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Abstract

Three educational and engaging competitions are described for students
studying Bayesian statistics. These competitions are designed to help
students explore the topics of James-Stein estimation, the German tank
problem, and resampling inference. These competitions will inspire students
to think creatively, challenge students to develop e�ective Bayesian models,
and motivate students to pursue excellence in competition with their peers.
The competition structures can be easily adapted for use in introductory or
advanced Bayesian statistics courses.

Key words: James-Stein estimation; German tank problem; Capture-
recapture.

Resumen

Se describen tres concursos educativos y atractivos para los alumnos
que estudian estadística bayesiana. Estos concursos están diseñados para
ayudar a los estudiantes a explorar los temas del estimador de James-
Stein, el problema de los tanques alemanes y la inferencia de remuestreo.
Estos concursos inspirarán a los estudiantes a pensar de forma creativa, les
desa�arán a desarrollar modelos bayesianos e�caces y les motivarán a buscar
la excelencia en competencia con sus compañeros. Las estructuras de los
concursos pueden adaptarse fácilmente para su uso en cursos de estadística
bayesiana introductorios o avanzados.

Palabras clave: Estimador de James-Stein; Problema de los tanques
alemanes; Captura-recaptura.
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1. Introduction

In this article three friendly classroom-based competitions are introduced that
are intended to

� encourage students to follow their passions,

� inspire students to think creatively, not just analytically,

� generate interest in Bayesian modeling approaches,

� stimulate insight into complex Bayesian methods, and

� motivate students to pursue excellence in a competition with their peers.

Each competition detailed here will allow students to be ranked based on their
performance in the respective competition, allowing prizes to be o�ered up to
the top ranked students. However, it is suggested that the students' �nal grades
not be determined by the rankings, rather their grade would be based on their
approach and explanation. This explains why the competitions are referred to
here as �friendly� competitions. The rankings and prizes are simply rewards to
provide a fun motivation and to some extent sense gamify the classroom learning
experience. For classes with many students, these competitions work just the
same with students working together in groups and having competitions with the
di�erent groups.

Details of each of the three competitions are outlined in the subsequent sections
including various examples and approaches students have presented. No detailed
solutions are presented in this article as that would defeat the purpose of the
competition, but more to the point is that there are many di�erent possible
equally valid solutions to each of these competitions. Many di�erent extensions
and variations can also easily be incorporated to customize the competitions as
appropriate for any given course. Practical suggestions are provided to help with
the implementation of these competitions in the classroom, and these tips and
resources may also prove helpful with other classroom activities. The author
has implemented all three of these competitions in his graduate-level Bayesian
statistics course, but these competitions could also be adapted and prepared for
advanced-level undergraduate students.

2. Competition #1: James-Stein Estimation

The goal of this competition is to show that shrinkage, by borrowing
information across the dataset, can provide substantial improvement in statistical
inference. Students may have been exposed to the powerful e�ects of shrinkage in
other contexts such as ridge regression, Lasso regression, or as random e�ects in
mixed models. Shrinkage is a key component of Bayesian analysis and is powerfully
exempli�ed in the empirical Bayes example of the James-Stein estimator (James
& Stein, 1961).
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The James-Stein estimator became a sensation in the statistical world when
Professors Brad Efron and Carl Morris published an article in Scienti�c American

(Efron & Morris, 1977) demonstrating how shrinkage with this estimator can
yield substantial improvements in prediction performance over the more standard
approach of using maximum likelihood estimation. In particular, the sample
mean, with its extensive list of advantageous properties, was found to be inferior
� inadmissible to be precise � in the multivariate normal setting.

The premise of the James-Stein estimator is succinctly described in Efron
(2012) as �learning from the experiences of others� in which individual data values
are shrunk towards the grand mean. The optimal amount of shrinkage is a key
question to be worked out, but in certain contexts an e�ective amount of shrinkage
can be determined from the data alone.

There are several interesting properties of the James-Stein estimator. For one,
shrinkage doesn't have to be towards the overall mean. Rather, it can be towards
any arbitrary point, and the resulting James-Stein estimator will still do better
than maximum-likelihood estimator (under appropriate assumptions). Also, even
if there's �nothing to learn from the others� � that is, one is analyzing completely
unrelated variables � the James-Stein estimator still won't be any worse than the
maximum-likelihood estimator (again, under appropriate assumptions). A quirky
example of this, as provided on Wikipedia, describes how estimating the speed
of light, tea consumption in Taiwan, and hog weight in Montana, estimated all
together, will be at least as good with the James-Stein estimator as with maximum
likelihood estimation (though in this case probably no better).

The example published in the 1977 Scienti�c American article (Efron & Morris,
1977) remains the most popular example of the James-Stein estimator. This
example predicted the batting averages of 18 major-league baseball players in
the 1970 baseball season using only pre-season batting average data. Efron and
Morris showed that the James-Stein estimator provided 3.5 times more accuracy
in terms of mean-square prediction error compared to simply using just the pre-
season batting average data directly as predictions.

One key notion for the students with regard to James-Stein estimation is that
this method relies on simultaneously estimating/predicting several quantities. In
the baseball example, we were interested in predicting the batting averages for all
18 players simultaneously, and not just evaluating the prediction for only one of
the players. Indeed, the sample mean is an admissible estimator for the true mean
with univariate and bivariate normally distributed data, but its admissibility is
lost for higher dimensions.

There are several topics an instructor may choose to cover prior to this
competition, depending on the level of the course and background of the students.
Such topics could include loss functions, risk, Bayes risk, Bayes estimator, least
favorable prior, minimax estimator, admissible estimator, and the James-Stein
estimator.

Now that the stage is set, the actual competition is now introduced as the
following student challenge.
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The James-Stein Challenge

Find a dataset like the James-Stein baseball dataset in which you actually
have two sets of data: pilot data and �nal/o�cial data. Then make
predictions/estimates of the �nal data using the maximum likelihood
estimator and compare those predictions to the James-Stein estimator. Try to
determine an appropriate amount of shrinkage in the James-Stein estimator
using only the pilot data and not the �nal data. Calculate quantities such
as the mean square prediction error to quantify the improvement (or lack
there of) when using the James-Stein estimator. Finally, compare your
prediction results against a range of shrinkage levels and determine the
amount of shrinkage that appears to be optimal for your given dataset. You
are encouraged to be creative and follow your passions when selecting
your dataset.

Each student/group will give a short presentation to the rest of the class
demonstrating their results, and all participants will subsequently rank the
presentations from most favorite (1) to least favorite (n). The voting method
of single transferable vote will be used to determine the top places.

As a side bene�t to this competition, students will get to learn about the
powerful voting method of single transferable vote that is starting to be adopted
by progressive municipalities and other elections across the world. The function
stv inside the R package vote (Sevcikova et al., 2018) provides a convenient
implementation of this voting method. Creating a ballot is pretty straightforward,
but I found the website https://getvoting.aec.gov.au/ballotpaper/ to be a
convenient and easy way of generating ranked choice voting ballots. Voting by the
students can be replaced by a panel of judges, but I tend to like having the students
select their own winners. Other students or faculty could also be invited to the
classroom on the presentation day to promote enthusiasm for the competition.
Example prizes for the winners could be theater tickets or gift cards to a local
restaurant. For our competition, I gave out tickets to a production at our local
playhouse, so the tickets weren't terribly expensive yet o�ered a fun and culturally
enriching experience for the winning students.

Below are some example datasets that were presented in my classroom. Not all
of the examples may be entirely appropriate for James-Stein estimation, but they
all demonstrated creative exploration and careful consideration of how shrinkage
estimation might be useful for their respective dataset. Even if a student's
dataset isn't a great �t for James-Stein estimation, a thoughtful and passionate
presentation could still win over the votes and collect a prize.

� Chinese New Year Gala YouTube Data

The Chinese New Year Gala is a popular program broadcast on Chinese New
Year's Eve including a variety of performances such as comedy sketches,
singing, dancing, acrobatics, and magic shows. It just so happened that
our classroom competition occurred shortly after Chinese New Year so this
was a very timely topic and one of particular interest for many of our
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students that grew up in China. Using the YouTube API and the R package
tuber, `like' and `dislike' counts were extracted at two time points from the
approximately 50 di�erent gala performances published on YouTube. James-
Stein estimation was applied to improve the prediction of the proportion of
likes for each video. As an asside, it was also entertaining to the students to
see which performances garnered the greatest numbers of likes.

� Women's World Championship Volleyball: Faults and Aces

Data on the average number of faults and aces were extracted from the
Women's Volleyball National League which were then used to predict their
performances at the Women's World Championship.

� Average Temperature Data

Average temperature data from 8 locations in the US from 1895-1985 was
used to predict the respective average temperatures from 1986-2018.

� Air Pistol and Air Ri�e World Cup Data

A series of six quali�cation scores of the air pistol and air ri�e world cups
were used to predict the corresponding �nal competition scores.

� Men's Singles Badminton: Win Percentages

The win percentages of the top singles men badminton players with six
months of data was used to predict the win percentages of the same players
over the course of the entire year.

� Comparison of Classi�ers

In a much di�erent example, one student interested in machine learning
considered 10 di�erent classi�ers, including nearest neighbors, linear support
vector machine, random forest, naive Bayes, and others, on two sets of data
� training and testing. James-Stein estimation was used to see if shrinkage
could improve prediction of classi�cation accuracy on the test data across
all of the classi�ers.

3. Competition #2: Traveling the World

This competition builds on the classic tramcar problem, which can be simply
introduced with the following example problem.

Suppose you enter an unfamiliar city and get in a random tramcar
that is numbered 1729. Based just on this information, how many
such tramcars might you estimate to be in the entire city?

Variants on this problem have had signi�cant applications during World War II.
For example, serial numbers extracted from captured tanks were used to estimate
the number of tanks being produced by the Germans, as documented in several
JASA articles shortly after the war ended (Goodman, 1952, 1954; Ruggles &
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Brodie, 1947). In an article in Teaching Statistics (Johnson, 1994), presented a
number of di�erent solutions to this problem. The most straightforward solution
to this problem involves constructing a Bayesian posterior from a carefully-formed
prior, which is the focus of this competition, but with several complicating twists
added. The following set of exercises/examples can be provided to the class to
help prepare the class for the competition.

(A) Suppose the citizens of a city are numbered 1 to N and you randomly select a
person from the city whose number ism. Write down the likelihood function,
f(m | N), that describes the probability of observing citizen number m out
of a population of N citizens.

(B) Based on the likelihood in (A), what is the maximum likelihood estimator
for N?

(C) Show that taking a �uniform prior� on N , i.e. π(N) ∝ 1, leads to an improper
posterior.

(D) Consider the prior π(N) ∝ 1
N . Show that the posterior distribution is well-

de�ned but the posterior mean does not exist.

(E) With the prior in (D), show analytically the posterior median is
approximately 2m and derive an approximate formula for the (1 − α)100%
highest density interval. Hint: consider integral approximations of the
summations.

(F) Consider the prior π(N) = 1
Nβ with β ∼ unif(1,∞). The posterior for

N , when marginalized over β is equivalent to using an alternative prior
π̃(N). Derive π̃(N) and determine if the posterior mean exists. Also, write
a program to numerically approximate the posterior distribution of N given
m.

(G) (Convergence practice) Consider the two priors π1(N) = 1
(log(N))2 and

π2(N) = 1
log(N) log(log(N)) . Show that the posterior distribution of N | m

exists for π1(N) but not for π2(N).

(H) Suppose k citizens of the city are sampled with replacement, yielding
numbers m1, . . . ,mk. Derive the likelihood in terms of the su�cient
statistic m(k) = max{m1, . . . ,mk}; i.e. compute the probability Pr(mk =

x | N). Hint: notice that Pr
(
m(k) = x | N

)
= Pr

(
m(k) ≤ x | N

)
−

Pr
(
m(k) < x | N

)
.

(I) Calculate the same probability as in (H) under the assumption the citizens
are sampled without replacement.

Once the students are familiar with the above calculations, they are prepared
to start thinking about the competition, which is now introduced.
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Population Estimation Challenge

In this competition, we will virtually travel the world by using https:

//randomcity.net to select random cities across the globe. In particular,
we will �rst randomly select two cities and let the quantities N1 and N2

represent the most recent population estimates of those cities on Wikipedia.
Without loss of generality, let's assume N1 ≤ N2. Then ten random integers
will be sampled with replacement from the interval [N1, N2]. The goal of
this challenge is to most accurately estimate the values N1 and N2, say with
estimates N̂1 and N̂2, under the following loss function

loss =
|N̂1 −N1|

N1
+
|N̂2 −N2|

N2
.

The loss will be calculated over three rounds, and the �nal rankings will be
based on minimizing the total loss over all three rounds.

If the entirety of the randomcity.net database is available with associated
populations, then unique optimal Bayes estimates can be produced. But the
complexities of the likelihood expression, the intricate loss function, as well as
the ambiguities of the randomcity.net database provide plenty of challenges for
the students to explore. The loss function can also be varied to explore how
di�erent loss functions can a�ect the estimates.

The sampled data can either be provided in advance of the competition or the
students can be asked to produce �live� estimates in the classroom. Either way, the
students should also have an opportunity to at some point present their solutions
to the class.

Of course this competition isn't modeled after any real practical scenario, but it
provides a fun way to explore random cities of the world in the context of learning
statistics with a friendly competition.

4. Competition # 3: Capture-Recapture

This competition was initially inspired by a recent popular YouTube (Parker,
2018) in which Matt Parker traveled to the 2018 Annual Conference of the
Royal Statistical Society to estimate the number of statisticians attending that
conference using a capture-recapture design. This YouTube video could serve
as an entertaining introduction to the concept of capture-recapture experiments.
For an introduction to Bayesian models for capture-recapture designs, Chapter 5
(Capture-Recapture Experiments) of Marin & Robert (2014) is recommended.

A number of complexities have been incorporated into this next competition to
allow students to creatively explore di�erent modelling ideas into their solutions.
It is quite straightforward to modify the parameters of this competition as needed
for a given classroom. Although the other competitions didn't require any special
materials, except possibly the prizes, this competition requires several orange and
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white ping pong balls (say 30 to 300) to be acquired. Practice ping pong balls can
be readily found on the internet in packs of 144 for under $10 so these material
costs are not substantial. We now introduce the last competition challenge.

Ball Counting Challenge

A box is prepared containing an unspeci�ed number of orange and white
ping pong balls. The orange balls are labelled sequentially starting at some
unspeci�ed integer and the white balls start o� unlabelled. The ultimate goal
will be to predict the number of orange balls, the number of white balls, and
the total number of balls (orange and white), given the sampled data.

Students in class will take turns taking out a handful of balls at a time
from the box. For each sample, the integer labels on the orange balls are
recorded, the unlabelled white balls will be labelled (starting with 1), and
any labels already labelled white balls will be recorded. This data will be
made available to the students for subsequent modelling.

There are a number of ways the sampled data can be structured and recorded.
Below is one example of an actual dataset that was collected in the classroom.

Sampler Orange Count White Count Orange Labels White Labels

Sample 1 4 2 8,53,56,59

Sample 2 3 2 20,35,64 1

Sample 3 4 1 3,15,56,58

Sample 4 4 1 38,39,46,60

Sample 5 3 3 8,57,62 3,4

Sample 6 4 2 19,28,46,47

Sample 7 0 4 8

Sample 8 1 4 30 9

Sample 9 2 2 53,64

Sample 10 3 2 16,35,38 13

In the above example, there were 28 orange balls drawn of which 7 balls
(labelled 8, 35, 38, 46, 53, 56, and 64) were drawn twice, and there were 23
white balls drawn of which 6 balls (labelled 1, 3, 4, 8, 9, and 13) were drawn twice.
In this particular competition, the orange balls were numbered from -5 to 64 (total
of 70) and there were 42 white balls, thus yielding a total of 112 orange and white
balls in the box. Random objects may also be added to the box to discourage the
use of weight or volume in the inference. For the dataset collection above, sweet
potatoes and onions were added to the box as a distraction.

There are a number of features to this competition. First is the multiple-
stage capture-recapture component with the white balls. Inference for this part
might follow the T-stage capture-recapture model as described in Section 5.2.3 of
Marin & Robert (2014) but possibly with a carefully devised informative prior.
We also have elements of the population estimation challenge here with regard to
the orange ball inference but on a smaller scale and di�erent considerations for
the priors. Having the orange and white balls drawn in the same sample also adds
an extra layer of complexity. Finally, if the balls are not su�ciently mixed up

Revista Colombiana de Estadística - Applied Statistics 44 (2021) 243�252



Bayesian Modeling Competitions for the Classroom 251

between samples, students looking for a competitive edge in their inference may
attempt to account for the lack of randomness in the sampling.

5. Conclusions

The �rst competition presented on James-Stein estimation inspires students to
explore data they may be passionate about while also requiring them to consider
how the James-Stein methodology may be applicable. Students will also be fully
engaged in the presentations by having them vote for their favorite presented
application. The use of single transferable vote to select the winners o�ers another
valuable learning opportunity for the students.

The second competition starts o� by presenting a Bayesian approach to the
classic tramcar/German tank problem with a series of exercises. The competition
builds on the ideas of the tramcar problems but with added complexities to be
considered in the modelling. Not only will students be curious to see whose model
performed best, but they will be able to virtually visit di�erent cities around the
world while engaging with this competition.

The third competition, relating to a capture-recapture problem, builds on a fun
experiment conducted by Matt Parker in one of his popular YouTube videos. This
competition uses physical props in the classroom � numbered ping pong balls in a
box � allowing for an interactive classroom data generating experience. Although
a complex challenge is presented in this article, it can easily simpli�ed to suit the
level of the students.

These are all fun and engaging competitions for students learning Bayesian
statistics. With these competitions, students are challenged to think creatively and
match their creative ideas with analytical methods. Finally, these competitions
can be easily be adapted and tailored to the appropriate level of the students and
various classroom sizes.[
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