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Abstract
The main difficulties when using the Bayesian approach are obtaining

information from the specialist and obtaining hyperparameters values of the
assumed probability distribution as representative of knowledge external to
the data. In addition to the fact that a large part of the literature on this
subject is characterized by considering prior conjugated distributions for the
parameter of interest. An method is proposed to find the hyperparameters of
a nonconjugated prior distribution. The following scenarios were considered
for Bernoulli trials: four prior distributions (Beta, Kumaraswamy, Truncated
Gamma and Truncated Weibull) and four scenarios for the generating
process. Two necessary, but not sufficient conditions were identified to
ensure the existence of a vector of values for the hyperparameter. The
Truncated Weibull prior distribution performed the worst. The methodology
was used to estimate the prevalence of two transmitted sexually infections
in an Colombian indigenous community.

Key words: Laplace’s method; Bayesian inference; System of nonlinear
equations.

Resumen
Las principales dificultades cuando se utiliza el enfoque Bayesiano son

la obtención de información del especialista y la obtención de valores
de los hiperparámetros de la distribución de probabilidad asumida como
representante del conocimiento a priori. Adicionalmente, gran parte de la
literatura sobre este tema considera distribuciones a priori conjugadas para el
parámetro de interés. Un método es propuesto para encontrar los valores de
los hiperparámetros de una distribución a priori no conjugada. Los siguientes
escenarios son considerados para ensayos Bernoulli: cuatro distribuciones
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a priori (Beta, Kumaraswamy, Gamma Truncada y Weibull Truncada) y
cuatro escenarios para el proceso generador. Dos condiciones necesarias,
pero no suficientes fueron identificadas para asegurar la existencia de un
vector de valores para los hiperparámetros. La distribución a priori Weibull
Truncada fue la que peor desempeño presentó. La metodología fue utilizada
para estimar la prevalencia de dos infecciones de transmisión sexual en una
comunidad indígena de Colombia.

Palabras clave: Método de Laplace; Inferencia bayesiana; Sistema de
ecuaciones no lineales.

1. Introduction

When Bayesian inference methods are used for obtaining information about
a phenomenon of interest, the elicitation of the prior probability distribution
is a key process. According to Garthwaite, Kadane & O’Hagan (2005), the
statistician or facilitator establishes contact with an individual considered to be
a specialist (expert) on the research topic. The expert has valuable subjective
information about the data-generating process, having acquired experience from
repeated exposure to the phenomenon. In order to incorporate the information
about the data-generating process provided by the expert in the statistical model
proposed for the study, the statistician has to “express” such information as a
probability distribution (prior distribution) to establish “communication” with
the information contained in the data, which is expressed as a likelihood function.

Expressing the prior information as a probability distribution implies two
challenges for the facilitator: to establish a theoretical model of probability
that best represents the natural behavior of the indicator assumed to be an
expression of the data-generating process conditions in the statistical model and to
determine the numerical values of the parameters associated with the theoretical
model of probability (hyperparameters), to ensure that this model is an adequate
representation of the conditions under which the data-generating process occurs
(phenomenon of interest).

Different authors have studied the conditions considered in an elicitation
process. Some authors such as Tversky & Kahneman (1973), Tversky &
Kahneman (1974), Hogarth (1975) and Hogarth (1987), have studied the cognitive
and psychological processes present in the individual who performs the experts
functions when responding to interrogations by the facilitator related to the
generating process. Winkler (1967) and Fowler & Floyd (1995) have studied the
problem of how to formulate questions and what to ask the expert concerning the
given issue. From a more probabilistic and statistical point of view, Murphy &
Winkler (1974), Winkler (1967) and Kadane & Winkler (1988) have developed
mathematical methods for obtaining different types of probability distributions
that serve as representations of the level of presence-absence of prior information
in the generating process. Likewise, Chaloner & Duncan (1983), Sindhu, Feroze &
Aslam (2013), Tovar (2012), Penha (2014) and Flórez & Correa (2015) have worked
on the development of mathematical procedures for obtaining the hyperparameter
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values that best represent the conditions of the data-generating process in the
prior theoretical distribution model. On the other hand Moala & Penha (2016),
have proposed a simulation methodology for evaluating the effectiveness of these
procedures.

One of the most used method to obtain the vector of hyperparameters ϕ of prior
distribution π, is to evaluate a quantiles interval from the specialist and calculate
from this its midpoint α and a fraction β of its rank. Using this, information and
the moments of the prior distribution π, the system of equations is constructed E[θ | ϕ] = α

V ar[θ | ϕ] = β

The vector ϕ∗ that satisfies the system defines a single prior distribution π(θ | ϕ∗)
as representative of the beliefs of the specialist. Given that the assumed values for
the mean and variance of the subjective distribution are fixed, this method ends
up forcing the specialist to accept the prior distribution obtained or provide a new
quantiles interval that generates a different vector ϕ∗.

To avoid these difficulties, some authors have used Prior Predictive Distribution
(PPD) to obtain the hyperparameter vector. Chaloner & Duncan (1983), considers
Bernoulli trials, the prior Beta distribution, a quantile interval evaluated by the
specialist and the PPD. On the other hand, survival times modeled with the
Weibull distribution are used by Penha (2014), who assumes the bivariate Gamma
distribution as a prior (nonconjugated) and constructs a system of equations with
PPD approximations.

Except for Penha (2014), the methods of elicitation proposed by the
aforementioned authors are characterized by assuming the conjugate of the
likelihood function as prior distribution and obtaining information about the
moments or percentiles of said distribution from the specialist to form a system
of equations that provides the value of the hyperparameters. In this article
this subject is addressed and a method to obtain hyperparameter values of
nonconjugated prior distributions is proposed. Using the Laplace (1773) method,
we developed asymptotic approximations of the PPD obtaining a system of
nonlinear equations, which is solved using some numerical approximation as the
Newton-Raphson method. The Laplace Method (LM), which has been studied
extensively by Tierney & Kadane (1986), Azevedo-Filho & Shachter (1994) and
Vidal (2014) in order to approximate posterior moments, marginal distributions
and the Bayes factor, among others. In our literature review, we found one work
that implemented the LM to obtain values of the hyperparameters of a prior
distribution, (Penha 2014).

To illustrate the proposed method, a realization of a random sample of
independent variables with a Bernoulli distribution is considered and four priors
(Beta, Kumaraswamy, Truncated Gamma, Truncated Weibull) were assumed. A
simulation study using four different values of the parameter to be estimated was
carried out and the statistical performance of the Bayesian estimates was compared
with those obtained using the classical approach. Data obtained from a study
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carried to estimate the prevalence of HIV and Syphilis infection in a Colombian
indigenous community, were used to illustrate the performance of the proposed
method.

2. Methodological Proposal to Obtaining
Hyperparameter Values

In general the Figure 1 presents the steps of the method described in this
section.

Figure 1: Short representation of the proposed procedure.

The procedure used to approximate integrals is that developed by Laplace
(1773) and formalized by authors such as Erdélyi (1956) and Bruijn (1961). The
Laplace method formally indicates: Let h(.) and b(.) be analytical and smooth
functions infinitely differentiable over a domain Ω, so that their Taylor series
expansion around the local minimum θ̂ of the convex function h(.) in Ω exists.
Then, for a considerably high value of n, the integral

In =

∫
Ω

b(θ) exp{−nh(θ)}dθ

has the following result

În = (2π)1/2n−1/2b(θ̂) | Σ |1/2 exp{−nh(θ̂)}{1 +O(n−1)}

where, Σ =

(
∂2h(θ̂)

∂θ2

)−1

and O(n−1) is the Landau notation and indicates that

the following is fulfilled for a function g(n) = O(n−1); namely,

(∃n0 ∈ N)(∀n ≥ n0)(∃ϵ > 0)(| g(n) |≤ ϵ | n−1 |)

2.1. Obtaining the Hyperparameter Values

Consider that an experiment has been performed n times (in a heuristic
way, with a computational simulation algorithm, through real realizations) so
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x(n) = {x1, . . . , xn} which is assumed at least exchangeable, i.e. each observation
having distribution f(x | θ), where θ is an unknown scalar or vector of parameters
that represents the conditions under which a generating process occurs. The
information about θ contained in the sample of observations can be incorporated
into the model through the likelihood function L(θ | x(n)), which has the following
form,

L(θ | x(n)) =

n∏
i=1

f(xi | θ) (1)

In addition to the sample information, it is possible to consider in the
construction of the statistical model that represents the situation under study,
information “external” to the sample that has been obtained from the predictions
of Expert A in the area of research and from the parametric space Ω that contains
all the values of θ. Thus a probability distribution function, π(θ | ϕ) is sought,
where ϕ is a hyperparameter vector of l components, whose values will have to
be found to represent A’s predictions. On some occasions, the Ω domain can
be restrictive in selecting the prior; but it can be ignored by using truncated
distributions or re-parameterizations.

The information represented in the likelihood function can be combined
with the expression through π(θ | ϕ), using Bayes’ formula, thereby obtaining the
posterior distribution (2).

π(θ | x(n)) =
L(θ | x(n))π(θ | ϕ)∫

Ω
L(θ | x(n))π(θ | ϕ)dθ

=
L(θ | x(n))π(θ | ϕ)

L(x(n) | ϕ)
(2)

The denominator of (2) represents the marginal likelihood of (1), also called the
PPD. Finding an analytical expression for (2) depends on the prior distribution
used. To avoid this constraint, the asymptotic approximation provided by LM
was used. The asymptotic approximation of the denominator in (2) is denoted
as ÎL(x(n) | ϕ), where n represents the sampling size and allows determining
the approximation accuracy; while ϕ is the constant vector that represents the
hyperparameters of the prior distribution.

To implement the LM, the functions b(θ) and h(θ), which represent the PPD,
must be chosen; thus b(θ) exp{−nh(θ)} = L(θ | x(n))π(θ | ϕ). According to the
literature, two parameterizations can be considered (selections of b and h). The
first parameterization (3) is based on classical techniques, given that maximizing
−nh(θ) is equivalent to maximizing the logarithm of the likelihood function.
However, Kass & Raftery (1995) indicated that the approximation error increases
when the prior distribution is informative.

−nh(θ) = logL(θ | x(n)); b(θ) = π(θ | ϕ) (3)

On the other hand, in the second parameterization (4), the maximum value
of −nh(θ) is called the posterior mode because it is the result of maximizing
the logarithm of the product between the likelihood and the prior distribution;
that is, the logarithm of the non-normalized posterior distribution. The latter
parameterization is the one implemented in the proposed method.
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−nh(θ) = logL(θ | x(n)) + log π(θ | ϕ); b(θ) = 1 (4)

Once the prior distribution has been chosen and ÎL(x(n) | ϕ) has been obtained,
the information from Expert “A” is extracted as follows:

i) A value m is selected for the number of elements that a hypothetical sample
contains.

ii) Using m, characteristics of the expert’s subjective distribution are evaluated,
as: quantiles x(m),j , probabilities αj , correlation or association coefficient ρj ,
mean, among other descriptive measures. The number of characteristics that
must be evaluated coincides with the number l of components of ϕ.

iii) Trial samples are generated that satisfy each evaluated characteristic and
the following system of l equations with l unknowns (components of ϕ) is
constructed.

ÎL(x(m),1 | ϕ)− α1 = 0

ÎL(x(m),2 | ϕ)− α2 = 0
...

ÎL(x(m),l | ϕ)− αl = 0

For example, consider a sample size (hypothetical) m and a vector of
hyperparameters of l = 2 components. Two quantiles have been evaluated from
the expert, x(m),1 and x(m),2, with the probabilities α1 and α2, respectively. Using
this information, the specialist’s Prior Predictive Pseudo-Distribution (PPPD) is
defined, as:

L(x(m),j | ϕ = (a, b)) =

∫
Ω

L(θ | x(m),j)π(θ | ϕ)dθ

where L(θ | x(m),j) is the likelihood function defined by the trial sample of size m
containing the quantile x(m),j . With this fact, the PPPD depends on the vector
of hyperparameters ϕ. Thus, the method of obtaining hyperparameters consists
of finding a vector of constants ϕ∗ that satisfies the following equation:

ÎL(x(m),j | ϕ∗) = αj for j = 1, 2

The vector ϕ∗ representing the beliefs of the expert is obtained as the solution
of system (5). Several methods may be used to determine such solutions,
such as successive approximations, Newton-Raphson and variants (such as finite
differences, Jacobi, Gauss-Sediel, and Quasi-Newton, among others). The Newton-
Raphson method will be used as it exhibits quadratic convergence and other
properties that were studied in detail by Dennis-Jr & Schnabel (1996).

ÎL(x(m),1 | ϕ)− α1 = 0

ÎL(x(m),2 | ϕ)− α2 = 0
(5)
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3. n Bernoulli Observations

Let y1, . . . , yn be a sample of n observations obtained when performing n
independent Bernoulli experiments, each with a θ ∈ [0, 1] probability of success
(the sample can be only exchangeable). The sufficient statistic x =

∑n
i=1 yi

is defined. Given the characteristics of the experiment, it is known that X ∼
Binomial(n, θ); thus the likelihood function of the parameter θ related to the
sufficient statistic x will be

L(θ | x) =
(
n

x

)
θx(1− θ)n−x (6)

Thus for any prior distribution π(θ | ϕ), the PPD will be

L(x | ϕ) =
∫
Ω

(
n

x

)
θx(1− θ)(n−x)π(θ | ϕ)dθ (7)

To approximate L(x | ϕ), the LM is used, which requires the selection of
functions −nh(.) and b(.), the calculation of the minimum value of h(.) and the
second derivative of h(.). For the Bernoulli distribution, the parameterization (4)
generates

−nh(θ) = log

(
n

x

)
+ x log θ + (n− x) log(1− θ) + log π(θ | ϕ) (8)

If parameterization (3) is used, expression (8) would be obtained without the
term log π(θ | ϕ) –that is, only the logarithm of the binomial density–; thus the
maximum of −nh(.) coincides with the maximum likelihood estimator, θ̂ = x/n.
Determining an analytical expression for the maximum or posterior mode of (8)
θ̂ depends on the shape of the selected prior distribution. In some cases, it is
impossible to obtain it. Therefore, it is necessary to apply the numerical approach
method called Bisection to find the roots of the following expression:

−nh′(θ) =
x

θ
− n− x

1− θ
+

π′(θ | ϕ)
π(θ | ϕ)

(9)

Likewise, the asymptotic approximation of (7) by LM depends on n, x = x(n)

and ϕ: Its analytical expression is:

ÎL(x(n) | ϕ) ≈

(2π)
1/2

∣∣∣∣∣∣∣∣∣∣∣
x

θ̂2
+

n − x

(1 − θ̂)2
−

π′′(θ̂ | ϕ)π(θ̂ | ϕ) − [π′(θ̂ | ϕ)]2

[π(θ̂ | ϕ)]2︸ ︷︷ ︸
h′′(θ̂)

∣∣∣∣∣∣∣∣∣∣∣

−1/2 n

x

 θ̂
x
(1 − θ̂)

(n−x)
π(θ̂ | ϕ)

︸ ︷︷ ︸
exp{−nh(θ̂)}

(10)

Four families of probability distribution are considered to model the prior
information about the natural behavior of the parameter of interest. The first two
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(Beta, Kumaraswamy) are characterized by modelling the natural behavior of the
random variables whose domain is the interval Ω = [0, 1]. The Beta distribution is
the conjugate prior when a Binomial model is assumed for the likelihood function
and its density function (11) is characterized by two form parameters, a, b > 0.
If θ is a random amount of interest such that θ ∈ Ω, it can be assumed that
θ ∼ Beta(a, b) so that ϕ = (a, b), then:

π(θ | ϕ) = 1

Be(a, b)
θa−1(1− θ)b−1 θ ∈ [0, 1]

a, b > 0
(11)

When using (11) in (7), the PPD is obtained:

L(x | ϕ) =
(
n

x

)
1

Be(a, b)︸ ︷︷ ︸
∆Bet

∫
Ω

θx+a−1(1− θ)(n+b−x−1)dθ (12)

The integrand of (12) may be a Beta distribution, and the closed form (13)
can be obtained.

L(x | a, b) = ∆BetBe(x+ a, b+ n− x) (13)

Other prior distribution assumed is the Kumaraswamy (Kum), with density
function π(θ | a, b) = abθa−1(1− θa)b−1, with a, b > 0 form parameters. It has the
advantage of having a probability distribution that is analytically more treatable
than Beta. This distribution is applicable to model phenomena, whose results
have lower and higher limits, such as the weight of individuals, scores obtained
from tests (Sindhu et al. 2013).

Besides of Kum and Beta distributions, we used as prior distributions, the
truncated Gamma and the truncated Weibull. Given that, both correspond
to theoretical models constructed for random variables that take non-negative
values, for effects of the elicitation method when using Bernoulli trials, each one
was truncated in the interval Ω = [0, 1] considering the process associated to
probability of success θ ∈ Ω. The Gamma distribution, is characterized by having
two parameters: one of form a > 0 and the other of inverse scale b > 0, also
called a rate parameter or event rate. The expression of the Truncated Gamma
(TG) distribution (14) contains a normalization constant (K), which depends of
the values of the hyperparameters ϕ = (a, b).

Tr(θ | a, b) = K−1(a, b)θa−1e−bθ; K(a, b) =

∫ 1

0

θa−1e−bθdθ (14)

The last prior probability distribution considered is the Weibull, which has
two parameters: one of form a > 0 and the other of scale b > 0. The Truncated
Weibull (TW) distribution, involves a normalization constant (K) that depends
of the hyperparameters ϕ = (a, b).

Tr(θ | a, b) = K−1(a, b)θa−1e−(θ/b)a ; K(a, b) =

∫ 1

0

θa−1e−(θ/b)adθ (15)
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The last two distributions were considered under the assumption that specialist
thinks the probability of success takes values closed to zero in most of times.

With each of these prior distributions, the LM is implemented to determine
an analytical approximation of the PPD (10). These expressions are presented
in Table 2 and generate a surface of prior predictive probabilities that can be
plotted on a region D ⊆ R2. For example, consider 10 successes obtained in 50
independent repetitions of a Bernoulli experiment, with D = [0, 100]2 and the
prior Beta as representative of a specialist’s beliefs. On the left side of Figure 2,
the approximation of the PPD (10) appears in blue and its closed form in red (13);
while on the right side the approximation of the PPD (10) is presented, assuming
the prior Kumaraswamy. These approximations are implemented to form the
system of nonlinear equations (5).

Figure 2: Surface of the PPD for 10 successes in 50 repetitions of independent Bernoulli
experiments with Beta (left) and Kumaraswamy (right) prior distribution.

To obtain information through an individual who is an expert in the matter of
interest, the following sentences can be posed:

a) Suppose that there is a hypothetical sample of m elements. Indicate two
values: a minimum and a maximum (x(m),1, x(m),2) that represent the number
of elements with the characteristic of interest. (Example: For a sample of size
m = 50, the expert has indicated that it would be expected to obtain a minimum
of x(m),1 = 5 and a maximum of x(m),2 = 10 elements, respectively with the
characteristic of interest)

b) Now consider that there are 100 groups, each one with m elements. In how
many groups would you expect to have exactly x(m),1 and x(m),2 elements with
the characteristic of interest, respectively? (Example: Each of the 100 groups
has 50 elements. The expert expects to have 8 groups with x(m),1 = 5 elements
that present the characteristic of interest, resulting in a probability of occurrence
α1 = 8/100 for x(m),1. Likewise, α2 = 9/100 indicates that the expert would
expect to have x(m),2 = 10 elements with the characteristic of interest in 9 of
the 100 groups)

Revista Colombiana de Estadística - Applied statistics 43 (2020) 183–209



192 Llerzy Torres & José Rafael Tovar Cuevas

c) What is the number of elements x(m),mod that you consider would present
the characteristic of interest with more frequency? This last question is
related to the mode value in order to verify the consistency of the experts
responses; therefore, x(n),mod has to remain in the interval [x(m),j , x(m),j′ ] for
j < j′. (Example: The expert indicates that the number of elements with the
characteristic of interest that will occur with higher frequency is x(m),mod = 8.
Then, with the information obtained from the previous items a) and b), this is
verified that 8 ∈ [5, 10]. Thus the expert’s information is coherent)

Using the data presented in items (a) and (b), the system of nonlinear equations
is defined (5), dependent on the vector ϕ = (a, b).

ÎL(x(50),1 = 5 | ϕ = (a, b))− 8/100 = 0

ÎL(x(50),2 = 10 | ϕ = (a, b))− 9/100 = 0
(16)

The expression ÎL(x(50),j | ϕ) represents the PPPD given by (10) for prior
distribution and a pair of hyperparameter values ϕ. To determine the solution
vector ϕ∗, the Newton-Raphson method is used, and the initial point is obtained
graphically through the system-level curves. Table 1 provides the most relevant
results, such as the number of iterations, error vector and solution vector (value
of hyperparameters). The results of the prior TW distribution are not presented
because the PPPD was lower than the one provided by the specialist.

Table 1: Summary of the Newton-Raphson method for hyperparameters obtained
considering three prior distributions.

Prior Initial
Point

N◦

Iter.
(ÎL(x(m),1 | ϕ∗)− α1,
ÎL(x(m),2 | ϕ∗)− α2)

Vector Solution
(ϕ∗)

Beta (8, 36) 5 (−3.9× 10−10, −2.2× 10−9) (8.26, 39.08)

Kumaraswamy (3, 90) 14 (−1.2× 10−10, −8.1× 10−13) (3.35, 257.98)

TG (14, 78) 7 (−5.3× 10−11, 3.5× 10−11) (10.39, 59.39)

In the process of obtaining the vector solution ϕ∗ of the system of nonlinear
equations (16), two necessary conditions were identified but were not sufficient to
guarantee the existence of the solution. The first indicates that ÎL(x(m),j | ϕ)
must not be exceeded by the specialist’s probabilities αj , j = 1, 2; and the second
is that the amplitude of the interval evaluated (x(m),1, x(m),2) should not be too
width.

In this table the following expressions are used:

k1 =
c1
θ
− c2

1− θ
k2 = − c1

θ2
− c2

(1− θ)2
k3 = c3aθ

a−2 (a− 1)(1− θa) + aθa

(1− θa)2

with c1 = x+ a− 1, c2 = n− x, c3 = b− 1 y ϕ = (a, b).
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Given that the hypothetical sample size (m) delivered to the expert can affect
the process to obtain hyperparameters, four scenarios of the generating process
expressed as probabilities of success were established, and three hypothetical
sample values were assumed for each one. These data were presented for the
specialist and in the Table 3 presents some of these results, as the maximum
values generated by each prior distribution on the surface of the PPPD. For these
cases, a mesh D = [0, 100]2 was used initially. These surface limited the mesh
(Table 4). For example, on the right side of Figure 2, the surface of the PPPD
generated by the prior Kumaraswamy was presented in the scenario of θ = 0.15
and mesh D = [0, 100]2; however, the region where the surface is far away from
the ab plane is [0, 15] × [0, 100]. Other aspects that can be evidenced from Table
3 are:

Table 3: Scenario of the generating process and the three sizes of hypothetical samples
presented to the specialist.

Scenario θ Case
Specialist’s Beliefs

L(θj | x(m),j)
max

(a,b)∈D
ÎL(x(m),j | ϕ)

m x(m),j θj Beta Kum TG TW

0.150

1 100
10 0.100 0.132 0.100 0.064 0.090 0.014
20 0.200 0.099 0.074 0.048 0.066 0.013

2 50
5 0.100 0.185 0.154 0.114 0.147 0.028
10 0.200 0.140 0.118 0.086 0.110 0.025

3 10
1 0.100 0.387 0.371 0.350 0.365 0.122
2 0.200 0.302 0.292 0.269 0.284 0.118

0.500

4 100
45 0.450 0.080 0.064 0.041 0.048 0.012
55 0.550 0.080 0.064 0.044 0.045 0.013

5 50
23 0.460 0.113 0.100 0.072 0.081 0.023
28 0.560 0.113 0.100 0.077 0.078 0.025

6 10
4 0.400 0.251 0.245 0.219 0.232 0.102
6 0.600 0.251 0.245 0.225 0.225 0.123

0.850

7 100
80 0.800 0.099 0.074 0.069 0.042 0.023
90 0.900 0.132 0.100 0.100 0.049 0.042

8 50
40 0.800 0.140 0.118 0.110 0.078 0.045
45 0.900 0.185 0.153 0.158 0.093 0.079

9 10
8 0.800 0.302 0.292 0.274 0.254 0.186
9 0.900 0.387 0.371 0.354 0.331 0.283

0.900

10 100
85 0.850 0.111 0.082 0.082 0.043 0.030
95 0.950 0.180 0.129 0.153 0.074 0.077

11 50
43 0.860 0.161 0.135 0.133 0.082 0.060
48 0.960 0.276 0.225 0.243 0.155 0.162

12 10
8 0.800 0.302 0.292 0.274 0.254 0.186
10 1.000 1.000 0.769 0.776 0.757 Inf

L(θj | x(m),j) is the function of likelihood that now depends of parameter θj and x(m),j is a
j-th hypothetical sample of size m.
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Table 4: Regions D for approximating the PPPD based on the LM.

Prior
0.150 0.500 0.850 0.900

1 2 3 4 5 6 7 8 9 10 11 12
Beta [0, 100]× [0, 100]

Kum [0, 15]× [0, 100] [0, 30]× [0, 100] [0, 100]2 [0, 100]2

TG [0, 100]× [0, 100]

TW [0, 10]× [0, 100] [0, 25]× [0, 100] [0, 100]2 [0, 100]2 -

• The maximum PPPD values increase as the size of the hypothetical sample
decreases so that the values obtained from this distribution generate an upper
limit for the specialist’s αj .

• The information provided by the specialist generates a likelihood of beliefs,
L(θj | x(m)j), which approximates the maximum PPPD values when the size of
the hypothetical sample decreases.

• The prior distribution Beta and TW generated, respectively, the highest and
lowest PPPD.

• When the parameter to be estimated had central values (that is, around
0.5) in its domain and the sum of the extremes of the interval evaluated by
the specialist coincided with the size of the hypothetical sample considered
(x(m),1 + x(m),1 = m), the components of each of the following vectors were
equal: the probability of the specialist (α1 = α2) and maximum prior predictive
probabilities, these last amounts appear by pairs of rows from the seventh to
the tenth column of Table 3.

4. Simulation Study

Consider from the previous section the probabilities for item (b) fixed for each
scenario of the parameter in Table 3. Figure 3 presents the form of the prior
densities elicited and Table 5 the respective hyperparameters, descriptive measures
and case from which the specialist’s information was obtained. For example, in
the scenario where θ takes a value in the middle of its domain (θ = 0.5), based on
the prior Beta, the case was considered where the specialist was evaluated based
on a hypothetical sample of m = 50 (Case 5). With the Kumaraswamy and TG
the hypothetical sample was m = 10 elements (Case 6); whereas with the TW, no
solution to system 16 was found in any of the cases.

Assuming that the specialist agrees with the probability contained in the
interval [θ1, θ2], which was obtained from the prior distribution proposed, It was
developed one simulation procedure. Bernoulli samples (s = 1, . . . , 10000) were
generated assuming different θ and sample size nk (simulation’s scenarios). In each
of these scenarios, the probability of success was estimated. The mean, maximum,
minimum and MSE (Mean Square Error) of the estimates were computed. The
procedure was carried out 56 times, because four prior distributions, four values of
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θ and four sample sizes nk = {20, 50, 125, 312} were considered. The sample sizes
were associated with the first four elements of a geometric serie, whose common
ratio was 2.5 and first term, 20. The algebraic expressions of the mean and
posterior variance were obtained by approximating the r−th posterior moment
using the Laplace Method. See Appendix A.

Table 5: Descriptive measures of prior distributions elicited for the scenarios of the
generating process. Pr represents P [θ ∈ (θ1, θ2)].

θ Prior
ϕ∗ Measures of Central

Tendency Var Pr Case
a b Mean Median Mode

0.150

Beta 8.264 39.078 0.175 0.170 0.160 0.003 0.630
2Kum 3.354 257.978 0.171 0.171 0.172 0.003 0.582

TG 10.392 59.388 0.175 0.169 0.158 0.003 0.645
TW 1.225 3.212 0.531 0.540 NaN 0.077 0.088 3

0.500
Beta 149.993 140.290 0.517 0.517 0.517 0.0009 0.904 5
Kum 1.071 0.770 0.581 0.615 NaN 0.086 0.091

6
TG 2.640 2.250 0.613 0.629 0.729 0.056 0.126

0.850

Beta 31.571 6.230 0.835 0.841 0.854 0.004 0.610
8Kum 16.695 12.051 0.832 0.841 0.859 0.004 0.643

TG 195.800 231.444 0.845 0.844 0.842 0.003 0.594
TW 0.881 498.329 0.468 0.455 0.881 0.086 0.090 9

0.900
Beta 17.400 2.488 0.875 0.888 0.917 0.005 0.552

11Kum 13.055 2.908 0.874 0.888 0.918 0.005 0.566
TG 102.490 112.656 0.883 0.889 0.901 0.005 0.503

Figure 3: Densities elicited for the four scenarios of the generating process.

Revista Colombiana de Estadística - Applied statistics 43 (2020) 183–209



Method to Obtain a Vector of Hyperparameters 197

F
ig

ur
e

4:
P

re
ci

si
on

an
d

ac
cu

ra
cy

of
es

ti
m

at
es

us
in

g
th

e
M

ax
im

um
Li

ke
lih

oo
d

an
d

B
ay

es
ia

n
ap

pr
oa

ch
th

ro
ug

h
pr

io
r

di
st

ri
bu

ti
on

s
ob

ta
in

ed
by

th
e

pr
op

os
ed

m
et

ho
d.

Revista Colombiana de Estadística - Applied statistics 43 (2020) 183–209



198 Llerzy Torres & José Rafael Tovar Cuevas

The results are shown in Figure 4, which is complemented in Appendix B.
The precision-defined as the amplitude of the interval formed by the minimum
and maximum values of the estimates-was greater in the first, third and fourth
scenarios of the subjective approach when considering the Beta, Kumaraswamy
and TG distributions obtained by the proposed elicitation method rather than from
the classical approach. In the second scenario, the Beta distribution was the only
one that generated considerably greater precision than the classical approach and
other prior distributions obtained. This was due to the fact that its variabilities
were greater, and the probability contained in the specialist’s interval was less than
12.6%. The same was true for the reason why the prior TW had poor precision
and accuracy (average of estimates) in the first and third scenarios. As expected,
in all scenarios and for both approaches, the increase in sample size generated
better precision and accuracy. The MSE was calculated and represented with a
symbol on each vertical line of Figure 4 in order to compare the dispersion of the
estimates generated by the prior distribution obtained and the classical approach.

The Beta distribution obtained the lowest MSE in all scenarios, followed by
Kumarswamy and TG in the first and third scenarios, respectively (Table 5).

5. Aplication: Prevalences in an Indogenous
Community

An epidemiological study to estimate the prevalence of three sexually
transmitted infections in a Colombian indigenous community was conducted by the
University of Antioquia in the eastern region of Colombian. The study enrolled
295 individuals and three HIV infection and eight Syphilis infection cases were
observed. The objective of this study was to estimate the prevalence of each
disease. This data were used before by Tovar (2012) to obtain the hyperparameter
values for a prior Beta distribution using the fixed interval and the Chebyshev
inequality. For HIV infection, the author used information presented by the
Ministerio de la Protección Social (2010) supported by the criterion of a specialist
in the subject, who indicated that the prevalence of this infection should not
exceed 1%. According to the Ministerio de la Protección Social, the prevalence
of HIV in the population with age between 14 and 49 years was 0.22% and
for the entire Colombian population was 0.59%. To illustrate the proposed
method, we expressed the prevalences as quotients generating a range of quantiles
(0.0022 = 2.2/1000 ≈ 2/1000) and (0.0059 = 5.9/1000 ≈ 6/1000) for the number
of individuals infected with HIV in a hypothetical sample of 1000. With this
information, it is possible to define a system of non-linear equations whose roots
are the hyperparameter values of a selected prior distribution.

ÎL(x(1000),1 = 2 | ϕ = (a, b))− L(0.0022 | x(1000),1) = 0

ÎL(x(1000),2 = 6 | ϕ = (a, b))− L(0.0059 | x(1000),2) = 0
(17)

For the infection of Syphilis, the specialist provided an interval of values for the
prevalence (0.01, 0.03) and the system of non-linear equations for this case was:
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ÎL(x(100),1 = 1 | ϕ = (a, b))− L(0.01 | x(100),1) = 0

ÎL(x(100),2 = 3 | ϕ = (a, b))− L(0.03 | x(100),2) = 0
(18)

We did not obtain prior distribution for HIV infection, because the prior interval
obtained for this infection was in the limits of the parametric space (very close
to zero) and the amplitude was too small, which made difficult to find a region
D from the plane ab containing at least one point of intersection between the
surfaces of the system (17) and the plane ab. For the Syphilis case, we obtained
the prior distributions. In Table 6 the characteristics of these prior distributions
are showed and the obtained hyperparameter values are compared with those
obtained using the method proposed by Tovar (2012). The Beta prior distribution
obtained with the proposed method showed the highest density and the highest
contained probability within the interval suggested by the specialist. See the upper
part of Figure 5. The posterior densities were obtained with the help of the LM.
The posterior densities and the binomial likelihood of the observed data set are
showed in Figure 5.

Table 6: Descriptive measures of elicited prior distributions for syphilis infection. Pr
represents P [θ ∈ (θ1, θ2)].

Prior
ϕ∗ Measures of Central

Tendency Var Pr

a b Mean Median Mode
Beta 122.244 5976.849 0.020 0.020 0.020 3× 10−6 0.999
Kum 2.194 5563.686 0.017 0.017 0.015 7× 10−5 0.717
TG 49.117 2263.062 0.029 0.022 0.021 9× 10−5 0.993

Beta* 3.900 191.100 0.020 0.018 0.015 1× 10−4 0.704

Figure 5: Densities for prevalence of syphilis infection.
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In the infection by Syphilis, we obtained the estimates of the prevalence
parameter, using the maximum likelihood and the Bayes estimates, assuming as
prior distributions those obtained applying the proposed method and a Beta prior
distribution obtained using the Tovar (2012) method (Beta*). Some important
indexes as standard deviation, the prior predictive probability and the Bayes
Factor to select among prior models and 95% credibility intervals were computed
too. See Table 7.

Table 7: Posterior estimates obtained using classical and subjective approaches
Method i E[θ] V [θ] ÎL(x | ϕ∗) BFij CI(95%)

Classic MLE 0.027

Bayesian

1 Beta 0.020 3× 10−6 0.099 BF12=1.518 (0.017, 0.024)

2 Kum 0.023 4× 10−5 0.065 BF23=0.589 (0.012, 0.038)

3 TG 0.022 1× 10−5 0.111 BF34=1.587 (0.017, 0.028)

4 Beta* 0.024 5× 10−5 0.070 BF41=0.704 (0.013, 0.039)

BF13 = 0.895, BF24 = 0.935

6. Discussion

The proposed method of elicitation in the same way that those developed
by Chaloner & Duncan (1983), Tovar (2012), Sindhu et al. (2013) and Flórez
& Correa (2015), to assume any prior distribution that has the same domain
of the parameter of interest and that is adequate for expressing the specialist’s
information. In the model this fact makes possible to reflect the natural behavior
of the random quantity, θ, complying with the coherence principle; otherwise it
will not be possible to obtain the values of the hyperparameters. This result allow
us to conclude that Truncated Weibull is not a good choice for a prior distribution
when we have a Binomial likelihood. An interesting feature of the method is that
the resulting prior distribution elicited is not unique. Therefore the specialist can
choose from a wide variety of prior distribution.

The proposed method is similar that developed by Penha (2014). She used the
Laplace Method to obtain the hyperparameters of a bivariate Gamma distribution
used as prior for a Weibull likelihood. She considers only four observations (one
for parameter) but our approach works with a sample of n observations using
a nonlinear system equations. This fact improves the error of approximation
O(n−1). The initial point for the Newton-Raphson method was identified through
the contour lines associated with the surfaces of the nonlinear equations system
(5). Questions were asked using hypothetical samples to evaluate information
from the specialist, who was allowed to select the prior distribution based on the
probability contained in the evaluated interval and the asymmetry of the density
obtained. Several scenarios for the specialist’s beliefs were considered. This made
it possible to determine the behavior of the precision and accuracy of the posterior
estimates generated by each family of prior distributions.

The elicitation methods described by Flórez & Correa (2015) used only
the prior distribution characteristics involved; i.e., its moments, quantils and
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probabilities. This allows simulation procedures such as those used by Moala &
Penha (2016), which are adequate to evaluate the effectiveness of the foregoing
methods but not for the one developed herein. This is due to the fact
that the method used by Moala considers the known hyperparameters of the
prior distribution that accurately reflects the specialist’s knowledge. Then the
aforementioned elicitation methods were used, assuming that the evaluated mean
and probabilities by the specialist have known errors. As expected, the elicitation
methods turn out to be quite precise. Moala reports three specific methods. While
the proposed method uses information regarding the likelihood function and the
prior distribution considered representative of the specialist’s knowledge.

7. Conclusions

Two necessary, but not sufficient conditions were found for the existence of a
solution point of the system of nonlinear equations (5). The first is that according
to the prior distribution chosen and the hypothetical sample used to evaluate
the specialist’s information, the probabilities αj assigned by the expert must not
exceed the prior predictive pseudo-probabilities that would be obtained using the
prior chosen. If this occurs, the surfaces of the system move away from the ab
plane and prevent finding a solution point; that is, a vector of hyperparameters
that represents the specialist’s behavior. The second condition is that the interval
proposed by the specialist should not be too width, because the surfaces of the
system will be too far apart and could not be intercepted on plane ab.

Of the four prior distributions considered, the TW was the one that had the
lowest prior predictive pseudo-probability, which prevented obtaining values for
the hyperparameters in two of the scenarios and consequently, posterior estimates.
In general there was no greater difference between the averages of the posterior
estimates generated from the prior distributions obtained for each scenario.

With the proposed methodology is possible to obtain a region D in the plane
ab where the surfaces of the system of equations is defined using the specialist’s
information. The obtained level curves are plotted on D and with the Newton-
Raphson’s method to obtain a vector ϕ∗ that represents the additional beliefs
about the generating process.

For the case applied to the Colombian indigenous community the prior
distribution for the prevalence of HIV infection was not obtained due to the
computational cost of finding a D region that contain roots for the system of
equations. One way to address this problem is to find a maximum point of each
surface and build the region D around these points.
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Appendix A. Approximation of the Posterior
Expressions

Table A1: Approximation of distribution and r-th posterior moment, considering
Bernoulli trials and Beta prior distribution.
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Table A2: Approximation of distribution and r-th posterior moment, considering
Bernoulli trials and Kumaraswamy prior distribution.

Posterior

D
is

tr
ib

ut
io

n
π
(θ

|x
(n

)
)

E
xp

re
.

θx+a−1(1− θ)n−x(1− θa)b−1∫
Ω θx+a−1(1− θ)n−x(1− θa)b−1dθ

A
pp

ro
.

θc
0
1 (1− θ)c2 (1− θa)c3

(2π)1/2
∣∣∣∣ c01θ̂2

D

+ c2
(1−θ̂D)2

+ c3aθ̂
a−2
D

(a−1)(1−θ̂D)a+aθ̂a
D

(1−θ̂a
D

)2

∣∣∣∣−1/2

θ̂
c01
D (1− θ̂D)c2 (1− θ̂aD)c3

θ̂D is the root of
c01
θ

−
c2

1− θ
−

c3aθa−1

1− θa

c01 = x+ a− 1

c2 = n− x

c3 = b− 1

r
-t

h
m

om
en

t
ce

nt
er

ed
on

ze
ro

E
[θ

r
|x

(n
)
]

E
xp

re
. ∫

Ω θr+x+a−1(1− θ)n−x(1− θa)b−1dθ∫
Ω θx+a−1(1− θ)n−x(1− θa)b−1dθ

A
pp

ro
.

∣∣∣∣ cr1θ̂2
N

+ c2
(1−θ̂N )2

+ c3aθ̂
a−2
N

(a−1)(1−θ̂N )a+aθ̂aN
(1−θ̂a

N
)2

∣∣∣∣−1/2

θ̂
cr1
N (1− θ̂N )c2 (1− θ̂aN )c3∣∣∣∣ c01θ̂2

D

+ c2
(1−θ̂D)2

+ c3aθ̂
a−2
D

(a−1)(1−θ̂D)a+aθ̂a
D

(1−θ̂a
D

)2

∣∣∣∣−1/2

θ̂
c01
D (1− θ̂D)c2 (1− θ̂aD)c3

θ̂N is the root of −nh′
r(θ) =

cr1
θ

−
c2

1− θ
−

c3aθa−1

1− θa
cr1 = r + x+ a− 1

M
ea

n
E
[θ

|x
(n

)
]

A
pp

ro
.

Using the approximated of the r-th posterior moment with r = 1, the
approximation of the posterior mean is obtained with c11 = x + a and θ̂N
as the root of −nh′

1(θ).

V
ar

ia
nc

e
V
[θ

|x
(n

)
]

A
pp

ro
.

It is enough know the approximation of the second posterior moment.
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Table A3: Approximation of distribution and r-th posterior moment, considering
Bernoulli trials and Truncated Gamma prior distribution.
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cr1
N (1− θ̂N )c2∣∣∣∣ c01θ̂2

D

+ c2
(1−θ̂D)2
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θ̂
c01
D (1− θ̂D)c2

e−b(θ̂N+θ̂D) cr1 = r + x+ a− 1
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θ̂rN =
cr3 ±

√
(cr3)

2 − 4bcr1
2b

M
ea

n
E
[θ

|x
(n

)
]

A
pp

ro
. Using the approximated of the r-th posterior moment with r = 1, the

approximation of the posterior mean is obtained with c11 = x+a, c13 = n+a+b

y θ̂1N as the root of −nh′
1(θ).

V
ar

ia
nc

e
V
[θ

|x
(n

)
]

A
pp

ro
.

It is enough know the approximation of the second posterior moment.
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Table A4: Approximation of distribution and r-th posterior moment, considering
Bernoulli trials and Truncated Weibull prior distribution.

Posterior

D
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tr
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ut
io

n
π
(θ

|x
(n

)
)

E
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.

θx+a−1(1− θ)n−xe−(θ/b)a∫
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pp

ro
.

θc
0
1 (1− θ)c2e−(θ/b)a

(2π)1/2

∣∣∣∣∣ c01θ̂2
D

+ c2
(1−θ̂D)2

+
a(a− 1)θ̂a−2

ba

∣∣∣∣∣
−1/2

θ̂
c01
D (1− θ̂D)c2e−(θ̂D/b)a

θ̂D is the root of
c01
θ

−
c2

1− θ
−
(a
b

)( θ

b

)a−1

;
c01 = x+ a− 1

c2 = n− x

r
-t

h
m

om
en

t
ce

nt
er

ed
on

ze
ro

E
[θ

r
|x

(n
)
]

E
xp

re
. ∫

Ω θr+x+a−1(1− θ)n−xe−(θ/b)adθ∫
Ω θx+a−1(1− θ)n−xe−(θ/b)adθ

A
pp

ro
.

∣∣∣∣∣ cr1θ̂2
N

+ c2
(1−θ̂N )2

+
a(a− 1)θ̂a−2

ba

∣∣∣∣∣
−1/2

θ̂
cr1
N (1− θ̂N )c2∣∣∣∣∣ c01θ̂2

D

+ c2
(1−θ̂D)2

+
a(a− 1)θ̂a−2

ba

∣∣∣∣∣
−1/2

θ̂
c01
D (1− θ̂D)c2

e−b−a(θ̂aN+θ̂aD)

θ̂N is the root of

−nh′
r(θ) =

cr1
θ

−
c2

1− θ
−
(a
b

)( θ

b

)a−1

; cr1 = r + x+ a− 1

M
ea

n
E
[θ

|x
(n

)
]

A
pp

ro
. From the approximation of the r-th posterior moment, with r = 1, the

approximation of the posterior mean is obtained with c11 = x + a y θ̂N the
root of −nh′

1(θ).

V
ar

ia
nc

e
V
[θ

|x
(n

)
]

A
pp

ro
.

It is enough know the approximation of the second posterior moment.
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Appendix B. Results Simulation

The notation used is the following: θ̂kpt,s and σ̂2
k

pt,s are respectively the s-th
estimation of the mean and variance posterior; the prior predictive probability for
the s-th sample of size nk is denoted as Îks ; the s-th maximum likelihood estimation
for sample nk is denoted as θ̂kM,s.

Table B1: Scenario of the generating process θ = 0.1500 for four sample sizes.

θ

P
ri

or

n
k θ̂

k
pt(min θ̂kpt,s,max θ̂kpt,s) σ̂2

k

pt(min σ̂2k
pt,s,max σ̂2k

pt,s) Î
k
(min Îks ,max Îks ) θ̂

k
M (min θ̂kM,s,max θ̂kM,s)

0.
15

00
B

et
a

20 0.1690 (0.1377, 0.2861) 0.0020 (0.0017, 0.0030) 0.1627 (0.0012, 0.2016) 0.1554 (0.0500, 0.5500)

50 0.1624 (0.0953, 0.2595) 0.0014 (0.0009, 0.0020) 0.0883 (0.0077, 0.1060) 0.1509 (0.0200, 0.3400)

125 0.1566 (0.0712, 0.2510) 0.0008 (0.0004, 0.0011) 0.0447 (0.0015, 0.0505) 0.1498 (0.0320, 0.2800)

312 0.1532 (0.0842, 0.2206) 0.0004 (0.0002, 0.0005) 0.0205 (0.0041, 0.0221) 0.1499 (0.0705, 0.2276)

K
u

m

20 0.1663 (0.1285, 0.2546) 0.0022 (0.0018, 0.0023) 0.1666 (0.0030, 0.2024) 0.1551 (0.0500, 0.5000)

50 0.1610 (0.0760, 0.2507) 0.0015 (0.0011, 0.0015) 0.0870 (0.0116, 0.1032) 0.1495 (0.0200, 0.3400)

125 0.1571 (0.0564, 0.2572) 0.0008 (0.0004, 0.0009) 0.0424 (0.0043, 0.0477) 0.1498 (0.0320, 0.2960)

312 0.1535 (0.0919, 0.2211) 0.0004 (0.0003, 0.0005) 0.0188 (0.0082, 0.0206) 0.1497 (0.0833, 0.2276)

T
G

20 0.1688 (0.1394, 0.2952) 0.0020 (0.0016, 0.0038) 0.1625 (0.0013, 0.2010) 0.1543 (0.0500, 0.5500)

50 0.1620 (0.0997, 0.2728) 0.0013 (0.0008, 0.0022) 0.0880 (0.0068, 0.1070) 0.1499 (0.0200, 0.3600)

125 0.1565 (0.0915, 0.2943) 0.0007 (0.0004, 0.0013) 0.0454 (0.0033, 0.0515) 0.1497 (0.0560, 0.3360)

312 0.1530 (0.0966, 0.2259) 0.0004 (0.0002, 0.0005) 0.0211 (0.0065, 0.0228) 0.1498 (0.0833, 0.2340)

T
W

20 0.1951 (0.1021, 0.5015) 0.0065 (0.0038, 0.0107) 0.0428 (0.0355, 0.0522) 0.1561 (0.0500, 0.5000)

50 0.1673 (0.0437, 0.3670) 0.0026 (0.0008, 0.0044) 0.0173 (0.0118, 0.0203) 0.1507 (0.0200, 0.3600)

125 0.1568 (0.0568, 0.3001) 0.1568 (0.0568, 0.3001) 0.0010 (0.0004, 0.0016) 0.0070 (0.0056, 0.0079)

312 0.1529 (0.0898, 0.2361) 0.0004 (0.0003, 0.0006) 0.0028 (0.0025, 0.0031) 0.1502 (0.0865, 0.2340)
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Table B2: Scenario of the generating process, θ = 0.5000 and θ = 0.8500, for four
sample sizes.

θ
P

ri
or

n
k θ̂

k
pt(min θ̂kpt,s,max θ̂kpt,s) σ̂2

k

pt(min σ̂2k
pt,s,max σ̂2k

pt,s) Î
k
(min Îks ,max Îks ) θ̂

k
M (min θ̂kM,s,max θ̂kM,s)

0.
50

00
B

et
a

20 0.5157 (0.4899, 0.5414) 0.0008 (0.0008, 0.0008) 0.1231 (0.0002, 0.1690) 0.5015 (0.1000, 0.9000)

50 0.5142 (0.4731, 0.5554) 0.0007 (0.0007, 0.0007) 0.0754 (0.0000, 0.1039) 0.4999 (0.2200, 0.7800)

125 0.5116 (0.4551, 0.5586) 0.0006 (0.0006, 0.0006) 0.0444 (0.0000, 0.0596) 0.4997 (0.3120, 0.6560)

312 0.5081 (0.4533, 0.5612) 0.0004 (0.0004, 0.0004) 0.0243 (0.0003, 0.0314) 0.5002 (0.3942, 0.6026)

K
u

m

20 0.5078 (0.1870, 0.8712) 0.0105 (0.0050, 0.0109) 0.0455 (0.0368, 0.0635) 0.5021 (0.1500, 0.9000)

50 0.5029 (0.2521, 0.7532) 0.0046 (0.0036, 0.0047) 0.0182 (0.0157, 0.0220) 0.5002 (0.2400, 0.7600)

125 0.5012 (0.3238, 0.6706) 0.0019 (0.0017, 0.0020) 0.0073 (0.0066, 0.0082) 0.5001 (0.3200, 0.6720)

312 0.5004 (0.4017, 0.5992) 0.0008 (0.0008, 0.0008) 0.0029 (0.0028, 0.0031) 0.4999 (0.4006, 0.5994)

T
G

20 0.5126 (0.2232, 0.8153) 0.0098 (0.0065, 0.0101) 0.0580 (0.0233, 0.0670) 0.5007 (0.1500, 0.8500)

50 0.5048 (0.2832, 0.7497) 0.0045 (0.0035, 0.0046) 0.0242 (0.0148, 0.0273) 0.4997 (0.2600, 0.7600)

125 0.5015 (0.3276, 0.6775) 0.0019 (0.0017, 0.0019) 0.0098 (0.0072, 0.0109) 0.4994 (0.3200, 0.6800)

312 0.5005 (0.3932, 0.6023) 0.0008 (0.0008, 0.0008) 0.0040 (0.0034, 0.0043) 0.4997 (0.3910, 0.6026)

0.
85

00
B

et
a

20 0.8381 (0.7017, 0.8747) 0.0023 (0.0019, 0.0036) 0.1633 (0.0013, 0.1973) 0.8443 (0.4500, 0.9500)

50 0.8434 (0.7126, 0.9175) 0.0015 (0.0009, 0.0023) 0.0872 (0.0049, 0.1035) 0.8497 (0.6200, 0.9800)

125 0.8467 (0.7467, 0.9187) 0.0008 (0.0005, 0.0012) 0.0434 (0.0109, 0.0480) 0.8502 (0.7200, 0.9440)

312 0.8483 (0.7706, 0.9079) 0.0004 (0.0002, 0.0005) 0.0197 (0.0089, 0.0207) 0.8499 (0.7628, 0.9167)

K
u

m

20 0.8370 (0.6995, 0.8708) 0.0024 (0.0016, 0.0048) 0.1596 (0.0041, 0.1953) 0.8430 (0.5000, 0.9500)

50 0.8431 (0.6869, 0.9067) 0.0014 (0.0005, 0.0030) 0.0875 (0.0038, 0.1059) 0.8493 (0.6000, 0.9800)

125 0.8476 (0.7314, 0.9172) 0.0008 (0.0004, 0.0013) 0.0450 (0.0067, 0.0506) 0.8508 (0.7040, 0.9520)

312 0.8488 (0.7825, 0.9081) 0.0004 (0.0002, 0.0005) 0.0208 (0.0089, 0.0222) 0.8499 (0.7756, 0.9199)

T
G

20 0.8432 (0.7524, 0.8854) 0.0022 (0.0018, 0.0024) 0.1655 (0.0021, 0.1991) 0.8448 (0.5000, 0.9500)

50 0.8446 (0.7472, 0.9379) 0.0014 (0.0012, 0.0015) 0.0869 (0.0048, 0.1025) 0.8498 (0.6400, 0.9800)

125 0.8459 (0.7562, 0.9345) 0.0008 (0.0005, 0.0009) 0.0427 (0.0089, 0.0470) 0.8501 (0.7200, 0.9520)

312 0.8475 (0.7808, 0.9128) 0.0004 (0.0002, 0.0004) 0.0192 (0.0103, 0.0202) 0.8499 (0.7724, 0.9199)

T
W

20 0.8104 (0.4964, 0.9065) 0.0065 (0.0038, 0.0109) 0.0436 (0.0410, 0.0474) 0.8445 (0.5000, 0.9500)

50 0.8367 (0.6335, 0.9611) 0.0025 (0.0007, 0.0044) 0.0177 (0.0163, 0.0185) 0.8509 (0.6400, 0.9800)

125 0.8446 (0.7162, 0.9605) 0.0010 (0.0003, 0.0016) 0.0072 (0.0069, 0.0073) 0.8503 (0.7200, 0.9680)

312 0.8478 (0.7738, 0.9172) 0.0004 (0.0002, 0.0006) 0.0029 (0.0028, 0.0029) 0.8501 (0.7756, 0.9199)
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Table B3: Scenario of the generating process θ = 0.9000 for four sample sizes.

θ

P
ri

or
n
k θ̂

k
pt(min θ̂kpt,s,max θ̂kpt,s) σ̂2

k

pt(min σ̂2k
pt,s,max σ̂2k

pt,s) Î
k
(min Îks ,max Îks ) θ̂

k
M (min θ̂kM,s,max θ̂kM,s)

0.
90

00
B

et
a

20 0.8798 (0.7366, 0.9120) 0.0026 (0.0020, 0.0047) 0.1795 (0.0125, 0.2134) 0.8858 (0.6000, 0.9500)

50 0.8919 (0.7639, 0.9499) 0.0013 (0.0007, 0.0025) 0.0901 (0.0180, 0.1030) 0.8990 (0.7200, 0.9800)

125 0.8964 (0.8033, 0.9690) 0.0006 (0.0002, 0.0011) 0.0417 (0.0175, 0.0453) 0.8999 (0.7920, 0.9840)

312 0.8985 (0.8388, 0.9503) 0.0003 (0.0001, 0.0004) 0.0180 (0.0117, 0.0190) 0.9000 (0.8365, 0.9551)

K
u

m

20 0.8808 (0.7021, 0.9121) 0.0025 (0.0019, 0.0058) 0.1790 (0.0066, 0.2125) 0.8864 (0.5500, 0.9500)

50 0.8925 (0.7623, 0.9483) 0.0013 (0.0007, 0.0027) 0.0910 (0.0178, 0.1047) 0.8992 (0.7200, 0.9800)

125 0.8967 (0.8035, 0.9609) 0.0006 (0.0002, 0.0011) 0.0426 (0.0169, 0.0467) 0.8999 (0.7920, 0.9760)

312 0.8985 (0.8300, 0.9559) 0.0003 (0.0001, 0.0004) 0.0184 (0.0103, 0.0196) 0.8998 (0.8269, 0.9615)

T
G

20 0.8794 (0.7509, 0.9118) 0.0024 (0.0021, 0.0027) 0.1839 (0.0039, 0.2268) 0.8856 (0.5500, 0.9500)

50 0.8916 (0.7247, 0.9562) 0.0013 (0.0005, 0.0019) 0.0876 (0.0020, 0.0964) 0.9003 (0.6200, 0.9800)

125 0.8955 (0.7986, 0.9838) 0.0007 (0.0002, 0.0010) 0.0388 (0.0166, 0.0405) 0.9003 (0.7840, 0.9920)

312 0.8978 (0.8177, 0.9546) 0.0003 (0.0001, 0.0004) 0.0163 (0.0100, 0.0166) 0.9000 (0.8141, 0.9583)

[
Recibido: junio de 2019 — Aceptado: mayo de 2020
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