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Abstract

In this paper, we discuss several mathematical properties and estimation
methods for a reparameterized version of the weighted Lindley (RWL)
distribution. The RWL distribution can be particularly useful for modeling
reliability (survival) data with bathtub-shaped or increasing hazard rate
function. The inferential procedure to obtain the parameter estimates is
conducted via the maximum likelihood approach considering random right-
censoring. Extensive numerical simulations are carried out to investigate
and evaluate the performance of the proposed estimation method. Finally,
the potentiality of the RWL model is analyzed by employing two real
data sets.
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Resumen

En este artículo, discutimos varias propiedades matemáticas y métodos
de estimación para una versión reparametrizada de la distribución ponderada
de Lindley (RWL). La distribución RWL puede ser particularmente útil para
modelar datos de confiabilidad (supervivencia) con función de tasa de riesgo
en forma de bañera o creciente. El procedimiento inferencial para obtener
las estimaciones de los parámetros se realiza mediante el enfoque de máxima
verosimilitud considerando la censura aleatoria a la derecha. Se realizan
extensas simulaciones numéricas para investigar y evaluar el rendimiento del
método de estimación propuesto. Finalmente, la utilidad del modelo RWL
se analiza mediante el uso de dos conjuntos de datos reales.

Palabras clave: Datos censurados aleatorios a la derecha; Distribución de
Lindley; Distribución ponderada de Lindley; Simulación Monte Carlo.

1. Introduction

The Lindley distribution is a lifetime distribution that was introduced in the
context of fiducial distributions and Bayes theorem (Lindley 1958). Ghitany et al.
(2008) studied its mathematical properties, such as moments, failure rate, mean
residual life, entropy function, and asymptotic distribution of the extreme order
statistics and inferential procedures. Moreover, the authors showed that such
distribution outperforms the exponential model in many situations, which allowed
its application in diverse areas, such as biology, engineering, and medicine.

Since the Lindley distribution has only one parameter and accommodates
solely increasing hazard function, it does not provide enough flexibility for
analyzing different types of lifetime data. To increase the flexibility for modeling
purposes, many generalizations based on this distribution have been proposed
in the recent literature. For example, the generalized Lindley (Zakerzadeh &
Dolati 2009), two-parameter weighted Lindley (Ghitany et al. 2011), extended
Lindley (Bakouch et al. 2012), transmuted two-parameter Lindley (Kemaloglu &
Yilmaz 2017), Weibull Lindley distribution (Asgharzadeh et al. 2018), Weibull
Marshall-Olkin Lindley (Afify et al. 2020), among other distributions. The two-
parameter weighted Lindley (WL) distribution has become increasingly popular for
modeling survival or reliability data with bathtub-shaped and increasing hazard
rate functions (Ali 2015, Ramos et al. 2017, Louzada & Ramos 2017). Some
generalizations of this distribution can be found, e.g., in Asgharzadeh et al. (2016),
Ramos & Louzada (2016), Shanker et al. (2019), and references cited therein.

In recent years, some traditional distributions have been reparameterized in
terms of their mean to model real problems; see, e.g., Cepeda & Gamerman (2005),
Santos-Neto et al. (2016), Rigby et al. (2019), Bourguignon & Gallardo (2020).
In our bibliographical review, we noted that not much attention has been paid
to parameterizations of the Lindley distribution, as well as its generalizations,
except the work proposed by Mazucheli et al. (2016). The authors introduced an
alternative parameterization for the WL distribution in the context of orthogonal
parameters (Cox & Reid 1987). Such reparameterizated WL (RWL) distribution
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is very useful because one of its parameters is the mean, which is interpretable
in many problems. For instance, in medical studies, it gives the mean survival
time of patients, which can be related to a set of covariates. In additon, the other
parameter can be interpreted as a precison parameter. Thus, if covariates are
present in the data set, we can model practical situations where the precision is
not constant (Cepeda & Gamerman 2005, Santos-Neto et al. 2016, Bourguignon
& Gallardo 2020). Another appealing advantage of using the RWL distribution is
due to computational stability. On the other hand, by using such distribution, we
have that the sample mean is an unbiased estimator for the population mean, and
hence, the precision parameter can be readily estimated by using a one-dimensional
numerical method, avoiding numerical problems.

Although Mazucheli et al. (2016) have proposed the RWL distribution, the
authors did not study its properties and, in addition, they also did not consider
the maximum likelihood estimation for the parameters under censored data. Our
objective in this paper is to derive and discuss many mathematical properties of
this distribution, including its moments, quantile function, characteristic function,
mean and median deviations, hazard rate function, mean residual life function,
and Laplace transform function. Also, we show that the second parameter of this
distribution can be interpreted as a precision parameter, which can be useful in
further studies. The inference for the model parameters is conducted under the
classical (or frequentist) framework via the maximum likelihood method assuming
the presence of uncensored and random censored data. Numerical simulations are
carried out in order to investigate the performance of the maximum likelihood
estimators (MLEs) under different sample sizes and proportions of censored
data. Finally, the applicability of the RWL distribution is illustrated in two real
data sets.

The remainder of this paper is organized as follows. Section 2 reviews the
RWL distribution. Section 3 present some properties of the RWL distribution,
such as moments, quantile function, characteristic function, mean and median
deviations, mean residual life function, and Laplace transform. Section 4 discusses
the inferential procedure based on MLEs for complete and censored data. Section
5 presents a simulation study to evaluate the performance of the proposed
estimators. Section 6 illustrates the relevance of the RWL distribution on two
real data sets. Section 7 summarizes the present study.

2. The RWL Distribution

The original parameterization of the probability density function (PDF) of the
WL distribution introduced by Ghitany et al. (2011) is given by

f(y;λ, ϕ) =
λϕ+1

(λ+ ϕ)Γ(ϕ)
yϕ−1(1 + y) exp{−λy}, y > 0, (1)

where λ > 0 and ϕ > 0 are shape parameters and Γ(ϕ) =
∫∞
0
yϕ−1 exp{−y}dy is

the gamma function.
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Recently, Mazucheli et al. (2016) proposed a new parameterization of the WL
distribution, which allows diverse features of data modeling to be considered. The
RWL distribution is obtained by transforming (λ, ϕ) into (µ, ϕ), where

µ =
ϕ(λ+ ϕ+ 1)

λ(λ+ ϕ)

is the mean of the original parameterization (1).
Therefore, the WL distribution reparameterized by its mean has PDF expressed

as

f(y;µ, ϕ) =
[a(µ, ϕ)]ϕ+1

(2µ)ϕΓ(ϕ) [a(µ, ϕ) + 2µϕ]
yϕ−1(1 + y) exp

{
−a(µ, ϕ)

2µ
y

}
, y > 0,

(2)
where a(µ, ϕ) = ϕ(1−µ)+

√
ϕ2(µ− 1)2 + 4µϕ(ϕ+ 1), µ > 0 is the mean and ϕ > 0

is the shape parameter. From now on, we will use the notation Y ∼ RWL(µ, ϕ) to
indicate that the random variable Y has the RWL distribution.

Figure 1 presents examples of the PDF (2) considering different values of ϕ
when µ is fixed, and different values of µ when ϕ is fixed. Note that decreasing
and unimodal behavior can be seen for the PDF. Moreover, ϕ controls the shape
of the PDF, as well as the different degrees of asymmetry and kurtosis, whereas µ
is the mean and also a scale parameter of the distribution.
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Figure 1: Plots of PDF of the RWL distribution. Left panel: µ = 1 fixed and different
values of ϕ. Right panel: ϕ = 10 fixed and different values of µ.

As in original parameterization (1), we also can write the PDF (2) as a two-
component mixture:

f(y;µ, ϕ) =

(
a(µ, ϕ)

a(µ, ϕ) + 2µϕ

)
f1(y;µ, ϕ) +

(
2µϕ

a(µ, ϕ) + 2µϕ

)
f2(y;µ, ϕ), (3)
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where fj(y;µ, ϕ) =

(
a(µ, ϕ)

2µ

)ϕ+j−1
yϕ+j−2

Γ(ϕ+ j − 1)
exp

{
−a(µ, ϕ)

2µ
y

}
, y > 0, is

the PDF of the gamma distribution with shape parameter ϕ + j − 1 and scale
parameter a(µ, ϕ)/2µ, for j = 1, 2. This mixture representation is useful in order
to get the properties of the RWL distribution, since the properties of the gamma
distribution are well known in the statistical literature (Johnson et al. 1994).
For instance, the corresponding survival and hazard rate functions of the RWL
distribution are easily found and given, respectively, by

S(y;µ, ϕ) =
1

Γ(ϕ)

Γ(
ϕ,
a(µ, ϕ)

2µ
y

)
+

[a(µ, ϕ)y]
ϕ
exp

{
−a(µ,ϕ)

2µ y
}

(2µ)ϕ−1 [a(µ, ϕ) + 2µϕ]

 (4)

and

h(y;µ, ϕ) =
[a(µ, ϕ)]ϕ+1 yϕ−1(1 + y) exp

{
−a(µ,ϕ)

2µ y
}

2µ
[
(2µ)ϕ−1 [a(µ, ϕ) + 2µϕ] Γ

(
ϕ,

a(µ,ϕ)
2µ y

)
+ [a(µ, ϕ)y]ϕ exp

{
−a(µ,ϕ)

2µ y
}] (5)

where, for all c > 0 and d ≥ 0,

Γ(c, d) =

∫ ∞

d

yc−1e−ydy

is the upper incomplete gamma function.
Figure 2 shows different shapes for the hazard rate function of the RWL

distribution, considering distinct values of µ and ϕ. It can be noted that the
hazard rate function has monotonically increased (ϕ ≥ 1) and bathtub (ϕ < 1)
shapes for all µ > 0 (as the original WL distribution; see Ghitany et al. (2011)).
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Figure 2: Plots of the hazard rate function of the RWL distribution.
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3. Some Properties of the RWL Distribution

In this section, we present some mathematical properties of the RWL
distribution, such as r-th moments, characteristic function, and Laplace transform,
among others.

3.1. Quantile Function

The quantile function of a probability distribution is useful in statistical
applications and Monte Carlo simulation. From (4), we have that the cumulative
distribution function (CDF) of the RWL distribution is given by

F (y;µ, ϕ) = 1− 1

Γ(ϕ)

Γ(
ϕ,
a(µ, ϕ)

2µ
y

)
+

[a(µ, ϕ)y]
ϕ
exp

{
−a(µ,ϕ)

2µ y
}

(2µ)ϕ−1 [a(µ, ϕ) + 2µϕ]


Hence, the p-quantile, yp, is obtained by solving the following equation:

[a(µ, ϕ)yp]
ϕ
exp

{
−a(µ,ϕ)

2µ yp

}
(2µ)ϕ−1 [a(µ, ϕ) + 2µϕ]

= Γ(ϕ)(1− p)− Γ

(
ϕ,
a(µ, ϕ)

2µ
yp

)
(6)

for 0 < p < 1. Observe that if p = 0.5 we get the median of the RWL distribution.
Note that the quantile function does not have a closed mathematical expression.

In this case, the uniroot function of the R software can be used to find out the
desired quantiles of the data; see R Core Team (2020) and Brent (1973).

3.2. Moments

Many important characteristics and properties of a probability distribution can
be obtained through its moments, such as mean, variance, skewness, and kurtosis.

Theorem 1. If Y ∼ RWL(µ, ϕ), then the r-th power, logarithmic and negative
moments are given, respectively, by

(i) E [Y r] =

[
2µ

a(µ, ϕ)

]r
[a(µ, ϕ) + 2µϕ+ 2µr] Γ(ϕ+ r)

[a(µ, ϕ) + 2µϕ] Γ(ϕ)

(ii) E [log (Y r)] = r

[
ψ(ϕ) +

2µ

a(µ, ϕ) + 2µϕ
− log

(
a(µ, ϕ)

2µ

)]
;

(iii) E [Y −r] =

[
a(µ, ϕ)

2µ

]r
Γ(ϕ− r) [a(µ, ϕ) + 2µ(ϕ− r)]

[a(µ, ϕ) + 2µϕ] Γ(ϕ)

where ψ(k) = d

dk
log (Γ(k)) is the digamma function.
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Proof . We will only prove the item (i) of Theorem 1 because the proof for
the other remaining items follows similarly. In fact, let us use the mixture
representation given in Equation (3). We then have

E[Y r] =

(
a(µ, ϕ)

a(µ, ϕ) + 2µϕ

)∫ ∞

0

yrf1(y;µ, ϕ)dy

+

(
2µϕ

a(µ, ϕ) + 2µϕ

)∫ ∞

0

yrf2(y;µ, ϕ)dy

where fj(y;µ, ϕ) is the PDF of the gamma distribution with shape parameter
ϕ+ j − 1 and scale parameter a(µ,ϕ)

2µ , for j = 1, 2. Note that

∫ ∞

0

yrfj(y;µ, ϕ)dy =

(
2µ

a(µ, ϕ)

)r
Γ(ϕ+ j + r − 1)

Γ(ϕ+ j − 1)
, j = 1, 2.

Thus, after some algebraic manipulations, we finish the proof of this
theorem.

Corollary 1. The mean and variance of the random variable Y ∼ RWL(µ, ϕ) are
given, respectively, by

E[Y ] = µ (7)

and

V ar[Y ] =

[
2µ

a(µ, ϕ)

]2
[a(µ, ϕ) + 2µϕ+ 4µ]ϕ(ϕ+ 1)

a(µ, ϕ) + 2µϕ
− µ2. (8)

Proof . These results can be obtained easily from item (i) of Theorem 1,
considering r = 1 and r = 2 with some algebraic manipulations.

Figure 3 displays a plot of ϕ against V ar[Y ] for µ = 1 fixed. According to
this figure, we can see that the ϕ parameter can be interpreted as a precision
parameter. The variance increases as ϕ tend to zero, and it decreases when ϕ goes
to infinity.

The coefficient of variation (CV) is used to analyze the dispersion in terms of
their average value when two or more data sets have different units of measure.
Thus, we can say that the CV is a way of expressing the variability of the data,
excluding the influence of the variable’s order of magnitude. Often, the CV is
given in percentage.

It follows from Corollary 1 that the CV of Y ∼ RWL(µ, ϕ) is given by

CV [Y ] =

√
V ar[Y ]

E[Y ]
=

√
4 [a(µ, ϕ) + 2µϕ+ 4µ]ϕ(ϕ+ 1)

[a(µ, ϕ)]2[a(µ, ϕ) + 2µϕ]
− 1.

The next corollary gives us the harmonic mean of the RWL distribution. This
measure of central tendency can be useful in many real problems; see, e.g., Hasna
& Alouini (2004), Limbrunner et al. (2000) and Raftery et al. (2006).
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Figure 3: Plot of ϕ against V ar[Y ] for µ = 1 fixed.

Corollary 2. The harmonic mean of the random variable Y ∼ RWL(µ, ϕ) is given
by

Hm =

(
E

[
1

Y

])−1

=
2µΓ(ϕ)[a(µ, ϕ) + 2µϕ]

a(µ, ϕ)Γ(ϕ− 1)[a(µ, ϕ) + 2µ(ϕ− 1)]
.

Proof . This result can be established by using the item (iii) of Theorem 1 with
r = 1 and then taking the reciprocal of the resulting expression.

Another way to characterize a distribution is by using its characteristic function
(CF). The CF of a random variable is also known as Fourier transform of its PDF
and has applications in the most diverse areas of scientific knowledge; see, e.g.,
Manolakis et al. (2005), Yu (2004) and Lukacs (1972).
Theorem 2. If Y ∼ RWL(µ, ϕ), then its CF is given by

ΨY (s) =

(
1

a(µ, ϕ) + 2µϕ

)(
1− 2µis

a(µ, ϕ)

)−ϕ
[
a(µ, ϕ) + 2µϕ

(
1− 2µis

a(µ, ϕ)

)−1
]
,

for all s ∈ R, where i =
√
−1 is the imaginary unit.

Proof . In fact, by the representation of mixture given in Equation (3), we have

ΨY (s) = E[eisY ] =

∫ ∞

0

eisyf(y;µ, ϕ)dy

=

(
a(µ, ϕ)

a(µ, ϕ) + ϕ

)∫ ∞

0

eisyf1(y;µ, ϕ)dy

+

(
2µϕ

a(µ, ϕ) + ϕ

)∫ ∞

0

eisyf2(y;µ, ϕ)dy.
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Now, as fj(y) is the PDF of gamma distribution with parameters ϕ+ j−1 and
a(µ, ϕ)/2µ, j = 1, 2, we then obtain

ΨY (s) =

(
a(µ, ϕ)

a(µ, ϕ) + 2µϕ

)(
1− 2µis

a(µ, ϕ)

)−ϕ

+

(
2µϕ

a(µ, ϕ) + 2µϕ

)(
1− 2µis

a(µ, ϕ)

)−ϕ−1

.

Now, after some algebraic manipulations, we get the desired result.

The r-th power moments could also be obtained by using the CF. In fact, let
Ψ

(r)
Y (0) be the r-th derivative of ΨY (s) with respect to s, evaluated at the point

s = 0. Then,

Ψ
(r)
Y (0) =

dΨ
(r)
Y (s)

ds

∣∣∣∣
s=0

= irE [Y r] .

3.3. Mean Residual Life Function

The mean residual life (MRL) function represents the expected additional
lifetime given that a component has survived or not failed until time y. The
MRL function is defined by

r(y;θ) = E [Y − y|Y > y] =
1

S(y;θ)

∫ ∞

y

tf(t;θ)dt− y,

where f(y;θ) and S(y;θ) are, respectively, the PDF and survival function of the
random variable Y , and θ is the parameter vector.

Proposition 1. The MRL function of the random variable Y ∼ RWL(µ, ϕ) is
given by

r(y;µ, ϕ) =
2µ

[a(µ, ϕ) + 2µϕ]Γ(ϕ)S(y;µ, ϕ)

Γ(
ϕ+ 1,

a(µ, ϕ)y

2µ

)
+

2µΓ
(
ϕ+ 2,

a(µ,ϕ)y
2µ

)
a(µ, ϕ)

− y,

where S(y;µ, ϕ) is the survival function defined in Equation (4).

Proof . By using the mixture representation given in Equation (3), we have∫ ∞

y

tf(t;θ)dt =

(
a(µ, ϕ)

a(µ, ϕ) + 2µϕ

)∫ ∞

y

tf1(t;µ, ϕ)dt

+

(
2µϕ

a(µ, ϕ) + 2µϕ

)∫ ∞

y

tf2(t;µ, ϕ)dt

(9)

where fj(t;µ, ϕ) =
(
a(µ, ϕ)

2µ

)ϕ+j−1
tϕ+j−2

Γ(ϕ+ j − 1)
exp

{
−a(µ, ϕ)

2µ
t

}
, for j = 1, 2.
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Now, for j = 1, 2,∫ ∞

y

tfj(t;µ, ϕ)dt =
[a(µ, ϕ)]ϕ+j−1

(2µ)ϕ+j−1Γ(ϕ+ j − 1)

∫ ∞

y

tϕ+j−1 exp

{
−a(µ, ϕ)

2µ
t

}
dt

=
2µ

a(µ, ϕ)Γ(ϕ+ j − 1)

∫ ∞

a(µ,ϕ)y
2µ

zϕ+j−1 exp{−z}dz,

=
2µΓ

(
ϕ+ j, a(µ,ϕ)y2µ

)
a(µ, ϕ)Γ(ϕ+ j − 1)

.

(10)

where z = a(µ,ϕ)t
2µ . Substituting Equation (10) into Equation (9), we can get the

result after some algebraic manipulations.

Figure 4 shows the possible shapes for the MRL function of the RWL
distribution. Note that as the hazard rate function is bathtub-shaped (increasing),
the MRL function has upside-down bathtub (decreasing) shape according to
Bryson & Siddiqui (1969) and Olcay (1995).
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Figure 4: Plots of the MRL function of the RWL distribution.

3.4. Mean and Median Deviations

Mean and median deviations are useful for measuring the amount of scattering
in a population. They are defined as follows.

Consider a random variable Y with PDF f(y) and let µ and m denote,
respectively, the mean and median of Y , that is, µ = E[Y ] and m = Median[Y ].
Then, the mean and median deviations are defined, respectively, by

δ1 =

∫ ∞

0

|y − µ|f(y)dy and δ2 =

∫ ∞

0

|y −m|f(y)dy.
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After some algebraic manipulations, we find the following simplified expressions
for δ1 and δ2:

δ1 = 2 [µF (µ)− ζ(µ)] and δ2 = m− 2ζ(m), (11)

where F (.) is the CDF of Y and ζ(.) is defined as

ζ(s) =

∫ s

0

yf(y)dy, s > 0.

Proposition 2. The mean and median deviations for a random variable
Y ∼ RWL(µ, ϕ) are given, respectively, by

δ1 = 2

µF (µ)− 2µ

[a(µ, ϕ) + 2µϕ] Γ(ϕ)

γ

(
ϕ+ 1,

a(µ, ϕ)

2

)
+

2µγ
(
ϕ+ 2, a(µ,ϕ)

2

)
a(µ, ϕ)

(12)

and

δ2 = m− 2µ

[a(µ, ϕ) + 2µϕ] Γ(ϕ)

γ(ϕ+ 1,
a(µ, ϕ)

2µ
m

)
+

2µγ
(
ϕ+ 2,

a(µ,ϕ)
2µ m

)
a(µ, ϕ)

 , (13)

where F (.) is the CDF of the RWL distribution given in Equation (6) and

γ(b, c) =

∫ c

0

yb−1e−ydy

is the lower incomplete gamma function.

Proof . It is enough to solve the integral

ζ(s) =

∫ s

0

yf(y;µ, ϕ)dy, s > 0,

where f(.) is the PDF given in Equation (2). In fact, using the two-component
mixture given in Equation (3), we have

ζ(s) =

(
a(µ, ϕ)

a(µ, ϕ) + 2µϕ

)∫ s

0

yf1(y;µ, ϕ)dy +

(
2µϕ

a(µ, ϕ) + 2µϕ

)∫ s

0

yf2(y;µ, ϕ)dy.

where fj(y;µ, ϕ) =
(
a(µ, ϕ)

2µ

)ϕ+j−1
yϕ+j−2

Γ(ϕ+ j − 1)
exp

{
−a(µ, ϕ)

2µ
y

}
, for j = 1, 2.

Let z = a(µ,ϕ)
2µ y, so dz = a(µ,ϕ)

2µ dy. Thus, after some algebraic manipulations,
we get

ζ(s) =
2µ

[a(µ, ϕ) + 2µϕ] Γ(ϕ)

γ (ϕ+ 1,
a(µ, ϕ)

2µ
s

)
+

2µγ
(
ϕ+ 2, a(µ,ϕ)2µ s

)
a(µ, ϕ)

 . (14)

Now, the results given in Equations (12) and (13) follow easily by using
Equations (11) and (14).
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3.5. Laplace Transform

The Laplace transform of a PDF is useful in several applications of
mathematics, engineering and statistics, such as frailty models, machine learning,
complex differential equations, signal processing, control systems, among others.
The Laplace transform of a nonnegative random variable Y , at s ∈ C, is defined
by

Q(s) =

∫ ∞

0

e−syf(y;θ)dy,

where f(y;θ) is the PDF of Y and θ is the associated parameter vector.

Proposition 3. The Laplace transform of the RWL distribution at a complex
argument s is given by

Q(s) =

(
1

a(µ, ϕ) + 2µϕ

)(
a(µ, ϕ)

2µs+ a(µ, ϕ)

)ϕ+1

[a(µ, ϕ) + 2µ(s+ ϕ)] .

Proof . Let θ = (µ, ϕ). Then,

Q(s) =

∫ ∞

0

e−syf(y;θ)dy

=

(
a(µ, ϕ)

a(µ, ϕ) + 2µϕ

)∫ ∞

0

e−syf1(y;θ)dy

+

(
2µϕ

a(µ, ϕ) + 2µϕ

)∫ ∞

0

e−syf2(y;θ)dy,

(15)

where fj(y;µ, ϕ) =
(
a(µ, ϕ)

2µ

)ϕ+j−1
yϕ+j−2

Γ(ϕ+ j − 1)
exp

{
−a(µ, ϕ)

2µ
y

}
, for j = 1, 2.

Now, note that∫ ∞

0

e−syfj(y;µ, ϕ)dy =

(
a(µ, ϕ)

a(µ, ϕ) + 2µs

)ϕ+j−1

. (16)

Thus, by substituting Equation (16) into Equation (15) and making some
algebraic manipulations, we obtain

Q(s) =

(
1

a(µ, ϕ) + 2µϕ

)(
a(µ, ϕ)

2µs+ a(µ, ϕ)

)ϕ+1

[a(µ, ϕ) + 2µ(s+ ϕ)] .

4. Estimation

We consider the situation where the lifetime is not completely observed and is
subject to random right-censoring. The mechanism of random right-censoring is
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what most occurs in practical problems and it generalizes the Type I and Type II
right-censoring mechanisms.

Let Ci denote the censoring time, and Yi be the lifetime of interest for the i-th
sampling unit. Suppose that the random variables Ci and Yi are independent.
We then observe yi = min(Yi, Ci) and νi = I(Yi ≤ Ci), where νi = 1 if Yi is the
observed lifetime and νi = 0 if it is the censoring time. From n pairs of times and
censoring indicators (y1, ν2), (y2, ν2), . . . , (yn, νn), the observed likelihood function
for θ = (µ, ϕ)⊤ under non-informative censoring is given by

L(θ;y) =

n∏
i=1

[f(yi;θ)]
νi [S(yi;θ)]

1−νi , (17)

where f(yi;θ) and S(yi;θ) are the PDF and survival function of the RWL
distribution, defined in Equations (2) and (4), respectively.

Since h(yi;θ) =
f(yi;θ)

S(yi;θ)
, we then have that the likelihood function (17) reduces

to

L(θ;y) =

n∏
i=1

[h(yi;θ)]
νi S(yi;θ),

where h(yi;θ) is the hazard rate function of the RWL distribution, given in
Equation (5). Therefore, the log-likelihood function for θ can be expressed as

ℓ(θ;y) = d(ϕ+ 1) log[a(µ, ϕ)] + (ϕ− 1)

n∑
i=1

νi log(yi)

+

n∑
i=1

νi log(1 + yi)−
a(µ, ϕ)

2µ

n∑
i=1

νiyi

−
n∑

i=1

νi log

[
(2µ)ϕ−1 [a(µ, ϕ) + 2µϕ] Γ

(
ϕ,

a(µ, ϕ)

2µ
yi

)

+ [a(µ, ϕ)yi]
ϕ exp

{
−a(µ, ϕ)

2µ
yi

}]

− d log(2µ)− n log(Γ(ϕ)) +

n∑
i=1

log

[
Γ

(
ϕ,

a(µ, ϕ)

2µ
yi

)

+
[a(µ, ϕ)yi]

ϕ exp
{
−a(µ,ϕ)

2µ yi

}
(2µ)ϕ−1 [a(µ, ϕ) + 2µϕ]



(18)

where d < n is the observed number of failures and a(µ, ϕ) is defined as previously.
The MLE of parameter vector θ can be found by maximizing the log-likelihood

function given in Equation (18). In this work, we used the R function maxLik,
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which is available in the package of the same name; see Henningsen & Toomet
(2011), to carry out such optimization procedure.

When we have uncensored data, νi = 1, ∀i. In this case, the MLE of µ is the
sample mean, µ̂ = 1

n

∑n
i=1 yi, whereas the MLE of ϕ is found by maximizing the

following log-likelihood function:

ℓ(ϕ;y) ∝ n(ϕ+ 1) log[a(µ̂, ϕ)] + (ϕ− 1)

n∑
i=1

log(yi) +

n∑
i=1

log(1 + yi)

− a(µ̂, ϕ)

2µ̂

n∑
i=1

yi − nϕ log(2µ̂)− n log(Γ(ϕ))− n log(a(µ̂, ϕ) + 2µ̂ϕ),

which can be made by using, for example, the maxLik function.
Under mild conditions, it can be shown that the MLE θ̂ is consistent and follows

an asymptotic bivariate normal distribution with mean vector θ and covariance
matrix equal to the inverse of the expected Fisher information matrix I(θ), that
is,

(µ̂, ϕ̂)
D−→ N2

(
(µ, ϕ), I−1(µ, ϕ)

)
as n→ ∞,

where D−→ denotes convergence in distribution. Unfortunately, the exact expected
Fisher information matrix is difficult to be obtained for the RWL distribution. In
this case, we can approximate it by its observed version obtained from the maxLik
package results. Hence, we can construct approximate 100(1 − α)% confidence
intervals for the individual parameters, as well as hypothesis tests, through the
estimated marginal distributions (both normal).

5. Results Based on Computation

In this section, we perform a Monte Carlo simulation study to verify the
asymptotic behavior of MLEs of the RWL distribution parameters under different
sample sizes and percentages of censoring. All the analyses were carried out using
the R software, and the seed used in the pseudo-random number generators was
2020. Specifically, the random samples of size n from the RWL distribution with
parameters µ and ϕ were generated using the following steps:

1. Generate Ui ∼ Uniform(0, 1), for i = 1, 2, . . . , n;

2. Generate Xi ∼ Gamma
(
ϕ, a(µ,ϕ)2µ

)
, for i = 1, 2, . . . , n;

3. Generate Wi ∼ Gamma
(
ϕ+ 1, a(µ,ϕ)2µ

)
, for i = 1, 2, . . . , n;

4. If Ui ≤ a(µ, ϕ)

a(µ, ϕ) + 2µϕ
, then set Yi = Xi, otherwise set Yi = Wi, for

i = 1, 2, . . . , n.
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The following performance criteria were considered: mean relative estimate
(MRE) and mean squared error (MSE), which are given, respectively, by

MREi =
1

N

N∑
j=1

θ̂i,j
θi

and MSEi =
1

N

N∑
j=1

(
θ̂i,j − θi

)2

, i = 1, 2,

where θ = (θ1, θ2)
⊤ = (µ, ϕ)⊤ is the parameter vector and θ̂ = (θ̂1, θ̂2)

⊤ = (µ̂, ϕ̂)⊤

is its MLE, while N = 10, 000 is the number of estimates obtained through the
proposed approach.

According to these criteria, it is expected that the MRE and MSE return values
closer to one and zero, respectively. We also compute the coverage probabilities
(CPs) of the 95% confidence intervals. For a large number of experiments using
95% confidence intervals, the relative frequencies of these intervals that covered
the true values of θ should be closer to 0.95. The CPs were calculated using the
numeric observed information matrix obtained from the maxLik package results.

We considered a sample size n ∈ {20, 50, 100, 200, 400} and θ ∈ {(0.5, 0.7),
(2, 5)}, with censoring percentages of 0%, 25% and 50%. We selected these values
for θ in order to get, respectively, bathtub-shaped and increasing hazard rate
functions. The censored data were generated using the same procedure as in
Bayoud (2012). Let pj , j = 1, 2, . . . , N , denote the proportion of censored data
in the j-th sample, then according to this procedure it is expected that the mean
for the proportions of censored data (Ê[p]) will be approximately 0.000, 0.250 and
0.500.

Under these scenarios, we report the values of the empirical MREs, MSEs, and
CPs in Tables 1 and 2. According to these tables, we can see that the MSEs of all
estimators tend to zero as the sample size increases, suggesting that all estimators
are consistent with the parameters. In contrast, the MRE values tend to one,
meaning that the estimators are asymptotically unbiased for the parameters, as
expected. We can also see that, as the censoring percentage increases, the MREs
and MSEs of the MLEs also increase, as expected. Furthermore, we observe that,
as n increases, the CPs tend to the nominal level (0.95). Therefore, in general, all
of these results show the excellent performance of the MLEs of the corresponding
parameters.

6. Real Data Examples

In this section, we illustrate the proposed methodology on electrical appliances
data (Section 6.1), as well as on lifetimes of an agricultural machine (Section 6.2).

We compared the results obtained by the RWL distribution with the
corresponding ones achieved with the use of other two-parameter lifetime
distributions reparameterized by their mean. Namely, the reparameterized gamma
(Louzada & Ramos 2018), reparameterized inverse gamma (Bourguignon &
Gallardo 2020), and reparameterized Birnbaum-Saunders (Santos-Neto et al. 2012)
distributions. We present the PDFs of these distributions as follows:
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Table 1: MRE, MSE, CP and expected censoring proportion estimates for N = 10, 000
samples of sizes n ∈ {20, 50, 100, 200, 400}, with 0%, 25% and 50% of random
censored data, for µ = 0.5 and ϕ = 0.7.

µ = 0.5 ϕ = 0.7

n MRE MSE CP MRE MSE CP Ê[p]

0%

20 1.001 0.015 0.910 1.147 0.080 0.964 -
50 1.000 0.006 0.932 1.052 0.021 0.950 -
100 0.999 0.003 0.942 1.025 0.009 0.955 –
200 1.001 0.002 0.949 1.013 0.004 0.948 -
400 1.001 0.001 0.944 1.006 0.002 0.950 -

25%

20 1.024 0.027 0.904 1.153 0.098 0.956 0.250
50 1.011 0.010 0.931 1.052 0.025 0.954 0.250
100 1.007 0.004 0.946 1.025 0.011 0.952 0.250
200 1.005 0.002 0.948 1.012 0.005 0.950 0.250
400 1.002 0.001 0.945 1.007 0.002 0.955 0.249

50%

20 1.093 0.088 0.888 1.192 0.168 0.959 0.500
50 1.031 0.020 0.919 1.063 0.034 0.957 0.500
100 1.017 0.009 0.938 1.030 0.014 0.953 0.500
200 1.010 0.004 0.945 1.015 0.007 0.952 0.500
400 1.004 0.002 0.946 1.008 0.003 0.951 0.499

Table 2: MRE, MSE, CP and expected censoring proportion estimates for N = 10, 000
samples of sizes n ∈ {20, 50, 100, 200, 400}, with 0%, 25% and 50% of random
censored data, for µ = 2 and ϕ = 5.

µ = 2 ϕ = 5

n MRE MSE CP MRE MSE CP Ê[p]

0%

20 1.002 0.038 0.929 1.150 4.548 0.942 -
50 1.002 0.015 0.936 1.066 1.457 0.949 -
100 1.001 0.008 0.943 1.032 0.622 0.952 -
200 1.001 0.004 0.950 1.017 0.292 0.952 -
400 1.001 0.002 0.945 1.009 0.141 0.951 -

25%

20 1.004 0.049 0.927 1.180 6.610 0.925 0.249
50 1.002 0.019 0.943 1.074 1.806 0.953 0.250
100 1.001 0.009 0.948 1.035 0.791 0.952 0.250
200 1.001 0.005 0.948 1.019 0.369 0.951 0.250
400 1.001 0.002 0.946 1.011 0.178 0.947 0.250

50%

20 1.010 0.080 0.927 1.232 11.910 0.902 0.498
50 1.003 0.029 0.942 1.092 2.621 0.943 0.500
100 1.002 0.014 0.947 1.045 1.155 0.951 0.501
200 1.001 0.007 0.950 1.024 0.537 0.949 0.500
400 1.001 0.003 0.948 1.013 0.252 0.951 0.501

• Reparameterized gamma (RG) distribution:
According to Louzada & Ramos (2018), the PDF of the RG distribution is
given by

f(y;µ, ϕ) =
1

Γ(ϕ)

(
ϕ

µ

)ϕ

yϕ−1 exp

{
−ϕ
µ
y

}
, y > 0,

where µ > 0 is the mean parameter and ϕ > 0 is the precision parameter.
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• Reparameterized inverse gamma (RIG) distribution:
According to Bourguignon & Gallardo (2020), the PDF of the RIG
distribution is given by

f(y;µ, ϕ) =
[µ(1 + ϕ)]ϕ+2

Γ(ϕ+ 2)
y−ϕ−3 exp

{
−µ(1 + ϕ)

y

}
, y > 0,

where µ > 0 is the mean parameter and ϕ > 0 is the dispersion parameter.

• Reparameterized Birnbaum-Saunders (RBS) distribution:
Presented by Santos-Neto et al. (2012), it has PDF given by

f(y;µ, ϕ) =
exp{ϕ/2}

√
ϕ+ 1

4y3/2
√
πµ

(
y +

ϕµ

ϕ+ 1

)
exp

{
−ϕ

4

[
(ϕ+ 1)y

ϕµ
+

ϕµ

(ϕ+ 1)y

]}
,

for all y > 0, where µ > 0 is the mean parameter and ϕ > 0 is the precision
parameter.

In order to carry out the model selection, different discrimination criterion
methods based on log-likelihood function evaluated at the MLEs were considered.
Let k be the number of parameters in the model and θ̂ denote the MLE for the
parameter vector θ. Then, the model discrimination criteria used here are: Akaike
Information Criterion (AIC; Akaike 1974), Corrected AIC (AICc; Sugiura 1978),
Bayesian or Schwarz Information Criterion (BIC; Schwarz 1978), Hannan-Quinn
Information Criterion (HQIC; Hannan & Quinn 1979), and Consistent AIC (CAIC;
Bozdogan 1987), which are computed, respectively, by

AIC = −2ℓ
(
θ̂;y

)
+ 2k,

AICc = AIC +
2k(k + 1)

(n− k − 1)
,

BIC = −2ℓ
(
θ̂;y

)
+ k log(n),

HQIC = −2ℓ
(
θ̂;y

)
+ 2k log (log(n)) ,

CAIC = AIC + k [log(n)− 1] ,

where ℓ(.;y) is the log-likelihood function of the corresponding model and n is
the sample size. According to these criteria, the best model is the one that
provides the minimum values. The Kolmogorov-Smirnov test with confidence
level α = 0.05 and Cox-Snell residuals were also considered for checking the
goodness-of-fit of models to the uncensored and censored data, respectively
(Cox & Snell 1968, Daniel 1990).

6.1. Cycles up to the Failure for Electrical Appliances

In this subsection, we reanalyzed the data set extracted from Lawless (2011),
which consists of a number of cycles, divided by 1,000, up to the failure for 60
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electrical appliances in a life test (see Table 3). Many authors have analyzed these
uncensored data, including Reed (2011), Khan (2018) and Ramos et al. (2019).
Such data are known to have a bathtub-shaped hazard rate function.

Table 4 displays the MLEs, standard errors (SEs) and 95% confidence intervals
(95 % CIs) for the parameters µ and ϕ of the RWL model. Note that the
estimated mean number of cycles to failure of an electrical appliance is 2.193
cycles. Furthermore, since ϕ̂ = 0.733, the estimated hazard rate function is
bathtub-shaped, that is, it is characterized by an increased number of failures
(and thus, unavailability) in the initial period of electrical appliance usage after
its commissioning, followed by a long span of normal use with a small and roughly
constant number of failures, and finally, a period of a fast increasing number of
failures occurring because of the age of the observed electrical appliance.

Table 3: Number of cycles, divided by 1,000, up to the failure for 60 electrical appliances
in a life test.

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142 0.165 0.210
0.381 0.464 0.479 0.556 0.574 0.839 0.917 0.969 0.991 1.064
1.088 1.091 1.174 1.270 1.275 1.355 1.397 1.477 1.578 1.649
1.702 1.893 1.932 2.001 2.161 2.292 2.326 2.337 2.628 2.785
2.811 2.886 2.993 3.122 3.248 3.715 3.790 3.857 3.912 4.100
4.106 4.116 4.315 4.510 4.580 5.267 5.299 5.583 6.065 9.701

Table 4: MLEs, SEs and 95% CIs for the parameters of the RWL distribution,
considering the electrical appliances data.

Parameter MLE SE 95% CI
µ 2.193 0.272 (1.659; 2.727)
ϕ 0.733 0.136 (0.466; 1.001)

Table 5 gives the log-likelihood, AIC, AICc, BIC, HQIC and CAIC values, as
well as the Kolmogorov-Smirnov (KS) test statistics and their p-values, for all four
distributions considered. We can see that the RWL distribution offers a better fit
to the electrical appliances data since it has the minimum values of these criteria.
In addition, the KS test indicates that the electrical appliances data are a random
sample from a RWL distribution with µ̂ = 2.193 and ϕ̂ = 0.733.

Table 5: Model selection criteria values and KS test (statistic and p-values) for the
fitted probability distributions, considering the electrical appliances data.

Criterion RWL RG RIG RBS
Log-likelihood -105.774 -107.012 -157.273 -118.912

AIC 215.548 218.024 318.546 241.824
AICc 215.759 218.235 318.756 242.035
BIC 219.737 222.213 322.734 246.013

HQIC 217.187 219.663 320.184 243.463
CAIC 221.737 224.213 324.734 248.013

KS 0.072 0.082 0.496 0.285
p-value 0.907 0.810 < 0.0001 < 0.001
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Figure 5 presents the survival function adjusted by different probability
distributions (RWL, RG, RIG and RBS distributions) superimposed to the
estimated Kaplan-Meier survival curve. From this figure, it can be observed that
the RWL distribution provides the better fit to the electrical appliances data.
Therefore, from the proposed methodology, the data set related to the failure
times of 60 electrical appliances can be well-described by the RWL distribution.
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Figure 5: Left panel: Fitted survival functions superimposed to the estimated Kaplan-
Meier survival curve, considering the electrical appliances data. Right panel:
Estimated hazard rate function of the RWL distribution for these data.

6.2. Agricultural machine data

As a second application, in this subsection we reanalyzed the data related to
the times up to corrective maintenance of an agricultural machine, presented by
Ramos et al. (2019). This data set includes two censored observations, both in 13
days. Its analysis can be useful to correctly predict the next maintenance in order
to reduce costs.

Table 6: Times up to corrective maintenance of an agricultural machine (“+” denotes
censoring).

1 1 1 1 1 1 1 2 2 3 3 3
3 3 4 4 4 4 4 4 4 5 5 5
5 5 5 5 5 5 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7
7 7 8 8 8 8 8 8 8 8 8 8
8 9 9 9 9 9 11 11 11 11 11 11
11 11 13 13+ 13+ - - - - - -
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Table 7 shows the MLEs, SEs and 95% CIs for the parameters µ and ϕ of the
RWL distribution. Notice that the estimated mean time to occur a fail in the
agricultural machine is 6.404 days. Also, the fit of the RWL distribution suggests
an increasing-shaped hazard rate function: ϕ̂ = 2.778 (see Figure 6, right panel).

Table 7: MLEs, SEs and 95% CIs for the parameters of the RWL distribution,
considering the agricultural machine data.

Parameter MLE SE 95% CI
µ 6.404 0.369 (5.680; 7.127)

ϕ 2.778 0.491 (1.816; 3.740)

Table 8 reports the results from different model discrimination/selection
criteria, such as the log-likelihood, AIC, AICc, BIC, HQIC and CAIC, for the
four considered probability distributions. From these results, we see that the
RWL distribution provides slightly better description of the data compared to
other candidate distributions, since it yields the lowest values in all criteria.

Table 8: Model selection criteria values for the fitted probability distributions,
considering the agricultural machine data.

Criterion RWL RG RIG RBS
Log-likelihood -223.049 -223.683 -248.159 -235.404

AIC 450.098 451.367 500.318 474.808
AICc 450.237 451.506 500.457 474.947
BIC 455.075 456.344 505.295 479.785

HQIC 452.104 453.373 502.324 476.814
CAIC 457.075 458.344 507.295 481.785

Figure 6 exhibits the survival functions superimposed to the estimated Kaplan-
Meier survival curve (left panel), as well as the estimated hazard rate function
(right panel). From this figure, it can be observed that the RWL distribution
provides a good fit to the agricultural machine data.

After adjusting the RWL distribution to the agricultural machine data, we
verified the goodness-of-fit of it through the Cox-Snell residuals (Cox & Snell
1968). The Cox-Snell residuals are defined by

ei = − log
(
Ŝ(ti)

)
, i = 1, 2, . . . , n,

where Ŝ(ti) is the fitted RWL survival function of the i-th lifetime. In this case,
the Cox-Snell residuals ei’s are a censored random sample from the standard
exponential distribution, if the RWL distribution is correctly specified.

Figure 7 presents the graph of Kaplan-Meier versus standard exponential
survival, both fitted to the Cox-Snell residuals. By means of this figure, we can
observe that most of the points are close to line, showing the goodness-of-fit of
the proposed distribution to the agricultural machine data. Therefore, from the
proposed methodology, the data set related to the failure times of agricultural
machine can be well-described by the RWL distribution.
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Figure 6: Left panel: Fitted survival functions superimposed to the estimated Kaplan-
Meier survival function, considering the lifetimes of an agricultural machine.
Right panel: Estimated hazard rate function of the RWL distribution for
these data.
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Figure 7: Left panel: Kaplan-Meier versus standard exponential survival, both fitted
to the Cox-Snell residuals. Right panel: Estimated survival curves (Kaplan-
Meier and standard exponential).

A preventive approach for this agricultural machine is given as follows.
Through the quantile function of the RWL distribution given in Equation (6),
we can get the number of days that are expected to have a certain percentage of
failures. Table 9 displays different times of failure, assuming different percentages.
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The results obtained from this table show that preventive maintenance can be
performed assuming different percentages of failures. Thus, we recommend the
agricultural enterprise to consider 4 days (25% of failures) after the last failure to
perform maintenance in this agricultural machine.

Table 9: Days to perform preventive maintenance to agricultural machine by assuming
different percentages of failures, based on the RWL distribution.

10% 25% 50% 75% 99%
2.55 3.88 5.82 8.29 16.87

7. Concluding Remarks

In this paper, we derived critical mathematical properties of the RWL
distribution, which allow its application in many real problems. Under this
parameterization, one of the parameters is given by the mean, whereas the other
parameter can be interpreted as a precision parameter. The (classical) inferential
method for the parameters was discussed under random censoring. An extensive
Monte Carlo simulation study showed that the proposed estimators are consistent
and return reasonable estimates for the parameters of the RWL distribution.
The proposed methodology was used in two applications considering electrical
appliances data and a data set related to the lifetimes of an agricultural machine,
in which we observed that the RWL distribution returned better fit when compared
to some well-known reparameterized models in the statistical literature.

There is a large number of possible extensions of this current work. For
instance, we can easily formulate RWL regression models with varying precision
(Santos-Neto et al. 2016, Bourguignon & Gallardo 2020). Another approach
that is under investigation is the use of the RWL distribution in the context
of frailty models, since the Laplace transform has a closed-form expression. In
this setting, we believe that the RWL distribution can be an alternative frailty
distribution to the traditional frailty distributions (Wienke 2010). The RWL
distribution is also a promising model to be used in studies involving degradation
and accelerated life test data, and should thus be investigated in future research
(Meeker & Escobar 2014).
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