locally asymptotically optimal (most stringent) tests, and in the
computation of their asymptotic powers. The particular case of the pseudo-
Gaussian tests is investigated in Section 3.2. Optimal rank tests are derived in
Section 4 and some special cases (van der Waerden, Wilcoxon and Laplace scores)
are considered in Section 4.3. Section 5.1 provides asymptotic relative efficiencies,
and simulations are carried out in Section 5.2 to investigate the finite-sample
performance of our tests. Finally, we provide some conclusions.

2. Uniform Local Asymptotic Normality

2.1. Notations and Main Assumptions

Denote by PL”;, 02 fa the probability distribution of the observations
/

ygn),,yén),, ey y,(L")/ , where y(”) = (Yi1,.--,yir) is generated by (1) and (2),

P
(n)
and by Pu,ﬂ’,UQ,O;h
git ~ i.i.d.(0,0?). Assume that {€i.t} (1<i<n,1<t<T) is unobservable sequence, with
density f: e f(e) := (1/0)f1(e/c), where f; belongs to some adequate class of
standardized densities (3). We suppose that the vector of starting values

the probability distribution under the null hypothesis e; ; =
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Optimal Detection of Bilinear Dependence in Regression Data 147

(n) (n) (n) (n) (n)  (n)y . _
{<ei,1715i71*k7 €i2—18i2—k> -5 € k180,0,€ kr1-1- 5621560 )i=1,...,n}

is observable for each individual 3.

Throughout this paper, we consider the class of standardized densities

Fo = {fl A(u)>0 YueR, /_11 Fu(w)du = 0.5 = /_OOO fl(u)du} B

Note that, for f such that f; € Fy, the median and median absolute deviation
are 0 and o, respectively. This standardization, contrary to the usual one based
on the mean and the standard deviation, avoids all moment assumptions; it plays
the role of an identification constraint, and has no impact on subsequent results.

The main technical tool in our derivation of optimal tests is the uniform local
asymptotic normality, with respect to (u, 8',02,b)', at (u, ', 02,0)’, of the families
of distributions

P = {P;”g vevg, (1 B) ERFFL 62> 0,b € R* and 202 < 1}. (4)

Establishing ULAN property requires some technical assumptions about the
innovation density f; (Assumption (A)) and the asymptotic behavior of the
regressors (Assumption (B)).

Assumption (A)

(A1) f1 € Fo;

(A2) f1 is C' on R, with first derivative f{ and letting ®f = —f1/f1,
assume that I(f1) = /(I)Ql(u)fl(u)du, J(f1) = /u2<1>?1 (u) f1(u)du and
R R

K(fy):= /Ruq)QI(u)fl (u)du are finite.

Denote by F4 the set of all densities satisfying Assumption (A).
1 n T
Let C™ .= = Z Z xwx;,t, the following assumption concern the asymptotic

i=1 t=1
behavior of regression coefficients, it is standard in the context of rank-based

inference.

Assumption (B)

(B.1) The limits lim c™ =. C, where C is positive definite. Letting K™ .=
n—oo
(C™)=1/2 note that lim K™ = K = C~1/2,
n—oo

n T
) _ 1 o
(B.2) for all k and n, T, = T szk;z,t =0;

=1 t=1
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(B.3) the classical Noether (1949) conditions hold:

max 7.,
. 1<i<n »
lim
n—oo N1

T
2
PIPBLAW

i=1 t=1

=0 k=1,2,....K, t=1,2,...,T.

Interesting special cases are

(2) The Student distributions (with v > 2 degrees of freedom), with standardized
density

filu) = fi, (u) := WW(I + a,u?/v)~ /2,

with I(f1) = a,(v+1)/(v+3) and J(f1) = 3(v+1)/(v+3), the normalizing
constant a, > 0 is such that f; € Fa.

(#4) The Gaussian distributions, with standardized density (with mean zero and
variance 1/a)

fi(u) = far(u) := v/a/2m exp(—au®/2),

with I(f1) = a ~ 0.4549 and J(f1) = 3; these values also can be obtained by
taking limits, as v — oo, of the corresponding Student values since a, — a
as v — oo.

(7i7) The double-exponential or Laplace distributions, with standardized density
fi(u) = fr(u) == (1/2d) exp(—|ul/d),

with I(f1) = 1/d?® and J(f;) = 2, the normalizing constant d = 1/In(2) ~
1.4426 is such that fr € Fa.

(tv) The logistic distributions, with standardized density
J1(1) = frog(u) := Vbexp(—Vbu) /(1 + exp(—Vbu))?,

with I(f1) = b/3 and J(f1) = (12 + 72)/9, the normalizing constant
b= (In3)? ~ 1.2069 is such that f, € Fa.

2.2. Uniform Local Asymptotic Normality

In this section, we shall state the uniform local asymptotic normality property
for the model (1), with respect to intercept u, regression coefficient 3, scale
parameter o2 and the parameter of interest b, for fixed density f; € Fa, the
reader is referred to Le Cam & Yang (2000).

For this purpose, let 7(") := (7'1(”),72(") ,73(”), Ti"))/ be a sequence of real vectors

in RE+3 guch that 7(m'7() g uniformly bounded as n — oo and let 0 :=
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(u,8,02,b = 0)'. In addition, we consider sequences of local alternatives of the
form 6 4+ v(™ 7" where

1 0 0O
(n)
1/(") — n_1/2 0 K 0 0
0 0 1 0
0 0 0 1
The test is equivalent to
Pg”}l : T(”) =0 against P0+V(,L)T(,L) 7 ) #0.

()

Denote by A" the logarithm of the likelihood ratio (conditional on e; )

O+v () (n) /0; f
for Pg)-l-)M”)T(") f against P( ) Then,

(n)
Ag_‘_u(n) 7.(n) /9 f

n oo J
> Z log f(ei,r + Z(—n_%ﬂin))]@i,t—m’ I €imi—s—1y) —log fleir)|. (5)
i=1 t=1 =1

s=1

Define the standardized residuals as

Zigw=Zip(p, B,0%) =0 (i — b — B'%i4),

fori=1,2,...,n; t=1,2,...,T and note that, under the null hypothesis, it
coincides with €; ;/o. We have then the following result.

Proposition 1. Let Assumption (B) holds, fix fi € Fa. Then, the family 77}?)
is ULAN (for n — oo with T fived ) at any 0 = (u,3,02,0)", with (K + 3)-
dimensional central sequence

n-1/2
ZZ% it)
1=1 t= 1
(n) 0 n-1/2 2
o] |5 e
AWM (g) = | Dhi = Ll (6)
n 5‘?3(9) n=1/2 iz d 1] ’
L 1 (Zig) Ziy —
5‘1?4(9) 20 i= 1t 1 Z z
nfl/%'z Z Qs (Zit)Zit—1Zii—1
i =1 =111 i

and (K + 3) x (K + 3)-information matrix
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Ly, (0) == (Ffuij)lgi,j§4

S T i
—1(f1) 0 ﬁK(fl) 0
T
0 ;I(ﬁ)IK 0 0
T T
203K(f1) 0 @(J(fl)*l) 0
0 0 0 (T = DI(f1)o%0%,
(7)
More precisely, for any 6™ = (u("),ﬂ(")/,a2(n),0)’ such that p™ — p,
(K™)=1(3™ — B3 and o> 2 52 gre O(n='?), and for any bounded sequence
(M) e RE+3 we have under Pé(r)b) Ly @8 T = 00 with T fixed ,

(n)
A(n) o dPg(n)_,_l,(mT(n) o
O u ()7 (n) /() fy g dPé'f,Z) f ()

= AR 70T (0)7) +0,(1),
and Agff)(ﬁ(")) converges in distribution to a (K + 3)?-variate mnormal
distribution with mean zero and covariance matriz Iy, (6).

Proof. See appendix.

From this result, we have under Pg ;
(n)
o Ay (0) ({ } [Ffl(e) Ty, (0)7 D )
A ) fp(n) () /9(n); n—>oo 2T/Ff1 T/Ffl (9) T/Ffl (9)7—

Consequently, since the hypotheses Pg"}l and PV are contiguous, Le

94v (M) £y
Cam’s third lemma leads to the convergence of A(")( 6) under P(gi)z/(mf("%fl' In
this case we have -
AP (6) 2 (T, (6)7.T1,0)). (10)

3. Locally Asymptotically Optimal Tests

In this section, we are interested in testing the null hypothesis b = 0 of
randomness of the error regression model in (1), with unspecified error density
f1 € Fo, unspecified p, 8 and unspecified error scale o— formally can be written as
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= U no=U U U UP)

g1€Fo g1E€Fo LER B/ eRK 620

Parametric alternatives takes the form (for some fixed standardized f1 € Fa)

P =U U U U®hent

HER B’€RK 52>0 beR*

The parameters p, 3 and o2 thus are nuisance parameters, while b is the parameter
of interest. Before turning to this semiparametric hypothesis 7-[(()”) (unspecified
density), let us first investigate the parametric problem of testing H(()n) (f1) (while
f1 remains specified) against Hgn)( f1)-

3.1. Optimal Parametric Tests

In this subsection, we construct a locally asymptotically optimal (namely, most
stringent) tests in presence of nuisance parameters for testing serial independence
in model (1). The notion of most stringency is a concept of optimality (see e.g.,
Wald (1943)). We suppose that the innovation density fi is specified, the main
consequence of the ULAN results of Proposition 1 is that for each 0, and for given
f1 € Fa, the sequences of local experiments

¢M) == (R", B, P" = {P\" Ir € RE+3Y))

0+v ()1 fy

converge weakly to the (K 4 3)—dimensional Gaussian shift experiments
Gr, (0) == (REF3 BET3 P = {N(Ty,(0)7,Ty,(0))|7 € RFT).

The classical theory of hypothesis testing in Gaussian shifts (see Section 11.9
of Le Cam, 1986) provides the general form for locally asymptotically most
stringent tests of hypotheses in ULAN models. In this case, the null hypothesis
1V (fy) = Hfl U U U {Pftn;',a%O;fl} and the local alternative H{™ (f1)

HER B'eRK 52>0
can be expressed as
(n)
Hy

1

i T € M(Q) against ’H ( 1) : 7 ¢ M(Q),

where M (€2) is the linear subspace of dimension K + 2 of RE+3 generated by the
matrix ' := (Ix42,0). Such tests, should be based on

(1)

As 6 remains unspecified under the null, we will need to replace it with some
estimate. For this purpose, we assume the existence of § := 6,, satisfying the
following assumption
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Assumption (C). The estimate B, is such that

~

(i) 6, is y/n-consistent, i.e., for all fi € F4 and all ¢ > 0, there exist

¢:=c(f1,0,¢) and N := N(f1,0,¢) such that under p™

1,8",02,0;f17 W€ have

P(vn|6,—0|>c)<e ¥n>=N.

(ii) 6, is locally asymptotically discrete, i.e., for all fixed value s > 0, the number
of possible values of 8,, in

B={ueRETS n7V2|u—-0|<s}

is bounded as n — oco.

Note that the condition (i) on the rate of convergence in probability of the
estimates is satisfied by several estimates such as the maximum likelihood
estimates, the Yule-Walker estimates, the M-estimates and the least square
estimates; part (ii) has little practical implications.

The following proposition shows that substituting §n for # does not influence
the asymptotic behavior of the test statistic (11).

Proposition 2 (Asymptotic linearity). Suppose that Assumptions (A),(B) and
(C) hold. Let 8, be a deterministic sequence satisfying n'/?(8,, — 6) is bounded by

a constant ¢ > 0. Then, under p™ as n — 0o, we have

w,B,02,0;f17
(i)
A (@,) — A (8) + /2T, (0)(8, — 0) = op(1) (12)
£ Un f1 f1 n op(l).
(ii)
A (0,) — A1, (0) = 0p(1). (13)
Proof. See appendix. O

The following proposition then results from classical results on ULAN families
(see, Le Cam, 1986, chapter 11).

Proposition 3. Suppose that Assumptions (A), (B) and (C) hold. Then,

(%) Q;?)(gn) = QSC?)(H) + op(1) is asymptotically chi-square, with 1 degrees of
freedom under P(ﬁ) , and asymptotically noncentral chi-square, still with
offl

1 degrees of freedom but with noncentrality parameter Ay := T302(T —

l)](fl)a;%1 under Péyj_)l/(n)r(") o
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1) the sequence of tests rejecting the null hypothesis H™ (with standardized
f1
density f1) whenever ngll) (é\n) exceeds the (1 — «)-quantile of a chi-square
distribution with one degree of freedom, is locally asymptotically optimal
(most stringent), at asymptotic level o, for ’H}T) against

U U U U{P%ma%b;fl};

HER B’ERK g2>0 bER*

(iii) the sequence of tests has asymptotic power 1 — F(Xil_a,)\fl), at
()
O+u () r(n);

function with one degree of freedom and non centrality parameter Ay, .

where F(.,\;,) denotes the noncentral chi-square distribution

Proof. See appendix. O

The Gaussian versions of ASZZ;)A;(@), I's,.44(0) and QE}IL) (0) are obtained by letting
fi = fn (standardized normal density N(0,1/a)), this case is an exception,
however, as @y, (u), I(f1) and 0%1 reduce to au,a and 1/a?, respectively, then
one easily checks that

n T 2
n — g
AL0) =07 200" N ZiiZis-iZive, T nraa(0) = —(T — 1),
i=1 t=I+1 a
and
a3 . n T 2
Qe = [ S Y ZutisFi] (14)
=1 t=Il+1
respectively.

The Gaussian tests Q%)(G) unfortunately are valid under normal densities only,
i.e., needs f1 to be indicated as a standardized Gaussian one, then the parameter
a also has to be fixed. In the following section, we demonstrate that a proper
version—namely, pseudo-Gaussian test, that is, tests that are valid under a broad
class of non-Gaussian densities with finite variance, while remaining optimal under
Gaussian ones— in general, are preferable.

3.2. Pseudo-Gaussian Test

Herein, we construct a pseudo-Gaussian version of the Gaussian test Qf\’}) (0).

The Gaussian central sequence AS\T/LL((‘)) allows us to construct asymptotically
optimal tests under f; = far, hence for efficient detection of bilinear dependence
in the parametric Gaussian model characterized by Gaussian disturbances.
Extending the validity of the Gaussian optimal test to densities ¢g; in a broad
class of densities is of course highly desirable. Let us show that this is indeed
possible and that a slight modification, AR&ZB, say, of the efficient central sequence

AJ((;_ 4, leads to a pseudo-Gaussian test which remains valid when the actual density
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g1 € ]-"(42) of all densities in F4 with finite variance. Note that Z;, for Z; ,(u, 3, o?)

m _ o e Ly PN .
and let my’ = my (p, f',0°%) = n—T;;ZLt(M,ﬁ ,0°) is a y/n—consistent

estimator, under Pé?;l, of pi(g1) == / ug1 (u)du. Define
R

n T
AN0) =200y N (Zie = i) (Ziore — 1) (Zigy — m{V). (15)

i=1 t=l+1

Decomposing Z; ; — mgn) into (Ziy — p1(g1)) + (u1(g1) —

follows from that, under Pé?q)l, as n — oo with T fixed

mgn)), then, it easily

AN (9) =

_1/20612 Z it — 11(91))(Zijg—r — 111(91))(Zije—1 — p1(91)) + 0p(1).  (16)

i=1t=l+1

Then, under Pé ; ,

L. aa(0) = a®0*(T =)ol where o7 = /(z — u1(g1))?g1(2)dz.
R

Aj\ﬁ) (0) and the

are jointly binormal; the desired result then follows

A*( )( 0) is asymptotically normal with mean 0 and variance

On the other hand, it is easy to see that, still under p"

log-likelihood A9+ ()70 /610
from a routine application of Le Cam’s third lemma. Since the intercept u, the
regression coefficients 3, and the scale parameter o2 under the null hypothesis
remain unspecified, some care has to be taken with the asymptotic impact of
estimating p, 3, and o2 under unspecified density g;.

9+V<n)f<n> g1’

Define the non-standardized centered residuals

n T
n 1
Vir(B) = 0(Zia (. B.0%) = i) = yie = B'xie = —= DD i

i=1 t=1

A pseudo Gaussian test may then be based on a statistic of the form

QM (0) = A 0) /Ty, u(®)
2
- (T[ Y S VL WorBVia®)] (7
i=1 t=[+1
= Qj\[;g (5)7

with ¢ is defined by g(u) = (1/0)g1(u/o). Clearly Qj\}:lg) (8) depends only on S,
which justifies the notation.
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In practice, the pseudo-Gaussian tests will be based on the statistics

WO = =775 { LY Y VBV VB . (8)

=1 t=Il+1
where B is an arbitrary n!/2(K)~!-consistent estimator of B and

1 & —~ ~
== E E V2(B) is the empirical variance of the V;,(3)’s. Consider the
- :
i=1 t=1

class .7-"1512) of all densities g1 € F4 such that 03 < 00. Then under Pgng)l and

for any bounded sequence 7(") = (Tl(n),Tz(n),,T?En)70) € RE+3 as n — oo with T
fixed

A0+ 1) — AY(0) = —Tir,y, (07 + 0p (1), (19)
with
T, (0) == B[ AR (0)(A5(9))
[aT ]
— 0 0 (T —)pi(g1)
al
- al
0 0 —Fog 0
0 0 0 a(T —1l)o*ay,

The following result is immediate from (19). Let Assumption (B) holds, assume
that 6, satisfies Assumptions (C) and fix § € RK*3 we have

AN (@) — A (0) = op(1). (21)

Showing that, under PY") | as n — oo, with T fixed, Qj\([")(g) - Qj\g?; (B) = 0p(1).

0;91°
The following result summarizes the asymptotic properties of the pseudo-
Gaussian tests.

Proposition 4. Let Assumptions (A), (B) and (C) hold, for any g1 € .7-"1(42). Then,

(7) Qj\(f”)(ﬁ) is asymptotically chi-square with 1 degrees of freedom wunder
()
w,B,02,05917

of freedom but with noncentrality parameter Ay = (T — l)agnf under

and asymptotically noncentral chi-square, still with 1 degrees

(n)
P9+n 1/2y(n) T, gl
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(ii) the sequence of tests rejecting the null hypothesis

1= U UUULP 00 |

5!16.7-‘5‘2> K B o?

whenever Q;r\/ > X%,kaa is locally asymptotically most stringent, at

2
asymptotic probability level o, for Hff) against alternatives of the form

UUU U {F5

u B o beR*

(iii) the asymptotic power under Peﬁn_l/QV(n)T . s 1— F(X%)l_a, AN)-

The test statistic Qj\(/”)(g) thus defines a pseudo-Gaussian test, that is, a test
which is optimal under Gaussian assumptions but remains valid under a much
broader class of densities.

4. Optimal Rank Tests

General results by Hallin & Werker (2003) indicate that semiparametrically
efficient rank-based procedures can be obtained in relation to ranks being maximal
invariants under model-generating groups of transformations (g<”T> *).  More

precisely, note that the null hypothesis Hgn) : U U U { 11,8,02.,0; 91} is
g1E€Fo nER 02>0

invariant under the action of the group (G™T), %) of all transformations G, of R"T
such that

Gr(yr1s - ynr) = (Br11+h(yry — B'211), o, B'enr + h(Ynr — B'2nT)),
where u — h(u) is continuous and increasing and hrf h(u) = +oo. Tt is easy to
U—> 00

check that (G("T), %) is actually a generating group for the null hypothesis H(Bn).

4.1. Rank-Based Versions of Central Sequences

A maximal invariant for the group (G("7) %) is known to be the vector
RM™ = RM(B) := (RE mo Rflngp)/ where R(") = R(n)(ﬁ) denotes the rank of
residual Zl-(ftl) (8) among Zfﬁ) B8),..., Zfl"%(ﬁ) Moreover, i and o have no impact
on residual ranks, hence we can assume that they are specified, which justifies the
notation Z{}(8) (instead of Z. (1, 8,0)) and R (8).

General results on semiparametric efficiency indicate that in such context, the
expectation (under the null hypothesis) of the central sequence A;'IL;)4(0) conditional

on those ranks R(™ yields a version of the semiparametrically efficient central
sequence (at f1 and ) given by:
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A™ (6) = E[A(0) | A™). 22

In practice, the conditional expectation definition (22) of A™ (§) (an ezact-
~ f1;4

score linear rank statistic) is not convenient, and the explicit apjomm'mate—score

form (for simplicity, we are using the same notation as for the exact-score version)

is preferable and given by (the notation A™ (8, 0) reflects the fact that it only
~ f1;4

depends on § and o)

A0 () =
1
R, (B) RV (B) R (B)
—1/2 i it F_1 i,t—k F_l i,t—1 o
! J;t_;l{%<1\7+1> ' < N+1 > L\ 'N+1 My
(23)
with N:n(Tfl), QYf = ®fl OFl_l and
_ 1 t _1/ t2 _1, t3
= — ) F F .
S N -y, 22 i) ) ()
Let
m>__ 1 b \per t2 o1 ts 2
S N(Nl)(NZ)lg;#;EN[WI(NJrl) iy ()

2 t1 to ~1, t2
PNV DIN—2)(N—3) 2222, ey pen (G (57)

1<t #toFtg#ta <N

-1 t3 2 —1 t4
X{Fl (N—i—l)} )

2 t1 —1, U2 —1, t3
tNV ooy 222 2 2 en () B () B ()

(N _ 3)(N _ 4) 1<ty #Ato Atz #taFAts <N

t _ t _ t
X@fl(Nij_l)Fl I(Nj_l)Fl I(Nj_l)

N-5 t1 -1 2 -1 %
+]\7(]\] 1)N—2) ZZZZZZ‘ph(m)Fl (Nt+1)F1 (Nj—l)

(N 3)(( 4)(N — 5) ISt #lo Atz FlaFts FLte <N

t _ ts _ t __
X‘Pfl(Nij_l)Fl 1(N+1)F1 1(N_T_1)7Nm?1' (24)

The following asymptotic representation result (25) shows that both (22) and (23)
yield rank-based version of the central sequence A(f?;)4(9)'

Proposition 5. Fiz 0 = (u,3',02,0)', let fi and g1 € Fa. Then,
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(i) under Pé " asn— oo with T fized

AW (80) = BV ATLO) | BB, RI(B)] +orx()

" (25)
= AP (0) +ora(1),

with

(n) ._
éfl ,g1 ;4(0) T

n T
n 2oy Y en (GuZi)) T (Gu(Zie-i)) FTH(G1(Zii-)): (26)
=1 t=I+1

where G is the distribution function associated with gy,

(ii) under P, (n)

i A™ (B,0) has mean zero and variance
~ fi:4

n 2
™ (0?) = (T — )o*s\" =L} 4u(0?) +o(1)
~ f1;44
asn — oo with T fized, where L'y, 44(0%) := (T — Z)I(fl)oza;%l;

(1i1) égff?gl 4(0) is asymptotically normal, with mean zero under Pé; , mean

(T — DZ(f1,91)0%(f1,91)0°74 under Pé_gy(n)Tgl and wvariance £f1;44(02)
under both, with

1
I(fr.g1) = / B, (F7 (1)@, (GT (1)) du

and

U(fhgl) = /0 Flil(U)Glil(U)d’U.

Proof. See appendix. O

4.2. Optimal Rank Tests

The parameters 4, 8 and o2 remain unspecified under the null, since 3 has only
an influence on the ranks, a consistent estimator ﬁ I5) 3™ has to be substituted for
the actual 8 value, yielding aligned ranks R(") ([3 ”)) The effect of this alignment
procedure is taken care of in a similar way as in Section 3, via the asymptotic
linearity results of Propositions 6 and 7 below.

Proposition 6. Let Assumption (B) holds and fir p € R, 3 € RE o2 > 0, f

and g1 € Fa. Then, for any bounded sequence ’7'( " ¢ RE, under P 2302 0:g17 05

n — oo with T fized, we have

A (u, B+ V2K 62,0) = A (1, 8,0%,0) = T 7 4 0p(1), (27)

~f1 ~ f1 ~f1;091
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with
Efl;gl = A(frllv)fh( )(A‘S;ll) (0))/
—Z(f1,91) Ik 0 (28)
N 0 (T = DI(f1,91)0%(f1, 91)0

The following proposition then is an immediate corollary of Proposition 6 and
Lemma 4.4 in Kreiss (1987).

Proposition 7. Let Assumption (B) holds, assume that B satisfies Assumption
(C) and fix up € R, € RX 02 >0, f1 and g1 € Fa. Then, under ) 250

11,8,0%,0;g17 45
n — oo with T fixed
A (B, 0%, 0) = A (1, 8,0%,0) = 0p(1). (29)
~ f1;4 ~ f1;4
Local asymptotic optimality with density f; is achieved by the test based on
() (n) o2y =
QU@ =al O @
(n) (n) (n) 2
1 n1/2 N R; Y (B) (R BN R (B) -
<T”;;;>2{ 52 5 (on (S0 e (R (R
—a™e). (30)

More precisely, we have the following result.

Proposition 8. Let Assumptions (A), (B) and (C) hold. Then

i) Q™) B\ = QM (B) + op(1) is asymptotically chi-square, with 1 degrees o
Y Y )
~fi ~fi
freedom under P ggz 0:917 and asymptotically noncentral chi-square, still
with 1 degrees of freedom but with noncentrality parameter

. (T — DI*(f1,91)0*(f1, 91)0° 2 (n)
M = 1), 4 S

(ii) the sequence of tests rejecting the null hypothesis

= U U U U B0

g1EF A BER B'eRK 62>0

whenever Q™ (B) exceeds the (1—a)-quantile of a chi-square distribution with

~

1
one degree of freedom, is locally asymptotically optimal (most stringent), at
asymptotic probability level o, for H(n) against

U U U UL ek

HER B'ERK 020 bER*
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(iii) the sequence of tests has asymptotic power 1—F(x3,_,, Ay,), at P¢(9+)V(n>7 S
where F(., Ay, 4,) denotes the noncentral chi-square distribution function

with one degree of freedom and non centrality parameter Ay, g, .

4.3. Important Particular Cases

The statistic Q(”)(g) is providing a general form for the optimal rank tests of

the null hypothesis (1)f serial independence of model (1). The three most important
particular cases for the test statistic presented are the van der Waerden (normal
scores), Wilcozon (logistic scores) and Laplace (double exponential scores) test
statistics, which are respectively optimal at normal, logistic and double exponential
distributions.

(1) van der Waerden’s test statistic is given by

QM (B):=
~odW
(n) (n) (3 (n) (3 2

a L1/ R (ﬁ)) (th k(ﬂ)) (R,t l(ﬁ))fi }
(T — )(22{ ;tzl;l{ (N+1 Vlya )Y U Min
with
. _ to _ t3

= \IJ 1 \I/ 1
"IN T N(N - ZZZ <N+1> (N+1) <N+1>

1<t1;£t2;£f3<N

where V is the standard normal distribution function.

(71) Wilcoxon’s test statistic is given by

() ) (3
(n) (2 — 1 |: —1/2 {( th ﬁ) _1)1 ( th k(ﬁ) )
TR O > Z N+1 CA\NFI-RDY m

i=1t=I+1
R ()
X log o A
N+1-R(

v s 2o (v ) e (vt e (v

1<t175t27ét3SN
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(7i7) Laplace’s test statistic is given by
Q(")(E) — di n-1/2 Z Z siam Rz(z) (B) ol Rfri),k@
S (r- g N+1 )"t vy

~L Z)SD i=1 t=1+1
e (BOLBY
1 N+1 De

with

Mpe =

NV = 5 2 2. Slg”[ (Ntil)]Fl1<thrl)F11(Ntil)’

1<t1#t2¢t3<N

where F7 is the distribution function of the double-exponential

_ dlog(2u) if 0<u<3i
1 _
B ) = { —dlog(2—2u) if 3<u< 1.

It is worth noting that the scale factors a (for van der Waerden), b (for
Wilcoxon) and d (for Laplace) disappear in the final expression of the test
statistics, due to the exact standardization by s(fz/), sl("), and nge) respectively.
This confirms that the choice of the median of absolute deviations as a scale

parameter in the definition of Fy has no impact on the results.

5. Power Comparison and Simulations

5.1. Asymptotic Relative Efficiencies

The Asymptotic Relative Efficiencies (AREs) of the rank-based tests Q(”)(E)
~f1
with respect to the pseudo-Gaussian tests Qj\(fn) directly follow as ratios of
noncentrality parameters under local alternatives. In order to compare the
performance of the parametric and nonparametric tests presented, we calculate
the AREs of nonparametric tests compared to the pseudo-Gaussian tests.

Proposition 9. Let f; € F4. Then, the AREs under g1 € F , of the mnk tests
based on Q™ (B\) with respect to the pseudo-Gaussian tests based on QN , when
~fi
testing ngg) against Péﬁy(n)T grr @€
n Moo\ _ (T(fug 4f,g ?
ARE, QU (B)/QN) = (M) = (B ULOT) )
~ AN (fl) Ujl
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The table (1) gives the numerical values of (31) for

QB =Q™ (B), Q™(B), QM (F), QM(B), @™ (B) and Q™ (5

~fi vdW ~W ~La ~ts ~sN(10) ~ st5(10)

under the densities g : Mormal, Logistic, Double exponential, Student-t5, skew
normal sA'(10) and skew Student st5(10) 1.

The results obtained are satisfactory and all are good, particularly so under
heavy tails. Also, note that the AREs of the proposed van der Waerden tests with
respect to the parametric Gaussian tests are uniformly larger than or equal to one
for all distributions considered in Table 1, and are equal to one in the Gaussian
case only (this result is proved in Chernoff & Savage (1958)), which means that
rank-based tests are asymptotically more powerful than Gaussian tests. Note also
that each value is maximum in its corresponding column. Thus, at each of the
densities, nonparametric tests perform better, compared to pseudo-Gaussian tests,
among the efficiencies achieved by the van der Waerden, Wilcoxon and Laplace
tests.

TABLE 1: AREs, under normal, logistic, Double exponential, Student (5 degree of
freedom), skew normal sA(8) and skew Student st5(8) (with § = 10) densities,
of various rank tests based on van der Waerden, Wilcoxon, Laplace, Student,
skew normal and skew Student scores, with respect to their pseudo-Gaussian

counterpart.

Actual density g1 | ! De ts  sN(10) st5(10)
Scores f1
Van der Waerden 1.0000 1.0613 1.3944 1.1435 2.0752  3.4375
Wilcoxon 0.8825 2.3115 2.1514 1.4804 4.1503 2.9597
Laplace 0.4486 1.6468 4.0000 1.8985 5.2279  4.0672
Student-ts 0.7318 2.1393 2.3002 2.5625 3.7472  5.5718
skew normal sN (10) 0.5117 1.8205 2.5651 1.9317 5.9721  4.1755
skew Student st5(10) 0.7285 1.6414 1.8435 1.8540 3.2328  6.1059

5.2. Results of Monte Carlo Simulations

In this section, we conduct a Monte Carlo experiment to investigate the finite
sample performance of the proposed procedures and behavior of our rank tests
under a variety of error distributions. More precisely, we considered the model
(e =t fote (32)

eir = beji_agit—1+¢is,,

)

ISee, for instance, Azzalini & Capitanio (2003) for a definition of skew normal and skew-t
densities.
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with

xi=1,2,...,100 and t = 1,2,...,14 2,

_ _ ’ S T1;i,t 0 10 1
* p= 17 B - (1’ 1) y it = |:$2;i,t:| N (|:0:| ) |:1 20 )

* b = 0 for null hypothesis, and b = 0.025,0.05,0.075,0.1 for increasingly
several alternatives,

* the (g;¢)s are i.i.d. with a symmetric density - Gaussian (N), logistic (1),
double exponential (De), Student (¢5) - or with an asymmetric density - the
skew normal sN'(10) and skew Student st5(10) densities.

In order to examine the finite sample performances of the proposed procedures,
we generated 2500 replications independent samples of size N = n(T — 4) = 1000
from (32). For each replication, we performed the following tests at the asymptotic

level @« = 5%, the pseudo-Gaussian test based on Qj\(fn) in (18), the van der

Waerden test, Wilcoxon test and Laplace test are based on, respectively, @
~vdW

Q and @ in (4.3), as well the rank tests based on Student scores with 5 degrees

~W ~L

of freedom and the rank tests with data-driven skew Student scores st;(0).

)

A data-driven choice of the reference density adapting, for instance, to f’s
actual skewness and kurtosis. Hallin & Mehta (2015) propose selecting the
reference density f by fitting a skew-t distribution (see Azzalini & Capitanio,
2003) with location zero, scale one, and density

fou(2) =2t,(2)T1 (52< vl )1/2),

v+ 22

where § € R is a skewness parameter, v > 0 is the number of degrees of freedom
governing the tails, ¢, and T,,; are the density distribution and cumulative
distribution functions of the Student-t distributions with v and v + 1 degrees
of freedom, respectively. Estimators § and 7 are obtained from the residuals Zi(fz)
using a maximum likelihood method (namely, maximizing a skew-¢ likelihood with
respect to (J,v)). The f-score functions to be used in the testing procedure then
are those associated with the skew-t density f&f/. This approach is also related
to the theory of efficient (adaptive) estimation. Additionally, these data-driven
scores tests as adaptive tests are valid and asymptotically optimal.

Rejection frequencies are reported in Table 2, they amply confirm the excellent
overall performances of our rank-based procedure with data-driven scores. It also
appears from the skew normal and skew Student simulations that asymmetry
significantly improves the superiority of rank tests over the pseudo-Gaussian one.

2The use of large number of individuals and short period of time is the most common type of
data in dynamic panel analysis. It is called Short panels, see Lillo & Torrecillas (2018)
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TABLE 2: Rejection frequencies (out of 2500 replications), for b = 0 (null hypothesis)
and various non-zero values of b (alternative hypotheses), with error density
g1 that is Gaussian (\), logistic (), double exponential (De), Student (¢5), the
skew normal (sA(10)) and skew Student t5 (st5(10)) of the pseudo-Gaussian
and rank tests based on van der Waerden, Wilcoxon, Laplace, Student-¢5 and
data-driven scores.

Underlying densities g1 Test b

0 0.025 0.05 0.075 0.1
Pseudo Gaussien | 0.0480 0.2040 0.6194 0.9522 0.9978
Van der Waerden | 0.0516 0.2142 0.6418 0.9718 0.9950

Normal Wilcoxon 0.0520 0.2208 0.6266 0.9320 0.9986
Laplace 0.0506 0.2256 0.5536 0.8596 0.9880
Student-ts 0.0540 0.2120 0.6100 0.9236 0.9956

Data-Driven 0.0428 0.2640 0.5400 0.7760 0.9200
Pseudo Gaussien | 0.0480 0.3552 0.7420 0.9512 0.9908
Van der Waerden | 0.0500 0.2640 0.5884 0.9232 0.9960

logistique Wilcoxzon 0.0516 0.2224 0.7272 0.9612 0.9984
Laplace 0.0410 0.2628 0.6688 0.9324 0.9952
Student-ts 0.0456 0.2360 0.6096 0.9536 0.9972

Data-Driven 0.0540 0.2400 0.5320 0.8560 0.9910
Pseudo Gaussien | 0.0536 0.3736 0.7316 0.8992 0.9964
Van der Waerden | 0.0492 0.3748 0.6376 0.9476 0.9888

Double exponentiel Wilcoxzon 0.0480 0.2860 0.6156 0.9308 1.0000
Laplace 0.0612 0.4604 0.7596 0.9952 1.0000
Student-ts 0.0518 0.3132 0.6248 0.9512 0.9996

Data-Driven 0.0550 0.3800 0.6400 0.8040 0.9440
Pseudo Gaussien | 0.0440 0.2620 0.7456 0.9748 0.9988
Van der Waerden | 0.0502 0.2544 0.7368 0.9944 1.0000

Student-t5 Wilcoxon 0.0486 0.3988 0.6996 0.9976 1.0000
Laplace 0.0552 0.4204 0.7040 0.9964 1.0000
Student-ts 0.0528 0.3984 0.7192 0.9988 1.0000

Data-Driven 0.0480 0.2040 0.5840 0.8280 0.9940
Pseudo Gaussien | 0.0510 0.4150 0.6994 0.9026 0.9915
Van der Waerden | 0.0532 0.3792 0.7092 0.8584 0.9906

skew Normal-sN (10) Wilcoxzon 0.0518 0.2836 0.6160 0.8402 0.9902
Laplace 0.0480 0.3228 0.6028 0.8006 0.9892
Student-ts 0.0506 0.3138 0.6180 0.8126 0.9880

Data-Driven 0.0560 0.5200 0.7700 0.9820 0.9990
Pseudo Gaussien | 0.0512 0.2276 0.6298 0.9064 0.9858
Van der Waerden | 0.0504 0.2096 0.6480 0.8984 1.0000

skew Student-sts(10) Wilcozon 0.0458 0.2136 0.6148 0.9092 0.9996
Laplace 0.0468 0.2068 0.5504 0.8404 0.9932
Student-ts 0.0500 0.2544 0.6154 0.9128 0.9940

Data-Driven 0.0476 0.4460 0.7968 0.9998 1.0000

6. Conclusions

In the present article, we derive a pseudo-Gaussian and rank-based tests for
testing white noise against panel superdiagonal bilinear dependence in a multiple
regression model for specified and unspecified error density. Moreover, the pseudo-
Gaussian test appears to have quite poor performances under skewed and heavy-
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tailed distributions, which leads as to consider rank-based tests. These tests are
nonparametric and they have better performance in terms of empirical power for
van der Waerden, Wilcoxon, Laplace, Student ¢t and data-driven scores.
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Appendix

Proof of Proposition 1. The proof of Proposition 1 relies on Swensen
(1985) conditions 1.2 to 1.7 of Lemma 1, and the only delicate one actually is
condition 1.2. The main point consists in showing that

1

1 1 /1 ad 4 3
(1, 5,0%,8) 5 G2 5 s () = Lfl <g(y—u—6’x+2(—b)%m 11 uusm))]
j=1 s=1

is quadratic mean differentiability, at any (i, 8,02,0), with z := (21, 22,...,2x)" €
1
RX. In order to establish the quadratic mean differentiability of q: .02 b fr it is

sufficient to show that the four conditions (i)-(iv) of Lemma A.1l in Bennala et al.
(2012) hold. This last is established in the following Lemma.

Lemma
Let Assumption (B) holds and fix f; € F;. Define, for y € R,

1 1 1

1 . 1 —u—p
Dp‘quﬁ’UQ’O;fl (y) - %q;,ﬁ,UZ,O;fl (y)q)fl (y lg £)7
D 3 I &, (v=p=Bz) KMy
B4, 8,62,0,f1 (y) = %qu,g’g{o;h (y) f1 ( - )( ) xz,
3 L 3 y—p—p'z y—p—p'z
Dazq#75’0270;fl (y) = @quﬁ,oz,O;ﬁ (y) o (I)fl ( o ) -1 ’
and
3 L1 y—p—p'z
Doty 502,05y Wlomo = 50 %,8,02.000 W) 1 (=5 Juws.

Then, as 7, s, v and r — 0,

1 1

1 2
2 _ g2 _ 2 —
L /R[qu+r,6+s,a2+w;fl W) = 9yrprsozivon @ =P s 02 oty (y)lb:0:| dy =
o(r?),
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1

2
L L T D“q;i,[a',a"‘,o;fl (¥) 9
2 2 5 _
2 /lR {qu+r,ﬁ+~s,02+v,0;f1 ) - 9,.,8,02,0:f1 ) - s Dﬂqjiﬁvozyo:h ) :| =
v D02q3’5702’0;‘f1 (v)
T 2
(|« 1)
v
and
1
T ' D“q;,ﬂ,azﬂ;h )
i L s’ Dga? 5 5 o4 (W) 2
2 2 _ w,B,02,0;f _
3- /IR {qM+TVB+SYO-2+’U7T;f1 (y) qu,5,0'2,0;f1 (y) . b % 1 ] dy =
o24,.8.02,0;f, )
1
. 1
Dod; 5,02 05, lbmo
-
s’ 2
v
'
Proof of Lemma
00 J
1. Let T(b) = Z(—b)JUkj H U—(s—1)k and y—(u+7)—(B+s)'z = 2(u, B) = 2.
Jj=1 s=1

Then (1) takes the form

Nl=
—
I\
~—
|

/R [f% (24 T() — f

is equivalent to
1/ s . 1. 2
/ r? [7’ (f2 (z + T(r)) — f2(z)> - 2f2(z)<1>f(z)ukul} dz = o(r?).
R
Then, it is sufficient to prove

im | F (f% (24 Y(r) - f%(z)> - ;f%(z)cpf(z)ukul] =0

r—0 r

We have

lim 1 (f% (z+7T(r)) — f%(z)> = lim

r—0 r

and just show
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N

(z)>rdz < /R [;f%(z)@(z)ukulrdz < .

/R [1 (fé(z+ () - f

We know that

AL ()

z+7Y(r) 1 1 2
{7 f2(v)®y(v )] dvdz

z€ER Juv=z 2

1.1 2
|:7 f2(v)®y(v ):| dz dv
vER Jz—"(r) 2

T(r) 2 1 1 2
s [7} /UER st weso) a
<y [ 31

2
< [ |37 omsmm] o=

D=

()@ (o fd“

This completes the proof of part (1) of the Lemma.

2. The problem here reduces to the classical case of linear models considered
by Swensen (1985).

3. The result here follows from (1) and (2) above. This completes the proof of
Lemma. g

Lemma above and Lemma A.1 in Bennala et al. (2012) jointly imply the desired
mean square differentiability property. The proof of Proposition 1 is thus complete.

Proof of Proposition 2 (i) Follows from Proposition 1 and the fact that

(n) (n) _
Ay e o, Boorpmrm., = op(),
under PEZL{)-B’,GZ,O;fl’ as n — oo.

(#4) From (12) and by algebra calculations we obtain under PL?%,)UQ’O;JCI, as
n — 00,

AP (0,) — AT, (0) = 0p(1).
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Then, we can replace the deterministic sequence 6,, by the sequence of estimates
0,,, so we have the result. O

Proof of Proposition 3 (i) Letting I'f,(.) has been assumed continuous;
Ff1;44(§") —T',.44(8) = op(1). Then, Proposition 2 (i7) implies that, under Pé f)l
as n — 0o,

2~ )2
A}1?4 (6n) _ A.(fl?)4 ©)

(n) =
QF @) - Q5 (0) Tpraa@n)  Tpraa(®)

(n)? 3 (n)? (n)? (n)?
A/?A (6n) . Af?;‘l (®) + AITA (®) _ Af71L;4 ©)
Ff1;44(6n) Ff1;44(0n) Ugiiaa (6n) Lf15a4 ()

__ (A<”>4 @) — A<n>4 (9))

T aa(0n)
2 1 1
+A ™ (a)( S )
it Tyaa(0n)  Ti5aa(0)

=op(1).
From (10), we have A&?L(Q) T> N (Tfy544(0)74,Tfy344(0)), under
’ n—oo
(n)
Poimnmn);fl. So that

Lpy4a(0) o0

Cochran’s Theorem leads to

AGL(0)/T 11:4a(0) = Q) (0) —Z X3 (s

with Ag, = (T2,(0)m1)" = 730(T — DI(f1)o%,, which gives the desired result

under P0+V(,L)T(n) S

(i1) Stringency is a consequence of the weak convergence of local experiments
to Gaussian shifts (see Le Cam, 1986).

(#4t) Follows from () and (éi). O

Proof of Proposition 5. The proof of Part (¢) of the proposition use the Hdjek’s
projection theorem (see, Hajek & Sidak, 1967) and follows along the same lines as
in Hallin & Mélard (1988), therefore it is omitted. Part (i¢) is obtained by direct
computation. As for Part (i4¢), under P( ) , the result straightforwardly follows
from classical central limit theorems. On the other hand, it is easy to see that,
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still under Pé’jr)l/(n)ﬂgl, égc?’)gl;4(9) and the log-likelihood Agjr)uwr/e;gl

multinormal. Then, the desired result follows from an application of Le Cam’s
third lemma. (]

are jointly

[Recibido: noviembre de 2019 — Aceptado: abril de 2020]
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