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Abstract

When performing validation studies on diagnostic classification
procedures, one or more biomarkers are typically measured in individuals.
Some of these biomarkers may provide better information; moreover, more
than one biomarker may be significant and may exhibit dependence between
them. This proposal intends to estimate the Area Under the Receiver
Operating Characteristic Curve (AUC) for classifying individuals in a
screening study. We analyze the dependence between the results of the
tests by means of copula-type dependence (using FGM and Gumbel-Barnett
copula functions), and studying the respective AUC under this type of
dependence. Three different dependence-level values were evaluated for each
copula function considered. In most of the reviewed literature, the authors
assume a normal model to represent the performance of the biomarkers used
for clinical diagnosis. There are situations in which assuming normality is
not possible because that model is not suitable for one or both biomarkers.
The proposed statistical model does not depend on some distributional
assumption for the biomarkers used for diagnosis procedure, and additionally,
it is not necessary to observe a strong or moderate linear dependence
between them.
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Resumen

Cuando se realizan estudios de validacion en procedimientos de
clasificaciéon diagnéstica, normalmente se miden uno o més biomarcadores
en los individuos. Algunos biomarcadores pueden proporcionar mejor
informacién que otros y en muchos casos, mds de uno puede ser necesario.
Cuando se utilizan varios biomarcadores para hacer clasificacién, se
presenta dependencia entre ellos. En este trabajo se estima el &area
bajo la curva caracteristica de operacién (ABCOR) para establecer la
capacidad clasificadora de dos biomarcadores en un procedimiento para
diagnéstico clinico. Se estudia mediante copulas (FGM y Gumbel-Barnett)
la dependencia entre pruebas y se estima la respectiva area bajo la curva,
asumiendo tres niveles para cada estructura de dependencia. En la
literatura revisada los autores asumen un modelo normal para representar el
comportamiento de los biomarcadores utilizados para el diagnéstico clinico.
Hay situaciones en las que no es posible asumir este modelo porque no es
adecuado para uno o ambos biomarcadores. El método estadistico propuesto
no depende de un supuesto distribucional para los biomarcadores utilizados
en el procedimiento de diagnéstico y tampoco es necesario considerar una
dependencia lineal fuerte o moderada entre ellos.

Palabras clave: ABCOR; Cépula FGM; Cépula Gumbel Barnett; COR;
Dependencia débil.

1. Introduction

The problem of estimating performance parameters and the prevalence in
studies for validating diagnostic procedures have been associated with three
aspects of interest that are approachable through statistical theory: verification
bias, lack of identifiability and the presence of dependence between the test results
(Tovar 2011). The last problem has been addressed by different methods such as
latent variable models and reparametrizations and many authors have assumed a
binary dependence structure using a covariance parameter in the estimation model.
Nikoloulopoulos (2018) mentions that the composite likelihood is amongst the
computational methods used for estimation of the generalized linear mixed model
(GLMM) in the context of bivariate meta-analysis of diagnostic test accuracy
studies. To synthesize the diagnostic test accuracy studies, a copula mixed model
has been proposed in the biostatistics literature. This general model includes the
GLMM as a special case and can also allow for flexible dependence modelling,
different from assuming simple linear correlation structures, normality and tail
independence in the joint tails. Tovar and Achcar (Tovar & Achcar 2012, Tovar &
Achcar 2011a, Tovar & Achcar 2013, Tovar & Achcar 2011b) addressed the problem
of dependence between diagnostic test results by assuming that the dependence
structure between the biological traits (biomarkers), measured on an interval or
rational scale, can be modeled using a copula function. These authors assumed
weak linear dependencies (FGM copula function) and weak, but not necessarily
linear dependencies (Gumbel Barnett copula function) between the results of the
biomarkers used as diagnostic tests for their approaches. The authors estimated

Revista Colombiana de Estadistica - Applied Statistics 43 (2020) 315-344



Using Copula Functions to Estimate AUC 317

the performance test parameters and the prevalence, but they did not estimate
the area under the receiver operating characteristic (ROC) curve.

To obtain the ROC curve it is necessary to dichotimize the values of the
expressions of the biomarkers, establishing a threshold value (cut point), which
can be defined using clinical criteria or a statistical methodology. If the cutting
point is obtained applying statistical methodology (such as the ROC curve) on
the data obtained for the field work, it is necessary to estimate the area under
the ROC curve (AUC), in addition to the performance parameters of the test
(sensitivity and specificity). The ROC curve is a graph of sensitivity versus
1—specificity for all possible threshold values and it is the most commonly used
global index for diagnostic precision. The AUC is also used to choose between two
different diagnostic tests. Many authors have studied the statistical properties
of the AUC and the methods for estimating them; for example, Faraggi & Reiser
(2002) developed and compared some of the processes used for estimating the AUC
under parametric and nonparametric assumptions. Zou, O’Malley & Mauri (2007)
reviewed and applied the measures of precision used for ROC curves (sensitivity,
specificity and AUC) to evaluate diagnostic tests and predictive models.

Relevant works on clinical diagnostic studies agree on the importance of
combining the information about the health state contained in different biomarkers
used as diagnostic tests because these combinations tend to be more accurate than
diagnostic procedures based on single tests (Etzionin, Kooperberg, Pepe, Smith
& Gann 2003). Thus a great interest in developing methods to combine multiple
tests for disease classification that will result in a deeper and more detailed analysis
of the ROC curve (Ma & Huang 2007, Pepe & Thompson 2000, Su & Liu 1993).
Generally, the parametric assumptions apply to the distributions of the observed
variable in normal and non-normal populations. The maximum likelihood methods
to estimate the area under the curve and the relevant parameters under a binormal
model assumption have been widely used to estimate this area (DeLong, DeLong
& Clarke-Pearson 1988). The normality assumption on the biomarkers or on
monotonic transformations of them in both diseased and non diseased populations,
in some situations is not true because there exist many biomarkers expressed in
a continuous form (Pundir & Amala 2012). Pundir & Amala (2015) consider the
use of two continuous biomarkers as clinical diagnostic tests, and they develop
a method to estimate AUC under the assumption of correlated tests using a
log-normal distribution and the Pearson’s correlation coefficient. On the other
hand, DeLong et al. (1988) addresses a nonparametric comparison of areas under
correlated ROC curves using the theory of generalized U-statistics which takes
advantage of the properties of Mann-Whitney statistic to generate an estimated
covariance matrix.

The main goal of this work is to estimate the AUC in screening studies to
validate procedures for clinical diagnoses, that use two biomarkers expressed in a
continuous form. The proposed model assumes a dependence structure between
the two biomarkers that can be modeled using copula functions. Given that,
both biomarkers are measured in each individual, it is possible that a scatter plot
with their data behaves very similar to that observed when the test results are
independent between them. We assume that the dependence between diagnostic
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tests is linear and weak so it can be modeled using an FGM copula, or the
dependence structure is weak but not necessarily linear. We then use a Gumbel
Barnett copula structure to model it.

This document is organized as follows: Section 2 presents relevant sections
on copula functions and ROC curve and AUC for continuous tests, respectively.
We present the analysis of the ROC curve and the AUC, considering copula-type
dependencies between diagnostic tests, discusses the steps followed to derive the
AUC estimate. Section 3 presents the estimates obtained using the proposed
method and the results of a simulation study. In addition, a comparison is
shown with the estimates obtained with the Pudir and Amala method (Pundir
& Amala 2015). Section 4 we provide a practical example with real data on
dengue detection. Finally, Section 5 includes a discussion regarding aspects found
during the implementation process. Calculations, simulations, adjustments and
ROC curve tracing were performed using the statistical software R.

2. Materials and Methods

2.1. Copula Functions

A copula describes the dependence structure of a multivariate random variable.
Using copulas, random variables can be transformed through their cumulative
distributions into uniformly distributed variables. The dependence structure is
determined by the relationships established between the uniform distributions
(Gallardo 2010). The copula functions may use these relationships to link marginal
distributions with a joint distribution.

Thus in accordance with Dupuis (2007), a copula is a joint distribution function
of random variables with uniform standard distribution as marginals:

Cut,y...,uq) = PUs <wupy...,Us < ug) (1)

where U; ~U(0,1),4=1,...,d. Thus copula functions allow the characterization
of the dependence structure of a set of random variables independent of the
form of the marginal distributions. Random variables with uniform distributions
are obtained by applying the probability integral transformation in each of the
marginals with distribution Fj(z),...,Fg(z) so that Uy = F(X),..., Uy =
Fy(X) (Genest, Quessy & Rémillard 2006). Given a set of random variables
X1,..., X4 with a joint probability distribution H and marginal distribution
functions Fj(x), i = 1,...,d, one unique copula function C' may be written
as C(ui,...,uq) = H[F ' (w1),...,F; (uq)], where F;(u) = inflz : F;(X) >
u] defines the quantile function. However, if C' is a copula function and
Fi(X),...,F4(X) are arbitrary distribution functions, then function H defined
as H(Xy,...,Xq) = C[F1(X1),...,Fi(Xq)] is a multivariate distribution function
with marginal distribution functions F, ..., Fy.
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2.2. ROC Curve and AUC for Continuous Tests

The ROC curve is a graphic in which all sensitivity /specificity pairs resulting
from the continuous variation of cutoff points (thresholds) can be found in the
full range of the observed results. The proportion of true positives (sensitivity)
are located on the y-axis, and the proportion of false positives (1—specificity)
are located on the x-axis (Burguetio, Garcia & Gonzéles 1995). Specifically, the
use of a threshold (cutoff point) ¢ defines a binary test from one of the continuos
biomarkers Z considered in the diagnostic procedure to be evaluated. If Z > ¢ then,
the individual is classified as positive and if Z < t the individual has a negative
result (Pepe 2003). Let X and Y be random variables that represent the values of
the biomarkers in the nondiseased and diseased groups. Let (X1, Xo,...,X4) be d
vectors of values that take related biomarkers measured in individuals among the
nondiseased group, and let (Y1,Ya,...,Yy) be the set of vectors associated to the
diseased group, where d = 1,2,...,k is the number of tests. The corresponding
rates of the true and false positives for threshold ¢ are TPR(t) and FPR(t), for
the diagnostic procedure are given by:

TPR(t) = P(Y1 > t1,Y2 > ta,..., Yy > ta| D = 1), (2)
FPR(t) = P(X1 > t1,Xa > ta,..., X4 > tq|D = 0), (3)

with D being a dichotomous variable representing the true state of the individual;
that is, D = 1 for a diseased individual and D = 0 for a nondiseased individual,
and ¢ corresponds to the threshold vector ¢t = (t1,ts,...,tq), t; € (—00,00). Thus,
the ROC curve is the complete set of possible fractions of true and false positives
found using the dichotomization of X and Y with different thresholds:

ROC(-) = {(FPR(t), TPR(1))} (4)

A perfect diagnostic test accurately separates diseased subjects from
nondiseased subjects. For a given threshold ¢, we must have TPR(t) = 1 and
FPR(t) = 0 so that the ROC curve is formed over the entire left portion of the
positive quadrant.

The AUC is a global measure of accuracy for a diagnostic test and is thus the
most commonly used summary index for the ROC curve. The AUC is shown to
be the probability of correctly classifying a pair of individuals, selected from the
population at random, as healthy or sick, using the results obtained after applying
the diagnostic test (Burgueiio et al. 1995, Sumi & Hossain 2012).

A perfect test with a perfect ROC curve has a value of AUC = 1.0. Likewise,
an uninformative test with ROC(t) =t has an AUC = 0.5. The majority of tests
have values that fall between these two values.

2.3. Analysis of a ROC Curve with Copula Dependence and
d = 2 Continuos Biomarkers

Sometimes two biomarkers can be associated with the presence of a disease;
therefore these biomarkers must be considered in conjunction to classify the subject
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(Ma & Huang 2007). Let (X,Y) represent the values of the biomarkers in the
nondiseased and diseased groups. Let (X1, X2) be two sets of related biomarkers
measured in the nondiseased group, and let (Y7,Y2) be two related biomarkers
taken from the diseased group. Thus (X7, X5) and (Y7, Y2) are independent pairs
of bivariate biomarkers in each group of individuals; and a subject is identified
as diseased when the values of Y7 and Y5 are sufficiently large (greater than a
given threshold or cutoff point) (Wang & Li 2012). The cumulative distribution
functions for the random variables that define the biomarker results are defined
as Fy(tl,tQ) = P(Y1 < tl,Y2 < tg) and Fx(tl,tg) = P(X1 < t1,X2 < t2),
respectively, where t; and to correspond to the cutoff points for each test. The
method develops an iterative procedure taking all the possible permutations
between both biomarkres within each group and for each permutation it evaluates
the individual’s health condition and classifies it as positive or negative. For each
pairs tq, t9 its possible to obtain a 2 x 2 table, with the results showed in Table 1.

TABLE 1: Final classification obtained after to apply the diagnostic procedure. .

Positive Negative
True Y1i>t1AYa>ta Xi<tiAXao<ta
X1 >t NXo >t Yi <t1 AYs < to
False X1 >t AN Xo <to Yi <t1 AYs > to
X1 <ti ANXg >tg Yi>ti AYa <t2

For the construction of the ROC curve, the false positive rate (FPR) and true
positive rate (TPR) can be defined as P(X; > t1, X2 > t2) and P(Y; > t1,Ys >
t2), respectively, according to this bivariate criterion. We assume that dependence
between results of biomarkers can be modeled using copula functions; and that it
is possible to estimate the AUC including that fact in the estimation model. Our
methodological approach assume two copula functions as candidates for modeling
the dependence structure between the biomarkers; the Farlie-Gumbel-Morgenstern
(FGM) and the Gumbel-Barnett.

The FGM copula function has the following analytical form:
Cuy,uz) = upus[l + (1 —up)(1 —uz)], ¢ e€[-1,1] (5)

where ¢ is the dependence parameter with p = f% Sep=-landp= % S p=1;
p is the Pearson correlation coefficient (Nelsen 2006).

The Gumbel Barnett copula function has the form:

C'(ul,uz) =
uy +up — 14 (1 —up)(1 — up) x exp{—¢log(l — u1)log(l —uz2)}, ¢ €[0,1] (6)

where ¢ is the dependence parameter and p =0 ¢ =0,p=-041 ¢ =1, p
is the Pearson correlation coefficient (Portilla & Tovar 2018).

For the random variables associated with results of the biomarkers, we have
that X; ~ Gx,(z;) and Y; ~ Gy,(y;) ¥i = 1,2. Once the distribution G(-)
has been determined (Goodness-of-fit tests can be performed to determine the
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corresponding distribution), we proceed to estimate their respective parameters
jointly (see Appendix A). The explicit forms of the TPR and F'PR in the bivariate
case are analytically complex. The corresponding rates (ratios) of true and false
positives for threshold ¢ = (¢1,t2) are TPR(t) and FPR(t), respectively, with

TPR(t) = P(Y; > t1,Ys > t2)
-/ 1 tl Cy (Gya (1), Gy (1) 4Gy (31) dGivy (2)
and
FPR(t) = P(X1 > t1, X3 > 1)

- / / Cx (Gx, (21), G, (2)) dGo, (1) dGx, (i2)

After applying the probability integral transformation (PIT), the following
equations must be true:

1 41
TPR(t) = / Cy (vr,v) dVi dVh 1)
ty Ji5
and
1 41
FPR(t) :/ Cx(ul,’LLQ) dU1 dU2 (8)
e Ju

where ¢] and t5 correspond to the cutoff points for each test after we applied the
respective PIT.

In accordance with Pundir & Amala (2015), the AUC of a bivariate dependent
ROC curve has the form:

AUC:P(Yl >X1,Y2 >X2):

//I(yl > x1,y2 > 22) dGx (21, 22) dGy (y1,y2), (9)

where GX = P(X1 < xl,Xg < .7,‘2) and Gy = P(Y1 < yl,Yé < yg).

Given that the cumulative functions Gx and Gy can be written in terms of
copula functions, the AUC for the bivariate dependent copula ROC curve assumes
the following form:

AUC:P(Yl >X1,Yé >X2):

//I(Zh > x1,Y2 > x2) dCx (21, x2) dCy (x1,22), (10)

where the univariate case, the expression (10) is proportional to the statistics of
the traditional non-parametric Mann-Whitney test (Bamber 1975)
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Then, considering the uniform variables obtained after to apply the PIT using
the marginal distributions (or the empirical cumulated distributions), we have:

AUC = //I(Ul > Up, V9 > UQ) dCX(ul,UQ) dCy(’Ul,UQ) (11)

which cannot be expressed in a closed form, its can be estimated using numerical
methods, such as the trapezoidal rule or Simpson’s rule (Pundir & Amala 2015).

If we assume that the biomarker results have a dependence structure that can
be modeled using an FGM copula, we have:

AUC:P(Y1>X1,}/2>X2)://{I(Ul>U1,U2>UQ)

dluruz[l + @1(1 —u1)(1 — u2)]] dlviv2[l + @a(1 —v1)(1 - Uz)ﬂ}

Similarly, if we used an estimation model that assumes a Gumbel-Barnett
structure for the dependence between the test results, we have:

AUC =P(Y; > X1,Ys > X5)

// ’U1>U1,U2>UQ)

dluy +us — 1+ (1 —uy)(1 — ug) exp{—¢1 log(1 — uq) log(1l — us)}]
dlvy +va — 14 (1 —v1)(1 — v2) exp{—¢2 log(1 — v1) log(1 — 1)2)}]}

It is possible to use copula functions to model the structure dependence
between two random variables in a statistical procedure developed to estimate
the AUC curve, when the marginal distributions are or are not known. If the
marginal distributions are not known, it is possible to apply the probability
integral transformation on observed data using the respective empirical cumulated
distribution (Achcar, Tovar & Moala 2019). The ROC curve and its area can
be estimated using the transformed data preserving the dependence structure
of the biomarkers. The importance of determining the data distribution, is to
be able to estimate 6 (copula dependence parameter), where 6 is ¢ or ¢; that
is, make use of the data marginal distributions to use all the information when
estimating the dependence parameter, using the expression (A3) in Apendix A
(Bouyé, Durrleman, Nikeghbali, Riboulet & Roncalli 2000).

We developed the procedure when the validation study includes two continuos
biomarkers as validation tests, but, it is possible to generalize our proposed
approximation for cases with d biomarkers, and the analytical form of the AUC is
as follows:

AUC =

//I(vl > Uy, Vg > Uy ..., Vg > ug) dC(uy,usg, ..., uq) dC(v1,ve, - ,vq)
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2.4. Simulation Study

We simulated a validation study that includes the use of two biomarkers with
continuous expression as indicators of the disease status and a confirmatory test
called gold standard, which classifies the individuals without error. Given that
we needed to compare our results with those obtained using methods reported in
the literature, we generated pairs of observations of variables distributed with a
bivariate normal distribution, using the R package.

To have reference values, we used the clinical values reported for triglycerides
and LDL cholesterol by the MedlinePlus web page as motivation (National
Institutes of Health and others 2004). Then, within the nondisease individuals,
data from Test 1 (triglycerides) were simulated using px, = 164 ox, = 24.6, and
data from Test 2 (LDL cholesterol) ux, = 160 ox, = 24 were used. Within the
diseased individuals, data from Test 1 were simulated with py, = 224 oy, = 33.6;
while for Test 2, the values used were uy, = 209 oy, = 31.35. The variances were
obtained establishing 15% as the coefficient of variation for the normal data. We
simulated a validation study carried out using a sample of 10000 individuals in a
population with a 10% prevalence (1000 diseased individuals and 9000 nondiseased
individuals).

We simulated pairs of data w;i, vk, j = 1,2; k = 1,2,...,n; with copula
dependence (FGM or Gumbel-Barnett). Three different dependence-level values
were evaluated (6 = 0.2, § = 0.5 and § = 0.9) for each copula function
considered. Next, we transformed each pair considering that ®~(ujr) = 2k
then x;; = 2z;p0x, + px, where ® is the cumulative probability normal function.
In that way, we simulated data with copula dependence structure and normal
marginal distributions.

The data with an FGM copula dependence structure were generated using the
algorithm proposed by Johnson (1987) as follows:

1. To generate independent v, and ve values from a Uniform(0, 1) distribution.
2. Run u; = vy.

3. For a given value of 0, compute A = 0(2u; — 1) — 1 and
B= (1 — 20 (2uy — 1) + 02(2u1 — 1) + 4005 (2us — 1))

[N

2112
B-A

4. Run uy =

The data set of pairs of data with a Gumbel-Barnett dependence structure
were simulated using an algorithm based on the inversion of data from a Gumbel
Type I distribution (see Gumbel (1960) for details) as follows:

Given V; and V, with V; ~ Uniform(0,1) run

w1, = 710g(1 — ’Ug)
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Then, solve the nonlinear equation

1 — (14 Quwy)eAHowwz 4y —

In that way, pairs (w1, ws) from a Gumbel Type I distribution are obtained
(Gumbel 1960). Applying the transformation

vy =1 —exp(—wz) ve =1—exp(—wq)

it is possible to obtain a vector of pairs of observations (V1,V2) with uniform
marginal distributions and dependence that can be modeled using a Gumbel-
Barnett copula function.

With the simulated data, and with the aim of showing that the simulated data
shows a weak or not necessarily linear dependence, we computed the estimate value
of the coefficient p using the formulas that appears in Appendix B, depended of the
chosen copula function. We also estimate Pearson’s correlation coefficient directly
from the simulated data, where p, is the estimate in the group of nondiseased
individuals and p,, is the estimate obtained in the other group. In accordance with
the results shown in Table 2, it was possible to conclude that the simulated data
complies with the desired characteristics of dependence. The scatter plot of the
simulated data for each dependence level in diseased and nondiseased individual
groups, are shown in Figures 1 and 2.

TABLE 2: Pearson’s correlation index and dependence parameter values.

® p P Py
0.2  0.069756 0.062408 0.061626

FGM 5 0173648  0.175355  0.151183
0.9 0309017  0.281865  0.264024
¢ P Pz Py
0.2 —0.147889 —0.160861 —0.125373
Gumbel

0.5 —0.277343 —0.295476  —0.254096
0.9 —0.383462 —0.470656 —0.476716

Given that the AUC does not have a closed form, this indicator cannot be
obtained analytically; however, the form may be approximated using simulation
techniques such as the bootstrap or Monte Carlo (MC) processes.

The proposed algorithm was run 1000 times as follows:

1. Determine the parametric model (i.e., find the distribution functions for each
variable that best fits the data). Goodness-of-fit tests can be performed
to determine the corresponding distribution. Thanks to Sklar’s theorem
(Nelsen 2006) and the integral probability transformation, the method is
developed with u; values and copula functions. Once the model is chosen,
estimate the parameters related to this model, using maximum likelihood or
moments method.

2. To estimate the dependence parameter, use equation (A3) in Apendix A
(Bouyé et al. 2000).
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3. Using the estimates of parameters in Step 1 as parametric values, generate
Markov chain Monte Carlo (MCMC) samples from the copula function (with
the respective marginal values) for size m for the nondiseased group and n
for the diseased group. Using the generated values, calculate the AUC using
equation (11).

4. For each sample generated in Step 3, maintain the respective samples for
each group (i.e., m and n), perform bootstrapping, and calculate the FPR
and TPR. For each stage of resampling, calculate the AUC that will serve
as the input for calculating the intervals corresponding to the 2.5 and 97.5
percentiles.

5. Repeat Step 4 many times (at the last 1000 times).
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FIGURE 1: Scatter plots of health status, assuming an FGM dependence structure. 1(a)
Scatter plot for diseased individuals with ¢ = 0.2; g, = 0.06. 1(b) Scatter
plot for diseased individuals with ¢ = 0.5; p, = 0.15. 1(c) Scatter plot
for diseased individuals with ¢ = 0.9; p, = 0.26. 1(d) Scatter plot for
nondiseased individuals with ¢ = 0.2; g, = 0.06. 1(e) Scatter plot for
nondiseased individuals with ¢ = 0.5; p, = 0.17. 1(f) Scatter plot for
nondiseased individuals with ¢ = 0.9; p, = 0.28.
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FIGURE 2: Scatter plots of health status, assuming a Gumbel Barnett dependence
structure. 2(a) Scatter plot for diseased individuals with ¢ = 0.2; p, = —0.12.
2(b) Scatter plot for diseased individuals with ¢ = 0.5; p, = —0.25. 2(c)
Scatter plot for diseased individuals with ¢ = 0.9; p, = —0.47. 2(d) Scatter
plot for nondiseased individuals with ¢ = 0.2; p, = —0.16. 2(e) Scatter plot
for nondiseased individuals with ¢ = 0.5; p, = —0.29. 2(f) Scatter plot for
nondiseased individuals with ¢ = 0.9; p, = —0.47.

3. Results

3.1. ROC Curves with Simulated date Assuming FGM
Dependence

According to the method proposed in section 2.4, a prevalence of 10% was
assumed for this case, which, considering a population of 10000 individuals,
determines 9000 non-sick and 1000 sick; this is (m,n) = (9000,1000). Given
the context of this work (clinical diagnostic tests), only the positive part of the
FGM copula function should be used (Dendukuri & Joseph 2001, Georgiadis,
Johnson, Gardner & Singh 2003). AUC estimation error, bootstrap confidence
intervals for AUC were estimated, in addition to the specificity, sensitivity (of the
joint test) and cutoff points for each test (with their respective standard error).
The performance parameters and cutoff points estimates were obtained using the
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Youden index (Specificity+Sensitivity—1) (Youden 1950), taking the respective
values that maximized that index.

According to Table 3, the effect of the dependence level on the AUC estimates
is not very important although it is possible to observe a trend to decrease when
dependence increases.

TABLE 3: AUC, performance test parameters (specificity and sensitivity) and cutoff point
estimates, estimation errors and average length of the AUC confidence interval
for the FGM data. E(-) corresponds to the respective expected value, Se(-) to
the standard error, ¢t1 to the cutoff point of test 1 and ¢2 to the cutoff point

of test 2.

%) AUC Interval Length Specificity Sensitivity tl t2
0.2 E(-) 0.944770 0.000917 0.907288 0.848352  177.7991 173.0683
Se(-) 0.000522 - 0.002896 0.002929  0.428356 0.377072
FGM 05 E(-) 0.941367 0.000896 0.903108 0.841207 178.7563 173.9788
Se(-) 0.000509 - 0.003213 0.003197  0.455436 0.396331
0.9 E(-) 0.937002 0.000863 0.899757 0.830758  180.1202 175.2873
Se(-) 0.000455 - 0.003204 0.003347  0.421199 0.414718

The observed values for the AUC estimation errors are small, which is expected
because the sample sizes are very large. The AUC values are high and similar to
one another, considering the variation in the level of dependence. The interval
lengths are very small considering that if the AUC value is between 0 and 1, the
maximum length of the interval is 1. In the case of specificity and sensitivity, good
values (or at least within those typically expected) are seen for each performance
parameter, with lower errors in the estimation. This scenario is very similar to the
situation with the AUC estimations. The estimates of the cutoff points show little
variability and show the same trend to increase when the dependence increases.

A prevalence of 60% is assumed (unlike the initial proposal of 10%), considering
a population of 10000 individuals, 4000 non-sick and 6000 sick are determined;
this is (m,n) = (4000, 6000). This to verify that the prevalence does not actually
affect the AUC estimate, since the latter depends on the performance parameters
(sensitivity and specificity) of the test (Table 4). It’s important to consider this
situation since it is a similar measure of prevalence to that presented later in the
case study (Dengue data).

TABLE 4: AUC, performance test parameters and cutoff point estimates, estimation
errors and average length of the AUC confidence interval for the FGM data.

%) AUC Interval Length Specificity Sensitivity tl t2
0.2 E(-) 0.946286 0.001196 0.909553 0.851116  179.3697 171.9851
Se(-) 0.000702 - 0.003025 0.003143  0.478657 0.443158
FGM 05 E(-) 0.942970 0.001148 0.905660 0.843918  180.4051 172.8766
Se(-) 0.000688 - 0.003167  0.003404  0.494868 0.458196
0.9 E(-) 0.938741 0.001108 0.902748 0.833478 181.9064 174.1380
Se(-) 0.000633 - 0.003555 0.003730  0.516503 0.461524
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The previous section, the FGM copula dependence simulation was performed
for different sample sizes (N = 100, N = 500 and N = 1000), considering a
dependence level p = 0.2, and 10% prevalence (see Table 5).

TABLE 5: AUC, performance test parameters and cutoff point estimates, estimation
errors and average length of the AUC confidence interval for the FGM data,
considering different population sizes.

FGM function copula ¢ = 0.2

AUC Interval Length Sensitivity Specificity tl t2
E(-) 0,944458 0,011796 0,851024  0,905970 178,4551 172,1064
N =100 Se(-) 0,004677 - 0,015408  0,015568  3,229691 2,458372
E(-) 0,945018 0,005389 0,849577  0,907445 177,9386 172,7651
N =500 Se(-) 0,002131 . 0,009165  0,007606 1,460596 1,398408
E(-) 0,945062 0,003834 0,848222  0,908589 178,0073 173,0137
N = 1000 Se(-) 0,001825 - 0,006846  0,006508 1,158346 0,964591

Finally, Table 6 shows the average and standard error of the AUC estimates,
interval length, performance parameters and cut-off point of simulated data with
@ = 0 in the FGM copula function. The above with a population of 1000
individuals, and 10% prevalence.

TABLE 6: AUC estimates with simulated FGM data, ¢ = 0.

AUC Intervalo Espec Sensi t1 t2
E()  0,94706 0,000904 091083 0,8527 177,21 172,50
Se(-)  0,00058 - 0,00271  0,0028 0,3884  0,3847

3.2. ROC Curves With Simulated Date Assuming Gumbel
Barnett Dependence

Upon adjusting the model with the Gumbel-Barnett copula function, the
results are similar to those observed with the other copula function (FGM) in that
the AUC estimates are high with low errors, and are nearly constant. A slight
increase in the estimates occurred as the level of dependence increased. For the
average interval length, we noted that these intervals became increasingly narrow
(their amplitude decreased) as the level of dependence increased. The estimates
of the performance test parameters and the AUC showed similar behavior. In
the same way as for other copula dependence, the estimates of the cutoff point
estimates increased slightly when the dependence level increased (Table 7).
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TABLE 7: AUC, performance test parameters and cutofl point estimates, estimation
errors and average length of the AUC confidence interval for the Gumbel-
Barnett data.

¢ AUC Interval Length Specificity Sensitivity tl t2
0.2 E(-) 0.954396 0.013459 0.931458 0.859772  178.4756 173.8466
T Se(:) 0.004899 - 0.005068 0.009258  0.481494 0.355141
E(-) 0.959536 0.007697 0.937323 0.857589  180.0122 175.2528

Gumbel 0.5

Se(-) 0.004985 - 0.016997  0.022203  0.854568 0.872031
0.9 E(-) 0.964563 0.006747 0.952738 0.870531  182.2365 178.0468
7 Se(-) 0.004756 - 0.010828 0.025205  0.789746 0.929957

3.3. Comparison of Estimation Methods Using the Simulated
Data

We estimated the parameters using our methodology and the method proposed
by Pundir & Amala (2015). It is important to point out that although
both methods estimate the AUC in presence of a dependence structure in the
data, Pundir and Amala work under the assumption that both biomarkers
can be modeled with random variables under a bivariate normal distribution
of probabilities, then the dependence between biomarkers is assumed to be
linear and can be expressed in the estimation model using Pearson’s correlation
coefficient. The proposed method does not consider the marginal distributions,
and the dependence between biomarkers is not necessarily linear. Thus we needed
to compare the methods, we simulated sets of Na(u,o,p) data and using the
procedure in Section 2.4; and we fitted Pundir and Amala’s model and ours. For
both cases the Bootstrap confidence intervals were obtained; while the performance
parameters and cutoff point estimates were obtained using the Youden index
(Youden 1950).

According to the results in Table 8, Pundir and Amala’s estimation method
(AUC2) presents lower estimates than those obtained using the proposed method
(AUC1). The AUC2 estimates in nearly all scenarios are outside the confidence
intervals estimated for AUCI, except for of AUC2, considering a Gumbel
dependence of 6§ = 0.5, where the estimate is within the given interval.

TABLE 8: AUC estimates using the proposed methodology (AUC1) and Pundir and
Amala’s estimation method (AUC2).

Proposed Method Pundir & Amala Method
© AUC1 Intervall AUC2 Interval2
0.2 0.96531 [0.96498, 0.96581]  0.92218  [0.91875, 0.92916]
FGM 0.5 0.96559 [0.96511, 0.96591]  0.92288  [0.91208, 0.92293]
0.9 0.96556 [0.96536, 0.96612]  0.92415  [0.91490, 0.93491]
o) AUC1 Intervall AUC2 Interval2
0.2 0.95565 [0.94565, 0.96565]  0.94024  [0.93383, 0.94056]
Gumbel g5 095543 [0.91543, 0.96343]  0.93984  [0.93357, 0.94540]
0.9 0.96357 [0.95357, 0.98713]  0.94988  [0.94746, 0.95173]
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The model considering the Gumbel-Barnett copula function is capable of
perceiving nonlinear dependencies and/or negative dependencies, which were
considered in the construction of the data used in the estimates (data simulated
with Gumbel-Barnett copula-type dependence). This phenomenon may explain
the difference between the AUC estimates, given that a linear dependence is
assumed for AUC2.

The model considering the FGM copula function notes weak and/or low
dependencies. Given that the AUC2 estimates use a linear correlation coefficient to
measure the dependence present in the data and the dependencies with which the
data are constructed (data simulated with an FGM copula-type dependence) based
on this coefficient are very low, these dependencies cannot be clearly perceived.
Thus the results are slightly lower than those found for AUC1. On the other
hand, the confidence intervals obtained assuming GB dependence are narrower
than those observed when we assumed the other dependence structure.

TABLE 9: Estimates of the performance parameters and cutoff points using the proposed
method and that of Pundir and Amala.

Proposed Method

© Specificity;  Sensitivity tly t21
0.2 091494 0.84572 177.4492  172.9329
FGM g5  0.91108 0.85137 176.7055  172.5069
0.9  0.91490 0.85532 177.1139  172.2572
¢ Specificity Sensitivity t11 t21
0.2 0.92440 0.86437 177.5931 173.1518
Gumbel o5 0.93701 0.85673 178.6307  175.0469
0.9  0.95452 0.87538 180.2976  176.2156
Pundir & Amala’s Method
© Specificitya ~ Sensitivitya tlo t29
0.2  0.89145 0.80960 158.6583  154.5250
FGM o5  0.88617 0.81443 157.4523  153.6407
0.9  0.88241 0.81933 156.6926  153.0160
¢ Specificitys ~ Sensitivitya tlg t29
0.2  0.90703 0.83917 160.2792  156.0931
Gumbel 5 (.91959 0.83687 160.8038  156.6696
0.9  0.93279 0.84973 161.8535  157.8930

The observed values of the estimates of the performance test parameters
obtained using the proposed method (subindex 1 in Table 9) were higher than
those observed using Pundir and Amala’s method (subindex 2 in Table 9). If
a GB dependence structure is considered, the estimates of the specificity and
cutoff points increase for high values of the dependence level when the estimates
are obtained using the proposed method. The estimates of the performance test
parameter assuming an FGM dependence structure do not show differences when
the dependence level changes (see Table 9).

We obtained the AUC estimated for each biomarker assuming independence
between tests and considering the dependence structure. In both cases, the
estimated AUC was lower than the estimate of the joint AUC (Table 10). The
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AUC estimates and their respective 95% confidence intervals were estimated using
the R pROC package.

TABLE 10: Estimation of the AUC for each simulated biomarker.
@ AUC test 1 95% Confidence interval 1 AUC test 2 95% Confidence interval 2

0.2 0.9210 [0.9111, 0.9310] 0.8864 [0.8744, 0.8984]
FGM 0.5 0.9285 [0.9193, 0.9378] 0.8907 [0.8790, 0.9025]
0.9 0.9325 [0.9232, 0.9418] 0.8939 [0.8820, 0.9057]

¢ AUC test 1 95% Confidence interval 1 AUC test 2 95% Confidence interval 2
0.2 0.9350 [0.9266, 0.9434] 0.8924 [0.8808, 0.9039]
Gumbel 0.5 0.9236 [0.9143, 0.9330] 0.8899 [0.8781, 0.9018]
0.9 0.9308 [0.9212, 0.9404] 0.8929 [0.8814, 0.9044]

4. Dengue Data

The proposed method was applied to diagnostic tests for detecting dengue;
an acute viral disease transmitted by mosquitoes, characterized by high fevers,
headaches, pain in muscles and joints, and skin rash. The data set was obtained
from the Colombian network for studying dengue (AEDES). In this study, 1380
individuals with symptoms suggestive of dengue were clinically evaluated by a
specialist and the results of a hemogram. For each patient an algorithm was run
starting with polymerase chain reaction (RT-PCR) test results; the NS1 antigen
and antibodies against dengue (IgG and IgM) were applied as the gold standard
tests. The tests consist of a leukocyte count (white blood cells: Test 1) and a
platelet count (Test 2) in randomly selected individuals. Of these individuals, 744
were diagnosed as having dengue, and 636 individuals were diagnosed as not sick
(discarded for dengue but with symptoms of some other condition).

The density plot of both variables had an asymmetric shape in both the
diseased and nondiseased groups of individuals, which can be an indicator of the
lack of fit to normal distribution (see Figure 3). The scatter plot and the estimates
of the correlation or concordance indexes commonly computed for the biomarkers
in both groups of patients, showed the presence of a weak dependence structure
(see Figures 4 and 5).

The ROC curves of each test, as well as their respective area under the curve
(AUCQ), are presented in Figure 6. The cutoff points found were ¢t1 = 3590 for test
1 and t2 = 158250 for test 2. The sensitivity and specificity were 0.5362903 and
0.7893082, respectively for test 1. Sensitivity and specificity were 0.6854839 and
0.7374214, respectively for test 2.

Even when we observed an asymmetric form in the distribution of the
biomarkers used to diagnose dengue, we decided to assume normal distributions to
compare the results between the procedures. We fitted our procedure assuming a
gamma(a, 3) distribution for each biomarker using the parametrization 1/ = A.
The estimates of the FGM dependence parameter and the parameters for the
marginal distributions are found in Table 11.
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FIGURE 3: Density plots of the dengue biomarkers in sick and nonsick individuals. 3(a)
Density plot for leukocyte count in sick and nonsick groups. 3(b) Density
plot for platelet count in sick and nonsick groups.
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FIGURE 4: Scatter plot of the two biomarkers (7 = 0.26367; p = 0.30512; p, = 0.37137).

TABLE 11: Estimates of the performance test and dependence parameters.

Marginal distribution Real health status @ fi1 fi2 G1 G2
Diseased 0.2159  4036.53  133154.90 2720.93  71841.68
Normal Nondiseased 0.0678  5306.87 204818.60 2274.82  77593.94
Real health status @ &1 Qo ﬁl Bg
Diseased 0.8708  5.1121 5.1682 0.00125  0.000038
Gamma, Nondiseased 0.9633  6.1762 5.7512 0.00117  0.000028
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FIGURE 5: Scatter plot of the biomarkers according to health status. 5(a) Scatter
plot for the biomarkers in the diseased group (r = 0.07295; p = 0.05222;

ps = 0.09113). 5(b) Scatter plot for the biomarkers in the nondiseased group
(1 = 0.30525; p = 0.38312; p, = 0.44299).
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FIGURE 6: ROC curves and AUC of diagnostic tests for dengue.

To evaluate the fit of the dataset to the copula functions, the multiplier method
of the goodness of fit (GOF) test was used as introduced by Kojadinovic, Yan &
Holmes (2011). This method consists of comparing and validating the distance
between the empiric copula function and the copula function under consideration.
The FGM copula function shows the better fit.

Table 12 shows the AUC estimations, performance parameters and cutoff points
obtained using the methods explained in the previous section. The data used for
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these estimates were the original data (no transformations) and the data after
logarithmic transformation. The latter were applied with the goal of making data
available on the same scale and trying to derive the greatest differences between the
averages for the sick and not sick populations to obtain the highest performance
of the ROC curve (Pundir & Amala 2015). We obtained the estimates of the
parameters, assuming Normal(u, o) and Gamma(«, 8) distributions for marginal
distribution and an FGM dependence structure.

According to the results shown in Table 12, the results obtained using the
Pundir and Amala’s method are quite far from what was expected and if this
analysis were done, the same would lead to the conclusion that the two biomarkers
together, could only identify nondiseased individuals. The proposed method
results in a better approximation for the set of parameters to be estimated when
we used the transformed data, assuming normal distributions for the marginals
(see Table 12). Figure 7 shows the AUC curves based on the nontransformed data
and both marginal distributions after we used the proposed method of estimation.

TABLE 12: AUC, performance parameters and cutoff point estimates for the dengue data,
assuming an FGM structure of dependence.

Marginal distribution Data set AUC Specificity  Sensitivity t1 t2
o 1 Originals  0.77496  0.75109 0.66831 4800.00  195000.0
FGM-Norma Logarithm  0.82647  0.74702 0.75104  5340.00  209000.0
FOMLG Originals  0.72981 0.69544 0.63872 4600.00  186000.0
-iramma Logarithm  0.75160 0.65982 0.71314 5199.98  202999.7
Pundic & Amal Originals  0.23644 1 0 1099.00  11500.0
undir mala Logarithm  0.19531 1 0 404.665  4230.60
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FIGURE 7: ROC curves assuming FGM dependence structure with Normal and Gamma
marginal distributions for dengue data set. 7(a) ROC curve FGM-Normal for
original data AUC 0.74123. 7(b) ROC curve FGM-Gamma for original data
AUC' 0.72981.
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5. Conclusion and Remarks

Many procedures for the clinical classification of individuals include two
biological traits (biomarkers whose natural behavior is modified in the presence
of disease), and an error-free test known as the gold standard (which classifies
individuals without error). Given that both biomarkers are measured in the same
individual, it is necessary to include a dependence structure in the statistical model
associated with the situation. It is possible that this dependence structure will
not be perceptible using scatter plots of the data or commonly used indexes such
as Pearson’s rho, Spearma’s rho or Kendall’s tau. In this paper we studied the
situation where we have two biomarkers expressed on a continuous scale and are
assumed to have a very weak linear dependence structure or a very weak, but not
necessarily linear dependence structure. To model the dependence structure, we
used two copula functions: the FGM and the Gumbel Barnett copulas, within
iterative procedure that allows to obtain the AUC for joint ROC curve.

It is important to point out that under the bivariate normality assumption, the
Pundir and Amala’s method works very well; but when the marginal distributions
are not normal, this aproach does not permit reliable results; wherever inside that
scenario the proposed methodology allowed us to obtain good quality estimates,
because the method does not need the marginal distributions, a feature of the
copula functions. Then the proposed method performs the estimation procedure
using the normalized data obtained after we apply the inverse probability
transformation, which eliminates the need to have normally-distributed marginals.

Our simulation study allowed us to see in a general way, the effect of the
dependence structure between the biomarkers on the AUC estimates, controlling
the marginal distributions effect. The FGM dependency does not really change
the AUC estimates much, that is, the dependency effect is very weak. For GB-type
dependencies, the effect is more evident and the specificity and AUC estimates are
modified slightly.

Given that, the purpose is to estimate the joint AUC for the ROC curve, it is
necessary to estimate the dependence parameter using the data set and add the
estimate obtained to the algorithm developed to estimate the AUC. In this work
we first obtained the maximum likelihood estimate; but other estimates obtained
using the moments or bayesian methods could be considered.

It is important to note that when working with two biomarkers, the diagnostic
procedure must be developed by joining these tests and observing the joint AUC
(probability of properly classifying an individual with both tests at the same
time). The proposed method is presented as an aid to this process, since once it
detects the dependency between the biomarkers, it works correctly. Furthermore,
it is proposed as an alternative to the study of weak or not necessarily linear
dependency for this type of case.

It was observed that the biomarkers in the dengue detection study case have
a weak but positive correlation, so FGM is a better option than the Gumbel-
Barnett copula, since the latter considers weak but negative linear correlations.
Generally, as mentioned by several authors (Achcar et al. 2019, Dendukuri &
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Joseph 2001, Georgiadis et al. 2003, Pundir & Amala 2015, Tovar & Achcar 2011a),
the correlation between the biomarkers used for clinical diagnosis shows a positive
correlation. However, in terms of the method developed in this work of how to fit
a copula-type dependency model, positive and negative correlation scenarios were
considered, so the copula functions already presented were chosen.
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Appendix A. Estimation of Parameters Jointly

Let 9 be a vector of parameters to be estimated and © the parameter space.
The likelihood for observation ¢ is denoted L4(¢). Let £,(9) be the log-likelihood
of Ly(¥). Given @ observations the log-likelihood function is defined as (Bouyé
et al. 2000):

HOEDIA: (A1)

q=1
For the case of the copula function, the log-likelihood function is given by:

Q

Q 2
(W) =Y In(ex(Gx, (¥19), Gx, (T29))) + > > In(gx, (2rg)  (A2)

q=1 g=1r=1

Hence, 1§MLE is given by:

UymLe = arg max () (A3)
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Appendix B. Relationship Between the
Correlation Coefficients and
Dependency Copula Parameters

The Spearman’s correlation coefficient can be written in terms of the Pearson’s
correlation coefficient (Kruskal 1958):

6
ps = — arcsin (B) ,
T 2

where p, represents the Spearman’s correlation coefficient and p denotes the
Pearson’s correlation coefficient. Thus

. (TPs
= 2sin (%)
p sin 6

From Nelsen (2006) it follows that for FGM:

pe = [12 Ol/oluv[1+<p(1—u)(1—v)] du dv} 3
Ly

:12(4+36)—3

w6

So,
p=2sin G‘g) (B1)

Similarly (Kruskal 1958):
T = — arcsin p,
T

where 7 represents the Kendall’s correlation coefficient. Thus

. (TT
- (5)
It follows that for FGM (Nelsen 2006):

1
T=12 {/0 /0 [uv + puv(l —u)(1 —v)][1 + (1 — 2u)(1 — 2v)] du dv| — 1

So,
p = sin (”9‘”) (B2)
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The relationship showed in the formulas: Bl and B2, is valid only for bivariate
normal distributions.

For the Gumbel-Barnett copula function, the above calculations show extensive
and unwieldy forms that depend on the mathematical function Fi(-) known as
exponential integral, as well

7= [7— (ﬂ % Ei (—;) — 4e? Ei (—;) +4et Ei (-2) —1

and

For this reason, as a moment estimator, the relationship between the Pearson
correlation coeflicient and the bivariate exponential distribution function Type I
is used, from which the Gumbel-Barnett copula function is generated, which offers
greater mathematical simplicity. This relationship is (Portilla & Tovar 2018):

ﬁ:71+/ & (B3)
0

Appendix C. R Codes (FGM Code)

###Tasa de Falsos positivos

fpr <-function(tl,t2,mx1,mx2,sx1,sx2,Maxc1){

ax <-array(dim = length(tl1)); bx <-array(dim = length(t1));
fpr <-array(dim = length(t1));

fhi<-Maxcl
for(i in 1:length(t1))
{

ax[i] <-pnorm(t1[i],mx1,sx1); bx[i] <-pnorm(t2[i],mx2,sx2);
fpr[i] <-integrate(
function(x){
sapply (x,function(x){
integrate(function(y) {1+(fhi*(1-2*xx)*(1-2%y))},
ax[i],1)$value})},bx[i], 1) $value
}
return(fpr) ;

}

###Tasa de verdaderos positivos
tpr <-function(tl,t2,myl,my2,syl,sy2,Maxc2){
ay <-array(dim = length(tl)); by <-array(dim = length(t1));
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tpr <-array(dim = length(t1));

fhi<-Maxc2
for(i in 1:length(tl))
{

ay[i] <-pnorm(ti([i],myl,sx1); by[i] <-pnorm(t2[i],my2,sy2);

tpr[i] <-integrate(

function(x){

sapply (x,function(x){
integrate (function(y) {1+ (fhi* (1-2*x)*(1-2%y))},
ay[il, 1) $value})?}

,by[i]l,1)$value

}

return(tpr)

3

###Generacion de datos
FGM<-function(n,fi){
###Generacion de variables uniforme
Vi<-runif(n,0,1)
V2<-runif(n,0,1)
U1<-V1
A=fix((2+U1)-1)-1
B_0=1-(2xfi* ((2+U1)-1))+ ((£i"2)*((2*%U1)-1)"2)
+ (4x£ixV2)*((2%U1)-1)
B=sqrt (B_0)
U2<-(2%V2)/(B-A)
BD<-matrix(cbind(U1,U2),n,2)
return(BD)
}
coli=colors()
phi=0.2
cv<-.15
mul<-164##Sanos prueba 1
mu2<-160##Sanos prueba 2
mu3<-224##Enfermos prueba 1
mué4<-209##Enfermos prueba 2
sigmal<-cv*mul ;sigma2<-cv*mu2;
sigma3<-cv*mu3; sigmad<-cv*mu4d

M=1000
Espe=0
Sensi=0
t11=0
t21=0
aucF=0
jen=0
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B=1000
Intervalos<-matrix(0,M,2)

Prevalencia=0.1
Sa=round (10000* (1-Prevalencia))
En=10000-Sa

for(k in 1:M){

aucB=0

test.san<-FGM(Sa,phi)
x1<-gnorm(test.san[,1] ,mul,sigmal)
x2<-qnorm(test.san[,2] ,mu2,sigma2)

test.enf<-FGM(En,phi)
yl<-gnorm(test.enf[,1] ,mu3,sigma3)
y2<-qnorm(test.enf [,2] ,mu4d,sigmas)

c2=rbind(x1,x2) ;cl=rbind(y1l,y2)

###construye la curva ROC
datos_FGM<-test.enf
LogVerosimi<-function(fi){Likel<-(-sum(log(1+

(fi*x (((2*datos_FGM[,1]1)-1)*((2+datos_FGM[,2]1)-1))))))}
Maxc2<-suppressWarnings (optim(c(runif (1)) ,LogVerosimi,
method = "BFGS",lower=-1,upper=1)$par)

datos_FGM<-test.san
LogVerosimi<-function(fi){Likel<-(-sum(log(1+

(fi*x (((2*datos_FGM[,1])-1)
*((2xdatos_FGM[,2]1)-1))))))}
Maxc1<-suppressWarnings (optim(c(runif (1)) ,LogVerosimi,
method = "BFGS",lower=-1,upper=1)$par)

mx1l= mul;mx2=mu2;myl=mu3;my2=mu4;

syl =sigma3;sy2 = sigma4;sxl =sigmal;sx2 =sigma2
ti<-sort(c(x1l,y1)); t2 <-sort(c(x2,y2));

FPR <-fpr(tl,t2,mx1,mx2,sx1,sx2,Maxcl);

TPR <-tpr(tl,t2,myl,my2,syl,sy2,Maxc2);
FPR1<-FPR; TPR1<-TPR

FPR = c(0,sort(FPR),1);TPR = c(0,sort(TPR),1);
library(bitops);library(caTools);

auc = trapz(FPR,TPR);dtl <-data.frame(FPR,TPR)

plot (FPR,TPR,type="1")
lines(FPR,TPR,col=col1[k])
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Indice<-((1-FPR1)+TPR1-1)
Espe[k]=1-FPR1[which.max(Indice)]
Sensi[k]=TPR1[which.max(Indice)]
t11[k]=t1[which.max(Indice)]

t21 [k]=t2[which.max(Indice)]
aucF [k] =auc

for(kl in 1:B){
elegir=sample(1l:length(test.san[,1]) ,replace=T,size=length
(test.san[,2])) BMuestra=test.san[elegir,]
elegir=sample(1l:length(test.enf[,1]),replace=T,size=length
(test.enf[,2])) BMuestral=test.enf[elegir,]

x1<-gnorm(BMuestral,1] ,mul,sigmal)
x2<-qnorm(BMuestral,2] ,mu2,sigma2)
y1<-gnorm(BMuestral[,1] ,mu3,sigma3)
y2<-gnorm(BMuestral[,2] ,mu4,sigmad)

c2=rbind(x1,x2) ;cl=rbind(yl,y2)

datos_FGM<-test.enf
LogVerosimi<-function(fi){Likel<-(-sum(log(1+(fi*
(((2*datos_FGM[,1])-1)*((2*datos_FGM[,2])-1))))))}
Maxc2<-suppressWarnings (optim(c(runif (1)),
LogVerosimi,method = "BFGS",lower=-1,upper=1)$par)

datos_FGM<-test.san
LogVerosimi<-function(fi){Likel<-(-sum(log(1+(fi*
(((2xdatos_FGM[,1])-1)*((2*datos_FGM[,2])-1))))))}
Maxcl1<-suppressWarnings (optim(c(runif (1)),
LogVerosimi,method = "BFGS",lower=-1,upper=1)$par)

mx1= mul;mx2=mu2;myl=mu3;my2=mu4;

syl =sigma3;sy2 = sigmad;sxl =sigmal;sx2 =sigma2
t1<-sort(c(xl,y1)); t2 <-sort(c(x2,y2));

FPR <-fpr(t1l,t2,mx1,mx2,sx1,sx2,Maxcl);

TPR <-tpr(tl,t2,myl,my2,syl,sy2,Maxc2);
FPR1<-FPR; TPR1<-TPR

FPR = c(0,sort(FPR),1);TPR = c(0,sort(TPR),1);
library(bitops) ;library(caTools) ;

auc = trapz(FPR,TPR);dtl <-data.frame(FPR,TPR)
aucB[kl]<-auc

}

Intervalos [k, (1:2)]<-c(quantile(aucB,0.025),
quantile(aucB,0.975))
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lia<-lia+1l
print(lia)
}

[Recibido: octubre de 2019 — Aceptado: mayo de 2020]
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