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Abstract

Mediation analysis has been receiving much attention from the scientific
community in the last years, mainly due to its ability to disentangle causal
pathways from exposures to outcomes. Particularly, causal mediation
analysis for time-to-event outcomes has been widely discussed using
accelerated failures times, Cox and Aalen models, with continuous or binary
mediator. We derive general expressions for the Natural Direct Effect and
Natural Indirect Effect for the time-to-event outcome when the mediator is
modeled using generalized linear models, which includes existing procedures
as particular cases. We also define a responsiveness measure to assess the
variations in continuous exposures in the presence of mediation. We consider
a community-based prospective cohort study that investigates the mediation
of hepatitis B in the relationship between hepatitis C and liver cancer.
We fit different models as well as distinct distributions and link functions
associated to the mediator. We also notice that estimation of NDE and NIE
using different models leads to non-contradictory conclusions despite their
effect scales. The survival models provide a compelling framework that is
appropriate to answer many research questions involving causal mediation
analysis. The extensions through GLMs for the mediator may encompass
a broad field of medical research, allowing the often necessary control for
confounding.
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El análisis de mediación ha recibido mucha atención en los últimos años,
principalmente debido a su capacidad para desenredar las vías causales.
Particularmente, mediación causal para el tiempo hasta el evento se ha
discutido ampliamente utilizando tiempos de falla acelerados, modelos de
Cox y Aalen, con mediador continuo o binario. Derivamos expresiones
generales para el efecto directo natural y el efecto indirecto natural para el
el tiempo hasta el evento cuando el mediador se modela utilizando modelos
lineales generalizados, que incluyen procedimientos existentes como casos
particulares. Definimos una medida para evaluar variaciones en exposiciones
continuas en presencia de mediación. Consideramos un estudio de cohorte
prospectivo que investiga la mediación de la hepatitis B en la relación entre
la hepatitis C y el cáncer de hígado. Encajamos diferentes modelos, así
como distintas distribuciones y funciones de enlace. Todos los enfoques
dan como resultado evaluaciones consistentes de los effectos considerando
sus correspondientes escalas. Los modelos de supervivencia proporcionan
un marco convincente apropiado para responder a muchas preguntas de
investigación que involucran mediación causal. Las extensiones a través de
GLM para el mediador pueden abarcar un amplio campo de investigación
médica, lo que permite el control necesario para los factores de confusión.

Palabras clave: análisis de supervivencia; inferencia causal; mediación;
modelos lineales generalizados.

1. Introduction

Mediation analysis in the context of causal inference has been receiving
much attention from the scientific community in the last years, especially in
Epidemiology and Social Sciences, see Imai et al. (2010) and VanderWeele (2016).
This is due to its ability to disentangle causal pathways from exposures/treatments
to outcomes of interest, which results in a greater understanding of the underlying
mechanism. In short, a mediator may be defined as a variable M “between”
the exposure A and the outcome T , so that the effect of A on T splits into two
parts: one transmitted directly from the exposure to the outcome and another
transmitted indirectly through the mediator. Mediation models were initially
proposed for continuous outcomes and mediators in cross sectional studies, see
Baron & Kenny (1986) and MacKinnon (2008). Particularly, in the specific
context of causal inference, formal definitions of decomposed effects into direct
(without mediation) and indirect (with mediation) effects are found in Pearl
(2001) and their estimation is discussed in Tchetgen Tchetgen & Shpitser (2012)
among others. However, more recent advances have extended them to more
complex models including survival outcomes, see Fulcher et al. (2017), Iacobucci
(2012), Lange & Hansen (2011), Loyes et al. (2013), VanderWeele & Vansteelandt
(2010), VanderWeele (2011) Vansteelandt et al. (2019); and allowing, among other
features, multiple mediators, see Daniel et al. (2015), Fasanelli et al. (2019), Huang
& Yang (2017); or time-dependent treatments and/or mediators, see Aalen et al.
(2012), Aalen et al. (2020), Didelez (2019) and Lin et al. (2017).
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Causal mediation analysis for survival outcomes has been widely discussed
under accelerated failure times (AFT), Cox proportional hazards and Aalen
additive hazards models, with or without an interaction between exposure and
mediator, see Lange & Hansen (2011) and VanderWeele (2015). The usual
approach assumes a binary exposure A and a linear or logistic regression model
for the mediator M , see VanderWeele (2011) and VanderWeele (2015). Thus,
there are still limitations when M does not follow linear or logistic models. In
this paper, M is assumed to follow a generalized linear model (GLM), which
includes the linear and logistic approaches as particular cases. We illustrate the
proposed methodology by considering a community-based prospective cohort study
to investigate the mediation of hepatitis B in the relatioship between hepatitis C
and liver cancer. A mediation model for this data, based on the standard linear
model, was proposed by Huang & Yang (2017) based on the existing scientific
evidence. We reevaluate the mediation model considering distinct distributions
and link functions for the mediator, jointly with varying models for the survival
outcome (AFT, Cox and Aalen).

The article is organized as follows: in section 2 we present a brief review of
causal mediation analysis for survival data. In section 3, we formally show general
expressions for the Natural Direct Effect (NDE) and Natural Indirect Effect (NIE)
for survival outcomes using AFT, Cox and Aalen models. We also specify the
expressions for NDE and NIE for particular distributions. In section 4, we define
responsiveness measures for the promptness of the outcome for changes in the
continuous treatment levels. We apply this methodology for the mediation analysis
of the liver cancer data to illustrate model specification and causal interpretation
in section 5. Finally, methodology challenges and advances are discussed in section
6.

2. Mediation for Survival Data

2.1. Framework and Notation

Let T be the time to event and denote by Ta the potential response
corresponding to treatment a, i.e. the time to event it would be observed if
the treatment had been set at level a (regardless of the actual value of A). For
binary treatments, we have T (the actual outcome), Ta and Ta∗ (the potential
outcomes had A been set equal to a and a∗, respectively). At the unit level,
the causal effect would ideally be assessed, for each unit u, by the difference
Ta(u) − Ta∗(u). Since one of them is necessarily counterfactual, it is impossible
to evaluate the causal effect by such difference. The solution usually adopted
considers the expected differences E[Ta−Ta∗ ] or E[Ta−Ta∗ |x], where x is a vector
of covariates representing the confounding between A and T .

In mediation analysis, the idea is to decompose the treatment effect into two
parts corresponding to the paths A −→ T and A −→ M −→ T . In doing so,
it is usual to consider the potential responses TaMa∗ , where possibly different
treatments (a and a∗) are allowed to directly affect the response and the mediator.
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The effect associated to the first path is called Natural Direct Effect and the one
associated to the second path, Natural Indirect Effect. In the difference scale, they
are respectively defined as

NDE = E[TaMa∗ − Ta∗Ma∗ ] and NIE = E[TaMa
− TaMa∗ ]. (1)

Assuming the so-called composition assumption (VanderWeele & Vansteelandt,
2009): Ta = TaMa , referred to as (A0), we can write the Total Effect as
TE ≡ E[Ta − Ta∗ ] = E[TaMa

− Ta∗Ma∗ ] = NIE+NDE, regardless of the functional
relation between the variables involved. Historically, before this counterfactual
notation, there were two traditional approaches to estimate indirect effects known
as “difference method” (considering two models for the outcome: with and without
the mediator) and “product method” (defined by the product of the models’
coefficients). They converge for the same results when the outcome and the
mediator are continuous and a linear model is used, see Baron & Kenny (1986)
and MacKinnon & Dwyer (1993). However, they diverge in many other situations,
such as when analyzing binary outcomes or using the Cox model, see MacKinnon
(2008) and VanderWeele (2015). Therefore, the validity of such approach (not
based in counterfactual arguments) depends on the chosen model (MacKinnon
et al., 1995). Unlike them, the counterfactual approach is a solution to the problem
of establishing consistent definitions for direct, indirect and total effects.

2.2. Survival Models

For time-to-event data, the total effect can be decomposed in terms of natural
direct and indirect effects through different scales depending on the chosen model,
see VanderWeele (2011) and VanderWeele (2015). Throughout this paper we will
focus on the following three models (Kalbfleisch & Prentice, 2002):

1. the accelerated failure time (AFT) model, in which

log T = β0 + β1a+ β2m+ β3am+ β⊤
4 x+ γε,

with ε following an extreme value distribution and γ > 0, the scale
parameter for the Weibull distribution. In this case, the natural direct and
indirect effects are given by NDEaft = logE[TaMa∗ |x]− logE[Ta∗Ma∗ |x] and
NIEaft = logE[TaMa

|x]− logE[TaMa∗ |x].

2. the Aalen additive hazards model (Aalen et al., 2008), in which

λT (t|a,m,x) = β0(t) + β1(t)a+ β2(t)m+ β3(t)am+ β4(t)
⊤x, (2)

whose coefficients are typically time-dependent. In this case,

NDEAalen(t|x) = λTaMa∗ (t|x)− λTa∗Ma∗
(t|x)

and
NIEAalen(t|x) = λTaMa

(t|x)− λTaMa∗ (t|x).
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Another way to report these (time-dependent) effects is through their cumu-
lative versions, which are given by CIEAalen(t) =

∫ t

0
NIEAalen(s)ds , CDEAalen(t) =∫ t

0
NDEAalen(s)ds and CEAalen(t) =

∫ t

0
TEAalen(s)ds = CIEAalen(t) +

CDEAalen(t).

3. the Cox proportional hazards model, where

λT (t|a,m,x) = λo(t) exp
{
β1a+ β2m+ β3am+ β⊤

4 x
}
,

and λo(·) is an unspecified baseline hazard function. Here,

NDECox(t|x) = log λTaMa∗ (t|x)− log λTa∗Ma∗
(t|x)

and
NIECox(t|x) = log λTaMa

(t|x)− log λTaMa∗ (t|x).

Accordingly, the exponentiated NDE and NIE stand for the ratio of expected
counterfactual survival times in the AFT model and the counterfactual hazard
ratio in the Cox model. Choosing any model is always related to different issues.
For instance, the results of the Cox model are very easily interpreted. The Aalen
model is particularly useful when the assumption of the proportionality of risks is
not met. In addition, its coefficients may be time varying, which makes it more
flexible than the standard Cox model. On the other hand, fully parametric models,
such as the AFT model, are more efficient than semiparametric approaches when
correctly specified.

An important aspect of causal inference is the determination of the necessary
assumptions for identification of the effects of interest as well as their expressions in
terms of the parameters of the models. It is well known that such assumptions are
more stringent in the presence of mediators. Following Lange & Hansen (2011), we
have the assumptions of no unmeasured counfounding between (A1) exposure and
outcome: A ⊥⊥ Tam|x, (A2) mediator and outcome: M ⊥⊥ Tam|a,x, (A3) exposure
and mediator: A ⊥⊥ Ma|x; and the identifiability condition (A4) Ma∗ ⊥⊥ Tam|x.
Under these conditions and the composition assumption (A0) together with the
Aalen additive model (without the interaction term) and a Normal mediator,
we have TEAalen = [β2(t)ζ1(a − a∗)] + β1(t)(a − a∗) = NIEAalen + NDEAalen.
Similarly, but allowing interaction (β3am), VanderWeele (2011) determined the
identification formulas for the AFT and Cox models. For instance, NDECox =
exp{(β1+β3(ζ0+ ζ1a∗+ ζ⊤2 x+β2σ

2))(a−a∗)+0.5β2
3σ

2(a2−a∗2)} and NIECox =
exp{(β2 + β3a)ζ1(a − a∗)}. Similar expressions are found for the AFT model
even when M is dichotomous. We refer the interested reader to VanderWeele &
Vansteelandt (2010) or VanderWeele (2015) for more details.

In any case, the mediator is usually assumed to be either conditionally Normal
with mean E[M |a,x] = ζ0 + ζ1a+ ζ⊤2 x and variance Var(M |a,x) = σ2, or binary
and described by a logistic model. The aim of this article is to unify these
approaches and, in addition, to allow the mediator to follow other distributions
from the Exponential family, such as Poisson (if M is a count) and Gamma (if M
is asymmetric, nonnegative and continuous).
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3. Generalized Linear Models for Mediators

3.1. Notation for GLM

To represent the NDE and NIE for a wider class of mediators, assume that the
mediator M takes value on M and let ν be a sigma-finite measure over A, a σ-field
over M, such that M ∼ PM (·|a,x), with PM ≪ ν, and let its density be given by
f(m|a,x) = dP

dν (m|a,x) = exp {[θm− b(θ)]/ϕ+ c(m;ϕ)}, so that, conditionally on
a and x, the distribution of M belongs to the Exponential family. Here, ϕ stands
for the scale parameter and θ = θ(a,x). The conditional mean of M given a and x,
denoted by µ = µ(a,x), can be written as µ = g−1(η) = g−1(ζ0+ζ1a+ζ

⊤
2 x), where

g is a suitable link function. In particular, θ(a,x) = (g◦b′)−1(ζ0+ζ1a+ζ
⊤
2 x) and,

when using canonical links, θ(a,x) = η. In the next three subsections, we describe
the formulas of NDE and NIE under these conditions and assuming the time to
event (T ) to follow the AFT, Aalen and Cox models, respectively. We assume a
binary treatment such that A = a or A = a∗ and, for the sake of simplicity, we
simply write θ(x) ≡ θ(a,x) and θ(a∗,x) ≡ θ∗(x).

3.2. Causal Effects in the Accelerated Failure Time Model

Under conditions (A0) – (A4) and the accelerated failure time model, we have

E[TaMa∗ |x] = E [eγε] exp

[
β0 + β1a+ β⊤

4 x+
b [θ∗(x) + (β2 + β3a)ϕ]− b (θ∗(x))

ϕ

]
. (3)

The proof is in the appendix A1. Now, it follows directly from (3) that

NIEAFT =
b [θ(x) + (β2 + β3a)ϕ]− b [θ∗(x) + (β2 + β3a)ϕ]− [b (θ(x))− b (θ∗(x))]

ϕ
, (4)

and

NDEAFT = β1(a− a∗) +
1

ϕ
{b [θ∗(x) + (β2 + β3a)ϕ]− b [θ∗(x) + (β2 + β3a

∗)ϕ]}. (5)

Dependence on x can be removed by considering E[TaMa∗ ] = EX [E[TaMa∗ |X]].
However, the expressions of the NIE and NDE become complicated, as terms in
(3) do not cancel out.

Using the Normal distribution with g(µ) = µ, ϕ = σ2 and b(θ) = θ2/2, we get
NIEAFT = (β2+β3a)ζ1(a−a∗) and NDEAFT =

[
β1 + β3(β2σ

2 + θ∗(x))
]
(a−a∗)+

0.5σ2β2
3(a

2−a∗2), as in VanderWeele (2015). Using the Gamma distribution with
parameterization f(m) = (ν/µ)νmν−1e−νm/µ/Γ(ν), the most usual link functions
are (i) the reciprocal link g(µ) = 1/µ, for which θ(a,x) = −ζ0−ζ1a−ζ⊤2 x; (ii) the
logarithmic link g(µ) = log µ, for which θ(a,x) = − exp(−ζ0−ζ1a−ζ⊤2 x) and (iii)
the identity link g(µ) = µ, for which θ(a,x) = −(ζ0 + ζ1a+ ζ⊤2 x)−1. In any case,
ϕ = ν−1 and b(θ) = − log(−θ), so that NIEAFT = ν{log[(β2 + β3a)/θ

∗(x) + ν] −
log[(β2 + β3a)/θ(x) + ν]} and NDEAFT = β1(a− a∗) + ν{log[(β2 + β3a

∗)/θ∗(x) +
ν]− log[(β2+β3a)/θ

∗(x)+ν]}. Expressions for Binomial and Poisson distributions
are in the Web Appendix B.
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3.3. Causal Effects in the Additive Aalen Model

From the Aalen’s framework and assumptions (A0) – (A4),

λTaMa∗ (t) = β0(t) + β1(t)a+EX
t,a,a∗

[
β4(t)

⊤X + (β2(t) + β3(t)a)µt,a,a∗(X)
]
, (6)

where µt,a,a∗(x) = Eϕ(B2(t)+B3(t)a)+θ∗(x)M and EX
t,a,a∗ [h(X)] is the expectation

of h(X) with respect to

qt,a,a∗(x) ∝ exp

[
B4(t)

⊤x+
b [θ∗(x) + (B2(t) +B3(t)a)ϕ]− b [θ∗(x)]

ϕ

]
, (7)

where qt,a,a∗ = dQt,a,a∗/dPX and ∝ means equality except for a proportionality
constant. Proofs are found in Appendix A2. Notice that in the absence of
interaction the measure Qt,a,a∗ does not depend on a, so that dQt,a,a∗(x) ≡
dQt,a∗(x). From (6), we have

NIEAalen = (β2(t) + β3(t)a)EX
t,a,a∗ [µt,a,a(X)− µt,a,a∗(X)], (8)

and
NDEAalen = β1(t)(a− a∗) + E(t; a, a∗)− E(t; a∗, a∗). (9)

with E(t; a, a∗) = EX
t,a,a∗ [β4(t)

⊤X + (β2(t) + β3(t)a)µt,a,a∗(X)]. In particular, if
there is no interaction, then NDEAalen = β1(t)(a− a∗), regardless of the mediator
type.

For the sake of illustration we will ignore the interaction term between A
and M just to keep formulas simpler. Using the Normal distribution, we get
from (8) the standard formula NIEAalen = β2(t)ζ1(a − a∗), whereas using the
Gamma distribution, it follows that NIEAalen = β2(t)EX

t,a,a∗ [(B2(t)/ν+θ
∗(X))−1−

(B2(t)/ν + θ(X))−1], where qt,a,a∗(x) ∝
[

θ∗(x)
B2(t)/ν+θ∗(x)

]ν
eB4(t)

⊤x.

3.4. Causal Effects in the Proportional Hazard Rate (Cox)
Model

If the conditions (A0)-(A4) hold and the event is relatively rare, so that the
cummulative baseline hazard Λo(t) is approximatelly equal to zero for all t ≥ 0,
as pointed out in VanderWeele (2011), then

λTaMa∗ (t|x) ≈ λo(t) exp

{
β1a+ β⊤

4 x+
b [θ∗(x) + (β2 + β3a)ϕ]− b [θ∗(x)]

ϕ

}
. (10)

The proof is in the Appendix A3. Hence,

NIECox ≈
b [θ(x) + (β2 + β3a)ϕ]− b [θ∗(x) + (β2 + β3a)ϕ]− (b [θ(x)]− b [θ∗(x)])

ϕ
, (11)

and

NDECox ≈ β1(a− a∗) +
1

ϕ

{
b [θ∗(x) + (β2 + β3a)ϕ]− b [θ∗(x) + (β2 + β3a

∗)ϕ]
}
. (12)
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Though in different scales, the mathematical expressions for NDECox and NIECox
are very similar to the corresponding expressions for NDEaft and NIEaft for
rare events, no matter what is the mediator distribution in the Exponential
Family. If there is no interaction between A and M , then NDECox = β1(a − a∗)
regardless of the mediator type. For settings with common outcomes and with
Normal/binary mediator, a weighting approach using the proportional hazards
model was described by Lange et al. (2012) and VanderWeele (2015).

3.5. Variance Assessment of the Direct and Indirect Effects

Let ζ = (ζ0, ζ1, ζ2)
⊤ and Zi = (Ai,X

⊤
i )

⊤, where i = 1, ..., n denotes the
sample units. If ζ̂ is the maximum likelihood estimator (MLE) of ζ and assuming
independence among units, then it is well known that ζ̂ is asymptotically Normal
with mean ζ and variance Σζ = ϕ(Z⊤WZ)−1, where Z is the design matrix
whose ith column is Zi and W = diag(w1, . . . , wn), with wi = 1/[b′′(θi)η

2
i ] and

θi = θ(ai,xi). We also let Σϕ be the (asymptotic) variance of the estimator ϕ̂
of ϕ. On the other hand, under the AFT and Cox models, β̂ is asymptotically
Normal with mean β and variance Σβ = n−1Σ(β, τ). Here β̂ is the estimator of
β = (β0, β1, β2, β3, β4)

⊤ obtained by maximum likelihood in the AFT model and
maximum partial likelihood in the Cox model. The elements τ and Σ(β, τ) denote,
respectively, the monitoring period and asymptotic variance. For details on Σ, we
refer the reader to Kalbfleisch & Prentice (2002), pages 172 to 181. Following
the arguments in VanderWeele (2015), p. 467, and using the facts that the above
estimators are (i) asymptotically unbiased and (ii) ζ̂ and ϕ̂ are orthogonal, we
have for large n that the covariance matrix associated to β, ζ and ϕ is given by

Σ =

 Σβ 0 0

0 Σζ 0

0 Σϕ

 .

Hence, using the Delta method we are able to find the corresponding (asymptotic)
variance of each effect. For example, for NIEAFT, the variance is given by
(∇NIEAFT)

⊤Σ∇NIEAFT, where ∇NIEAFT stands for the gradient of NIEAFT with
respect to (β, ζ, ϕ), which is given by

∇NIEAFT

=
1

ϕ



0

0

ϕ (b′[θ(x) + (β2 + β3a)ϕ]− b′[θ∗(x) + (β2 + β3a)ϕ])

ϕ (b′[θ(x) + (β2 + β3a)ϕ]− b′[θ∗(x) + (β2 + β3a)ϕ]) a

0

b′[θ(x) + (β2 + β3a)ϕ]− b′[θ∗(x) + (β2 + β3a)ϕ]− [b′(θ(x))− b′(θ∗(x))]

b′[θ(x) + (β2 + β3a)ϕ]a− b′[θ∗(x) + (β2 + β3a)ϕ]a∗ − [b′(θ(x))a− b′(θ∗(x))a∗]

{b′[θ(x) + (β2 + β3a)ϕ]− b′[θ∗(x) + (β2 + β3a)ϕ]− [b′(θ(x))− b′(θ∗(x))]}x
−NIEAFT + {b′[θ(x) + (β2 + β3a)ϕ]− b′[θ∗(x) + (β2 + β3a)ϕ]} (β2 + β3a)


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when considering canonical links. The gradients associated to the other direct and
indirect effects for the AFT and Cox models are similarly evaluated.

Finally, we note that the Delta method will deliver good estimates only if the
sample size is large enough. Otherwise, one can use the bootstrap approach as
done in the application section. Particularly, such approach is also feasible for the
Aalen model.

3.6. Simulation Study

We conducted a simulation study to assess the effect of misspecification in
the mediation model (wrong choice of the GLM for M) on the NIE estimation.
For each subject, i, we generated data relative to (Ti,Mi, Ai), where T denotes
the survival time generated by the Cox-exponential model as in Bender et al.
(2005), such that λ(t) = λ0(t) exp(β1A+β2M), A ∼ Bernoulli(0.5) and the linear
predictor for M is given by ζ0 + ζ1A, with ζ = (ζ0, ζ1)

′ varying according to the
underlying mediator distribution used in the data generation process. Specifically,
we assumed the distributions Normal, Gamma, Poisson and Bernoulli. Finally, we
considered sample sizes equal to n = 200 and n = 500 and percentages of censoring
equal to 0% and 25%. To assess the effect of model misspecification, we estimated
the NIE and NDE using AFT, Cox and Aalen survival models always assuming a
GLM with Normal distribution for the mediation model as the standard approach
(regardless the true distribution). To perform this assessment we generated 2,000
samples under each configuration.

In Table 1, we present average and standard errors (in parentheses) for the NIE
estimates for the settings aforementioned. The true NIE is given by NIEDistribution
as defined in Sections 3.2, 3.3 and 3.4, respectively, for AFT, Aalen and Cox
models. Notice that the by fitting a Normal GLM for the mediator, we are
misspecifying it when the true underlying distributions for M are Gamma, Poisson
and Bernoulli. The results show that the estimates when using the correctly
specified Normal-GLM are quite close to the true NIE, with improved results for
larger sample sizes (n = 500) and no censoring. The estimates deviate from the
true NIE values when using other GLMs in all survival models. For instance, the
estimates for the AFT model and underlying Gamma distribution are 1.56 and
1.57, respectively, for the settings with 25% censoring and sample sizes 200 and
500, while the true NIE should be 0.90.

The departures are also verified under the Bernoulli distribution for the
mediator, particularly for smaller sample size (n = 200) and using the Aalen
model, when the estimates varied betwen -0.11 and -0.12, but the true estimate
should be -0,08. Due to the small NIE estimates when using the Poisson model
(and moreover the use of three decimals for presenting them), the results are hard
to interpret for all survival models.

To help us to assess the departures from the true NIE under misspecification of
the GLM for the mediator, we present relative bias (%) for the NIE in Table 2. The
results were remarkably interesting, clearly pointing out the increased magnitude
of the biases when ignoring the proper GLM for the mediator. We can verify in
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Table 1: Average NIE estimates and standard errors (in parentheses) using the GLM-
Normal for modeling the mediator under different survival and underlying
(true) mediator models.

Underlying Survival Models
Mediator AFT Cox Aalen
Model n = 200 n = 500 n = 200 n = 500 n = 200 n = 500

Normal
(ζo = 100, ζ1 = 10)
0% censoring 0.51 0.50 -0.52 -0.50 -0.024 -0.023

(0.73) (0.45) (0.75) (0.45) (0.035) (0.021)
25% censoring 0.52 0.48 -0.55 -0.51 -0.020 -0.020

(0.79) (0.48) (0.85) (0.51) (0.034) (0.020)
NIEGauss 0,50 -0,50 -0.022
Gamma
(ζo = 0.5, ζ1 = 3.0)
0% censoring 1.56 1.57 -1.58 -1.58 -0.37 -0.22

(0.19) (0.12) (0.26) (0.16) (0.27) (0.16)
25% censoring 1.56 1.57 -1.68 -1.66 -0.34 -0.19

(0.20) (0.13) (0.31) (0.18) (0.24) (0.14)
NIEGamma 0.90 -0.90 -4.46
Poisson
(ζo = 0.02, ζ1 = 0.06)
0% censoring 0.003 0.0030 -0.003 -0.0030 -0.02 -0.026

(0.013) (0.0069) (0.013) (0.0069) (0.11) (0.058)
25% censoring 0.002 0.0031 -0.002 -0.0033 -0.02 -0.024

(0.014) (0.0070) (0.015) (0.0074) (0.11) (0.054)
NIEPoisson 0.003 -0.003 -0.024
Bernoulli
(ζo = 0.02, ζ1 = 0.90)
0% censoring 0.012 0.011 -0.012 -0.011 -0.12 -0.10

(0.034) (0.020) (0.035) (0.021) (0.33) (0.20)
25% censoring 0.012 0.010 -0.013 -0.010 -0.11 -0.08

(0.037) (0.023) (0.039) (0.024) (0.32) (0.19)
NIEBernoulli 0.011 -0.011 -0.08
(NIEDistribution: true natural indirect effect when considering the actual underlying
distribution for the mediator.)

our settings that the relative bias varies from 15.02% to over 87.17% when the
underlying mediator is, respectively, Poisson and Gamma for the analyses using
Cox models with n = 200. There is a substantial reduction on the relative bias for
NIE estimation when sample size increases to 500, particularly for the Poisson and
Bernoulli mediator distributions. For the Gamma GLM mediator, on the other
hand, the relative bias does not change substantially with the increase in sample
size for all survival models.

We also compared the AIC for the two models fitted for the mediator: the
GLM for the underlying mediator model (TRUE) and the Gaussian model, i.e.,
under misspecification of the mediation model. In all cases, the AIC for the
correct (TRUE underlying model) was lower than that obtained by fitting the
Gaussian GLM, indicating that the criterion correctly indicates the proper model
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Table 2: Relative bias for NIE using the GLM-Normal to model the mediator under
different survival and underlying (true) mediator models

Underlying Survival Models
Mediator AFT Cox Aalen
Model n = 200 n = 500 n = 200 n = 500 n = 200 n = 500

Normal
(ζo = 100, ζ1 = 10)
0% censoring 2.49% -0.74% -3.37% 0.21% -11.26% -6.15%
25% censoring 4.06% -3.04% -10.82% -2.28% -0.71% 6.94%
Gamma
(ζo = 0.5, ζ1 = 3.0)
0% censoring 73.68% 74.74% -76.07% -76.30% 91.61% 95.10%
25% censoring 74.32% 75.03% -87.17% -85.16% 92.32% 95.67%
Poisson
(ζo = 0.02, ζ1 = 0.06)
0% censoring -16.29% -1.74% 15.02% -0.56% 13.70% -8.09%
25% censoring -20.07% 0.0079% 15.58% -6.53% 26.77% 1.25%
Bernoulli
(ζo = 0.02, ζ1 = 0.90)
0% censoring 14.21% 3.90% -16.65% -3.80% -44.61% -25.20%
25% censoring 13.57% -6.05% -20.61% 2.29% -27.89% -1.07%

for the mediator (Table 3). For instance, the AIC was equal to 649.06 and 682.85,
respectively, for the GLMs with Bernoulli and Normal distributed mediator when
its underlying (TRUE) distribution was Bernoulli.

Table 3: Average AIC for the mediator models using different GLMs
Underlying Sample Size
Mediator Model n = 200 n = 500

Gamma
True Gamma GLM 1,192.27 2,988.86
Misspecified Normal GLM 1,741.38 4,439.75
Poisson
True Poisson GLM 536,60 1,336.03
Misspecified Normal GLM 581.24 1,446.77
Bernoulli
True Bernoulli GLM 261.75 649.06
Misspecified Normal GLM 276.38 682.85

In summary, we showed that there might be substancial bias when ignoring the
proper GLM for the mediator whatever the survival model (Aalen, Cox or AFT
model) for NIE estimation is. Though not presented here, the impact on the NDE
estimation is much smaller when using the GLM-Normal mediator model since its
estimation does not depend on the GLM parameters associated to the mediator.
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4. Responsiveness Measure for Continuous
Treatments

Although it is usual to consider binary exposures and their causal contrast,
it might be interesting to consider an alternative metric to describe the effect of
small changes in a continuous exposure in the presence of mediation. Therefore, in
this section we propose a measure that captures the responsiveness of the outcome,
in different scales, to changes in the underlying (continuous) exposure level when
mediation is present. More precisely, we look at the responsiveness, or derivative,
of the potential responses due to small changes in the treatment level. It is worth
mentioning that this is a local measure and, therefore, as will become clearer later,
it is related to some pre-specified level of treatment. Although we consider, as in
Section 3, three different scales, we will state the main definitions by using the
expected time to event. Modifications to other scales should be trivial. Therefore,
we define the total responsiveness at a∗ (TR) as

TR =
∂

∂a
{E[TaMa |x]− E[Ta∗Ma∗ |x]}

∣∣∣∣
a=a∗

= lim
h→0

E[T(a∗+h)Ma∗+h
|x]− E[Ta∗Ma∗ |x]
h

,

and the natural direct responsiveness at a∗ (NDR) as

NDR =
∂

∂a
{E[TaMa∗ |x]− E[Ta∗Ma∗ |x]}

∣∣∣∣
a=a∗

= lim
h→0

E[T(a∗+h)Ma∗ |x]− E[Ta∗Ma∗ |x]
h

.

Note that for the direct responsiveness, the treatment assigned to the mediator
remains fixed at its “natural” level a∗. The natural indirect responsiveness at a∗
(NIR), in turn, is simply defined in terms of TR and NDR as NIR = TR − NDR,
i.e. the natural indirect responsiveness is the part of the total responsiveness that
is not explained by the natural direct effect. However, if TR and NDR exist, then
NIR = limh→0{E[T(a∗+h)Ma∗+h

|x]− E[T(a∗+h)Ma∗ |x]}/h, so that

NIR =
∂

∂a
{E[TaMa

|x]− E[TaMa∗ |x]}
∣∣∣∣
a=a∗

.

As before, our goal is to study the identification of these measures in cases where
the mediator’s conditional distribution belongs to the Exponential Family.

4.1. Responsiveness Measures in the Accelerated Failure
Rate Model

We already know that if (A0)–(A4) are satisfied, then E[TaMa
|x] is identified

by formula (3). Based on it and taking derivatives with respect to a, we get

TRAFT =

[
β1 +

(θ′(a∗,x) + β3ϕ)Eθ(a∗,x)+(β2+β3a∗)ϕM − θ′(a∗,x)Eθ(a∗,x)M

ϕ

]
× E[Ta∗Ma∗ |x],

(13)

where θ′(a∗,x) = ∂aθ(a
∗,x). One particular issue that arises when using the

identification formula (3) is the calculation of the expectation Eeγε, which depends
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on the particular distribution associated to log T . It is usual to choose ε so that
it follows an extreme value distribution. This is done by assuming T to follow the
Weibull distribution, see Kalbfleisch & Prentice (2002), p. 33. In this particular
case, Eeγε = Γ(1 + γ). Similarly, we get

NDRAFT =
(
β1 + β3Eθ(a∗,x)+(β2+β3a∗)ϕM

)
E[Ta∗Ma∗ |x],

and hence

NIRAFT = ϕ−1θ′(a∗,x)
(
Eθ(a∗,x)+(β2+β3a∗)ϕM − Eθ(a∗,x)M

)
E[Ta∗Ma∗ |x].

In particular, if there is no interaction between A and M in the survival model,
then the direct responsiveness simplifies to β1E[Ta∗Ma∗ |x]. The same arguments
would lead us to the responsiveness formulas associated to the Cox model, whose
results are quite similar, except for the scale. In fact, by comparing the expressions
(3) and (10), respectively, associated to E[TaMa∗ |x] and λaMa∗ (t), we see that both
share the same structure (just with E[eγε] in place of λo(t) and vice versa). Hence,
by mimicking the argument in the lines above, we get

TRCox =

[
β1 +

(θ′(a∗,x) + β3ϕ)Eθ(a∗,x)+(β2+β3a∗)ϕM − θ′(a∗,x)Eθ(a∗,x)M

ϕ

]
× λa∗Ma∗ (t).

Notice that, in addition to the difference in scale, the responsiveness under the
Cox model is also time dependent, i.e. TRCox = TRCox(t). The corresponding
direct and indirect responsiveness follow the same steps.

For the sake of illustration we only consider models without the interaction
term. If M is Gaussian, then

NDRAFT = E [eγε]β1 exp
{
β0 + β1a

∗ + β2θ
∗(x) + β⊤

4 x+ 0.5σ2β2
2

}
and NIRAFT = θ′(a∗,x)[(β2θ(a

∗,x) + 0.5σ2β2
2)/β1]NDRAFT. On the other hand,

if M follows a Gamma distribution, then

NDRAFT = β1E [eγε] exp

{
β0 + β1a

∗ + β⊤
4 x+ ν log

θ(a∗,x)

β2/ν + θ(a∗,x)

}
and

NIRAFT = λ′(a∗,x)β2/{β1[β2/ν + θ(a∗,x)]}NDRaft,

with λ(a∗,x) = log θ(a∗,x). For specific links we have: λ′(a∗,x) = −ζ1 for the log
link, λ′(a∗,x) = −ζ1/θ(a∗,x) for the reciprocal link, and λ′(a∗,x) = ζ1θ(a

∗,x)
for the identity link function.

4.2. Responsiveness Measures in the Additive Aalen Model

By definition, the responsiveness associated with the Aalen model is defined in
terms of the potential hazard functions λTaMa

and λTaMa∗ . Unfortunately, in this
particular case, the general expressions of total, direct and indirect sensitivities are
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cumbersome and can be found in the Appendix C, formulas (A2), (A3) and (A4).
In the following lines, however, we present the respective formulas for the simpler
case in which there is no interaction between exposure and mediator in the survival
model. As usual, the absence of interaction between A and M dramatically
simplifies the direct responsiveness, which is given simply by NDRAalen = β1(t).
The total responsiveness, in turn, is given by TRAalen = β1(t) + Ξ2 + Ξ3, with

• Ξ2 = ϕ−1β2(t)EX
t,a∗θ′(a∗,X)VarϕB2(t)+θ(a∗,X)M ;

• Ξ3 = ϕ−1EX
t,a∗

[
β4(t)

⊤X + β2(t)EϕB2(t)+θ(a∗,X)M
]
ψ1,t(a

∗,X);

and ψ1,t as defined in Appendix B. Finally, the indirect responsiveness is derived
from NDRAalen and TRAalen, so that NIRAalen = Ξ2+Ξ3 (with Ξ2 and Ξ3 as given
above).

For the sake of illustration, we consider once again the Normal and Gamma
distributed mediator without interaction between A and M in the survival (Aalen)
model. In the Gaussian case, Ξ2 = β2(t)EX

t,a∗θ′(a∗,X) and

Ξ3 = B2(t)EX
t,a∗

[(
β4(t)

⊤X + β2(t)θ(a
∗,X)

) (
θ′(a∗,X)− EX

t,a∗θ′(a∗,X)
)]

More specifically, if θ(a,x) = ζ0 + ζ1a + ζ⊤2 x, then NIRAalen = ζ1β2(t) and
TRAalen = β1(t) + ζ1β2(t). For a Gamma mediator and no confounding, on the
other hand, we have NIRAalen = [θ′(a∗)/(B2(t)/ν + θ(a∗))2]β2(t), which can be
specialized for different link functions by changing the function θ.

4.3. Simulation Study

As in Section 3.6, we conducted a simulation study to assess the effect of
misspecification in the mediation model (wrong choice of the GLM for M), but
now regarding the NDR and NIR estimation. We adopted the same procedure,
so that, for each subject we sampled (Ti,Mi, Ai), with T denoting the survival
time generated by the Cox-exponential model as in Bender et al. (2005) and
λ(t) = λ0(t) exp(β1A + β2M), with β1 = 3.5, β2 = −0.09 and λ(t) ≡ 11. The
treatment A was sampled from a Bernoulli(0.5) and the linear predictor for M
was assumed to be ζ0 + ζ1A, with ζ0 = 0, ζ1 = −1 and scale parameter equal
to 1, associated to the Gamma distribution. The resulting direct and indirect
responsiveness are illustrated in Figures 1 and 2 (dashed lines). They represent
a situation in which an increase in treatment levels implies a direct decrease in
the response variable, particularly in the vicinity of zero (i.e. small increases in
treatment levels starting from zero result in greater changes than small increases
in these levels in already treated individuals). On the other hand, the treatment
has an indirect positive effect on the response, though such impact is reduced for
higher doses. To illustrate the method, we estimated both NDR and NIR using
the AFT model by assuming the Gamma (correctly specified) and the Gaussian
(misspecified) distributions for the mediator as well as sample sizes 200 and 500
and percentages of censoring equal to 0% and 25%. To perform this assessment
we generated 2,000 samples under each configuration.
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(a) NDR, n = 200, 0% censoring
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(c) NDR, n = 200, 25% censoring
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Figure 1: NDR and NIR estimates based on the AFT model with Gamma mediators
(log link). The dashed lines stand for the true (rescaled) effects, the middle
solid lines stand for the median responsivenesses and the lower and upper
solid lines for the 2.5% and 97.5% quantiles.

Figure 1 presents the estimates of the direct and indirect responsiveness by
assuming the true underlying GLM Gamma model and samples of size 200. Figures
1a and 1b stand for estimates based on samples with no censoring, while Figures
1c and 1d are about the samples with 25% censoring. Simulations indicate that
estimates under no censoring are unbiased, though estimates based on censored
samples may present some bias. Indeed, by looking at Figures 1a and 1b, it is
almost impossible to identify the true curve (dashed lines in all figures). However,
in all cases, the true curve is between the lower and upper bands based on the 2.5%
and 97.5% quantiles of the simulated estimates at each point of the grid. Similar
results were found for sample size 500, with smaller variability, as expected.

We also considered the cases where estimation was based on the (misspecified)
Gaussian distribution with its canonical link (identity). The results are in Figure
2 (n = 500). As noted in Figures 2a and 2c, the direct responsiveness does not
seem to be very affected. In fact the estimates here are not very different as
those obtained by using the true Gamma distribution. This is quite reasonable
for the NDR, since it is less dependent on the mediator than the NIR. On the
other hand, regardless of sample size, NIR estimates are highly biased (Figures
2b and 2d). Such estimates may even go towards to the wrong direction. In
fact, at any treatment level, NIR estimates based on the Gaussian distribution
are negative (indicating a decrease in the response variable as the treatment level

Revista Colombiana de Estadística - Applied Statistics 45 (2022) 161–191



176 Marcelo M. Taddeo & Leila D. Amorim

Treatment level

N
D

R

0.0 0.2 0.4 0.6 0.8 1.0

−
60

−
50

−
40

−
30

−
20

−
10

0

(a) NDR, n = 500, 0% censoring
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(c) NDR, n = 500, 25% censoring
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(b) NIR, n = 500, 0% censoring
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(d) NIR, n = 500, 25% censoring

Figure 2: NDR and NIR estimates based on the AFT model with Gaussian mediators
(identity link) and sample size 500. The dashed lines stand for the true
(rescaled) effects, the middle solid lines stand for the median responsivenesses
and the lower and upper solid lines for the 2.5% and 97.5% quantiles.

increases), while the true values are positive (which means an increase in response
by increasing the level of treatment in that neighborhood).

5. Application

To illustrate the new approaches, we reexamine the mediation model for the
incidence of liver cancer (Figure 3), which was proposed by Huang & Yang (2017).
We use data from a subset of individuals (n = 2, 878) who participated in a
community-based prospective cohort study in Taiwan conducted from 1991 to
1992, see Huang et al. (2011), in which the viral load of hepatitis C (HCV) was
measured at baseline, the viral load of hepatitis B (HBV) was measured during
the follow-up, and the incidence of liver cancer (T ) was recorded prospectively.
We are interested in assessing the effect of HCV (A) directly on the liver incidence
(hepatocellular carcinoma) and its effect mediated through HBV (M). The
analyses were adjusted by measured confounders (X): age group (30-39, 40-49, 50-
59, ≥ 60 years), gender (female/male), alcohol consumption and cigarette smoking
(no/yes). Viral loads of HBV and HCV were natural log transformed prior to
analyses. For the initial analyses, we dichotomize HCV (detected if > 0/non
detected otherwise).
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Figure 3: Causal mediation diagram for the relationship between HCV viral load and
occurrence of liver cancer

We used total time scale for the survival analyses, such that the entry time was
defined as the time of measuring HCV (at baseline) and the occurrence of liver
cancer was assessed by data linkage of the national cancer registry and national
death certification profiles from study entry to December 31, 2008 (end of the
study). The event was also verified by medical records. Individuals who were
not diagnosed of liver cancer until the end of the study or those who died from
other causes were censored. The number of patients with liver cancer diagnosis
was 188 (6.53%). Hence, the event is rare and suitable to be evaluated using Cox
proportional hazards model. We compare the results for fitting AFT, Cox and
Aalen models using GLMs, considering different link functions, for the mediator
(HBV) at follow-up. To model the mediator HBV viral load, we considered the
Normal distribution with identity link function and the Gamma distribution with
the logarithm and reciprocal link functions. Confidence intervals for causal effects
are obtained via bootstrap method for all survival models. We assumed that there
were no unmeasured confounders of the relationship between HCV and time to
liver cancer (A1), HBV and time to liver cancer (A2), and HCV and HBV (A3).
The composition (A0) and identifiability assumptions (A4) are also required for
any causal claims based on these analyses. All analyses were conducted in R
(version 3.5.3).

5.1. Causal Effects for HCV

Results using the three mediation models revealed similar patterns under
different effect scales. As indicated in Table 4, the NDE estimate by using the Cox
model suggest that the detection of HCV viral load at baseline directly increases
the risk of liver cancer (HR = 3.26, 95%CI = [1.75, 6.06])

Table 4: Estimated Natural Direct Effect (NDE) of hepatitis C detection on liver cancer
incidence using different models. Taiwan.1991-2008.
Models Estimate 95%CI
AFT (⋆) -0.58 (-0.90; -0.27)
Cox model (HR)(⋆⋆) 3.26 (1.75; 6.06)
Aalen model (⋆⋆⋆) 7.39 (1.42; 13.29)
(⋆) Scale: Difference in mean survival time, (⋆⋆) Scale: HR=hazard ratio,
(⋆⋆⋆) Scale: Difference in hazard (per 1000 person-year)
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On the other hand, NDE estimates by using the AFT and Aalen models
indicate, respectively, a reduction of 56% (exp(−0.58)) in the expected time to
diagnosis and a difference in the hazard of 7.39 (per 1000 person-years) of liver
cancer for those with detected HBC viral load at baseline compared to non detects.

Table 5: Estimated Natural Indirect Effects (NIE) of hepatitis C detection on liver
cancer incidence mediated through follow-up hepatitis B viral load using
distinct models. Taiwan.1991-2008.

GLM for Mediator (distribution / link function)
Normal Gamma(a),(b)

Time-to-event Identity Log Inverse
model Estimate (95% CI) Estimate (95%CI) Estimate (95%CI)
AFT (⋆) 0.23 (0.12; 0.35) 0.21 (0.12; 0.29) 0.22 (0.13; 0.31)
Cox (HR)(⋆⋆) 0.63 (0.49; 0.79) 0.47 (0.33; 0.64) 0.45 (0.32; 0.63)
Aalen(⋆⋆⋆) -2.03 (-3.14;-1.02) -2.07 (-2.97; -1.20) -2.11 (-2.99; -1.19)
(⋆) Scale: Difference in mean survival time, (⋆⋆) Scale: HR=hazard ratio
(⋆⋆⋆) Scale: Difference in hazard (per 1000 person-year)
(a) AFT, Cox and Aalen estimates conditional on X, here computed for X = 0,
(b) NIE in Aalen model is time-dependent, approximation is shown.

Table 5 presents estimates of NIE using different models for the mediator
(varying both distribution of the mediator and link function). All models indicate
a statistically significant mediation through follow-up HBV viral load, such that
the NIE points out that the HCV viral load increases the mean time of liver cancer
diagnosis, decreasing the hazard ratio and the difference in hazard, according to
the distinct scales of the corresponding models. Residual analysis using the linear
mediator model shows a poor fit (see Figure 1 in the Appendix D). Smallest AIC
was obtained using the Gamma distribution with almost no difference between
the link functions. It is important to highlight that the estimates for NIE under
AFT, Cox and Aalen models are conditional on the covariates (X) when using the
Gamma distribution. To illustrate these results, we present the NIE estimates for
30-39 females, no smokers and no drinkers (reference groups for all covariates) in
Table 5. We can compute these estimates for any covariate pattern of our interest.
For instance, the NIE estimates using AFT model and the Gamma distribution are
0.18 (log link) and 0.17 (inverse link) for ≥ 60 years, males, smokers and drinkers.
The estimates for the corresponding Cox models are 0.55 and 0.58.

The NIE for the Aalen model using the Gamma distribution, on the other hand,
is time-dependent. However, for our current application |θ(·)| is much larger than
B2(t). We have that max(B̂2(t)) ≈ 0.15, with θ̂(a,x = 0) varying between -0.28
and -0.22 and ν̂ = 6.11, so that the NIE can be approximated by

NIE = β2Ex
t

[
1

θ(a∗,x) +B2(t)/ν
− 1

θ(a,x) +B2(t)/ν

]
≈ β2Ex

[
1

θ(a∗,x)
− 1

θ(a,x)

]
,

which does not depend on time. The NIE estimates using Aalen model and
Gamma distribution indicate a difference in hazard (per 1000 person-year) of
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−2.07 (CI0.95 = [−2.97,−1.20]) and −2.11 (CI0.95 = [−2.99,−1.19]) for 30-39
females, no smokers and no drinkers (reference groups for all covariates) using,
respectively, log and inverse link functions. Results can be obtained for different
covariate patterns.

Alternatively, we also considered the log HCV viral load in its original scale
as described in Huang & Yang (2017), so that it is a continuous variable instead
of a binary one as before. The estimated effects have the same direction as those
shown in Tables 4 and 5. In short, by increasing the log HCV viral level in one
unit, the estimated natural direct effect on the mean survival time is NDEAFT =
−0.09 (95%CI = [−0.14,−0.04]); on the hazard ratio is exp(NDECox) = 1.20
(95%CI = [1.08, 1.33]); and on the difference in the hazard is NDEAalen = 1.20
(per 1000 person-years) 95%CI = [0.17, 1.33]. On the other hand, NIE does
not change substantially when considering different mediator models (varying
distribution and link functions). For instance, the largest difference was verified
for the Cox model, with NIE varying from HR = 0.85, 95%CI = [0.76, 0.92] to
HR = 0.93, 95%CI = [0.89, 0.96] under, respectively, the Gamma (inverse link)
and Gaussian distributions. Residual analysis for these mediator models were very
similar as those presented in Appendix D.

5.2. Responsiveness Measures for HCV

To illustrate the responsiveness measure for continuous exposure, we consider
the natural log transformed viral load of HCV. Figure 4 presents the natural
direct and indirect responsiveness for the AFT model using different mediator
models. Though the NDRaft is not very sensitive to the mediation modeling, the
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Figure 4: Responsiveness measures of the liver cancer in terms of the log HCV viral
load using AFT model with Normal (dotted line) and Gamma distributions
(logarithm link: solid line; inverse link: dashed line) for the mediator.

NIRaft estimates indicate a larger responsiveness to treatment when considering
the Gamma distribution. Small increases in the hepatitis C viral load directly
imply a greater reduction in the expected time until the diagnosis of liver cancer
when the viral load is relatively low. On the other hand, it is noted that, indirectly,
the hepatitis B viral load (mediator) behaves in a protective way. However, such
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a protective effect becomes less relevant as the viral load of hepatitis C increases.
The responsiveness measures associated to the Aalen model depend both on HCV
values and time (Figure 5). However, the effect of time on the hazard function
is not as relevant as the effect of the HCV, as depicted in Figures 3(a) and 3(b).
Regarding the log HCV viral load, the higher its value the faster the indirect effect
on the hazard of diagnosis of liver cancer. Since we are assuming the coefficients
in the Aaalen model are constant in time, NDRAalen is invariant with respect to
time and HCV viral load, so that NDRAalen = NDEAalen.

(a) Gamma with log link (b) Gamma model with inverse link

Figure 5: Responsiveness measures of liver cancer hazard in terms of the log HCV viral
load using Aalen model and a Gamma mediator with different link functions

6. Conclusions

This article presents formulas for GLM mediation when a time-to-event
outcome is of interest and the AFT, Cox or Aalen models are used. Under the
Aalen additive and Cox models, the effects are characterized, respectively, on the
hazard difference and on the log hazard ratio scales. At the same time, AFT
examine the effect on the mean survival time difference. Therefore, the effects
estimated using AFT models are in the opposite direction compared to the other
two models (Cox and Aalen), conveying complementary information when both
are properly applied. We derive general expressions to the direct and indirect
effects when the mediation process can be described by a GLM. Particularly, we
allow interaction between exposure and mediator in all models. For concreteness,
we focused on particular distributions for the mediator: Gaussian, Gamma,
Binomial and Poisson, but related formulas can be readily extended to other
distributions. Even though causal mediation estimators for survival models are
available when the mediator is continuous (Normal distributed) or binary, to
our knowledge, not much has been proposed for mediators of different nature
to handle time-to-event data. For instance, Albert & Nelson (2011) consider
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in another context, not including censored data, the use of GLM for mediation
analysis. Tchetgen Tchetgen (2013), on the other hand, describes a inverse odds
ratio-weighted approach for effect decomposition in GLMs with a nonlinear link
function, including mediation analysis using the Cox proportional hazards model.

We successfully illustrate our approach by analyzing the incidence of liver
cancer in a community-based prospective cohort study in Taiwan. The analysis
showed that the HCV viral load directly affects liver cancer increasing its risk, but
indirectly, via HBV viral load, has an opposite effect. The use of different effect
scales to investigate the impact of HCV viral load (continuous or categorized)
on liver cancer and mediator models for HBV viral load yielded consistent
assessments. The data are fully anonymised and were made publicly available
by Huang & Yang (2017), so that the interested reader may follow the link therein
to download the data. This empirical example demonstrates the flexibility of
our framework and its potential for studying mediation effects, linking theoretical
knowledge and empirical evidence to refine the scientific theories for complex
relationships. In fact, mediation models offer a more detailed view of the
underlying mechanism and, hence, a more comprehensive understanding of the
phenomena. Further refinements related to the application by considering different
mediation arrangements are topics for subsequent research. Indeed, our data
analysis using deviance residuals indicates the need for more sensitive models in
order to capture asymmetry and heteroskedastic errors. For example, the modeling
of the dispersion parameter, as in Smyth (1989), though not related to mediation
analysis, could be considered as an alternative to be developed in this framework.

The proposed approach has a number of strenghts. Survival models provide a
compelling framework for many research questions, and extensions via inclusion of
GLMs for the mediator may encompass a broad field of applied research, allowing
the often necessary control for confounding. In fact, a major limitation related
to existing statistical theory and software tools for causal mediation analysis
with survival outcomes is the confinement to continuous or binary mediators, see
Huang & Yang (2017), Pratschke et al. (2016) and VanderWeele (2015). We
provided a rigorous methodological justification of our approach, focusing on the
identification of the direct and indirect natural effects and offering analytical
expressions under the presence of GLM mediation. In particular, it is worth
noticing that the additive hazard model naturally embodies the possible time
dependence of the corresponding coefficients, yielding additional flexibility. We
also have proposed responsiveness measures capable of assessing the local impact
of small changes in the level of (continuous) treatment by both direct and indirect
pathways. In particular, this allows us to assess the most critical levels of
treatment (in terms of impact on the outcome) in the sense of identifying the
regions in which small changes in exposure imply larger variations in the outcome.
Estimation of the model’s parameters for our approach may be performed using
standard statistical packages. We use R (version 3.5.3) to conduct the simulation
studies and the data analyses. The R code for our data analysis is provided at
https://github.com/lamorim-br/Mediation_survival-HBV.git.

Nevertheless, it is important to mention some limitations to the proposed
analytical framework. Firstly, assumptions regarding the survival part must
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be carefully assessed according to the chosen survival model. For instance,
the proportionality of the hazards under the Cox model should be evaluated.
Besides that, the expressions for Cox models only apply under the rare-outcome
assumption. Nevertheless, a weighting approach to handle common outcomes
is described by VanderWeele (2015) and might be likewise extended to this
general framework. Lange et al. (2012) also consider weighting each observation
using a generalized marginal structural model, allowing the use of different link
functions for the outcome (e.g., logistic model), and extended this framework
for Cox and Aalen models. The assumptions for the GLM part should also be
adressed accordingly. Secondly, the identification of the estimators are valid
under stringent assumptions (A0)–(A4), which should be addressed to make
causal claims. It is essential to highlight that we assumed the usual conditions
of no unmeasured confoundness between exposure and outcome (A1), mediator
and outcome (A2), and exposure and mediator (A3). The identification and
measurement of confounders are required to draw defensible causal claims from
non-experimental data, which depends on previous empirical evidence and solid
knowledge of the theoretical mechanism. The theoretical and computational
assessment of the efficiency and statistical consistency regarding the estimators
of the natural direct and indirect effects is still a subject for future studies.

The development of approaches for causal mediation analysis for time-to-event
outcomes is an active area of methodological research. We have discussed in
this paper a particular case for mediation analysis for survival data when the
mediator is measured somewhere between the exposure and outcome and may be
described by means of a GLM model. Future extensions of our approach include
mediation analysis for time-to-event data with multiple GLM mediators, which
could allow estimation of path-specific effects through different mediators. Indeed,
Miles et al. (2020) proposed a semiparametric procedure to assess path-specific
effects in a different context, which points to further developments in the survival
framework. We assumed no missing data and accurately measured variables, so
that further developments may account for missing data and measurement errors.
Additionaly, in many settings mediation analysis involves multiple mediators, time-
varying causal effects, and time-varying exposures and mediators, see Didelez
(2019), Fasanelli et al. (2019), Robins et al. (2000) and Vansteelandt et al. (2019).
Extensions of our approach to circumstances involving multiple and time-varying
mediators/confounders could be considered as well.
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Appendix A.

Appendix A.1. Proof of formula (3) – Accelerated Failure
Rate Model

Notice that

E[TaMa∗ |x] = EMa∗ E[TaMa∗ |Ma∗ ,x] =

∫
E[TaMa∗ |Ma∗ = m,x]dPMa∗ (m|x).

From (A3) and then (A1),

E[TaMa∗ |x] =
∫

E[Tam|m,x]dPMa∗ (m|a∗,x) =
∫

E[Tam|a,m,x]dPMa∗ (m|a∗,x),

so that
E[TaMa∗ |x] =

∫
E[T |a,m,x]dPM (m|a∗,x).

Using the fact that the time to evento follows the accelerated failure rate model,

E[TaMa∗ |x] = eβ0+β1a+β⊤
4 xE [eγε]

∫
e(β2+β3a)mdPM (m|a∗,x).

On the other hand, it is known that the moment generating function of M (given
a∗ and x) is equal to

EM
[
eτM |a∗,x

]
= exp

{
b [θ(a∗,x) + τϕ]− b [θ(a∗,x)]

ϕ

}
, (A1)
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so that,

E[TaMa∗ |x] = eβ0+β1a+β⊤
4 xE [eγε] exp

{
b [θ(a∗,x) + (β2 + β3a)ϕ]− b [θ(a∗,x)]

ϕ

}
.

Appendix A.2. Proof of formula (6 – Aalen Model)

From the proof of Proposition 4.7, Appendix A.4.4 (p. 502), VanderWeele
(2015), if (A1)-(A4) hold, then, for δ > 0,

P(TaMa∗ ∈ (t, t+ δ]|TaMa∗ ≥ t,x)

=

∫
P(T ∈ (t, t+ δ]|T ≥ t, a,m,x)

P(Tam ≥ t|x)
I1(t|a, a∗,x)

dPM (m|a∗,x),

where I1(t|a, a∗,x) =
∫

P(Tam′ ≥ t|x)dP(m′|a∗,x). Now,

P{Tam′ ≥ t|x} = P{T ≥ t|a,m′,x}
= exp

{
B0(t) +B1(t)a+B2(t)m

′ +B3(t)am
′ +B4(t)

⊤x
}
,

where Bj(t) =
∫ t

0
βj(s)ds, so that

I1(t|a, a∗,x)

=

∫
exp

{
B0(t) +B1(t)a+B2(t)m

′ +B3(t)am
′ +B4(t)

⊤x
}
dPM (m′|a∗,x)

and hence

I1(t|a, a∗,x) = exp
{
B0(t) +B1(t)a+B4(t)

⊤x
}

E [exp {(B2(t) +B3(t)a)M |a∗,x}] .

Using the fact that λTaMa∗ (t) = limδ→0 P(t < TaMa∗ ≤ t+ δ|TaMa∗ ≥ t)/δ can be
written as

λTaMa∗ (t) =

∫
lim
δ→0

1

δ
P(t < TaMa∗ ≤ t+ δ|TaMa∗ ≥ t,x)

and then applying the bounded convergence theorem, we have

λTaMa∗ (t) =

∫ ∫
λ(t|a,m,x) exp {(B2(t) +B3(t)a)m}

E [exp {(B2(t) +B3(t)a)M |a∗,x}]
dPM (m|a∗,x)dPX(x|TaMa∗ ≥ t).

Hence,

λTaMa∗ (t) = β0(t) + β1(t)a+

∫
β4(t)

⊤xdPX(x|TaMa∗ ≥ t) + (β2(t) + β3(t)a)I2(t|a, a∗,x),

where

I2(t|a, a∗,x) =
∫

E [M exp {(B2(t) +B3(t)a)M} |a∗,x]
E [exp {(B2(t) +B3(t)a)M |a∗,x}]

dPX(x|TaMa∗ ≥ t).
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Now, using the fact that the distribution of M is a member of the Exponential
family (given a∗ and x),

E
[
MeτM |a∗,x

]
= exp

{
b [θ(a∗,x) + τϕ]− b [θ(a∗,x)]

ϕ

}
b′ [θ(a∗,x) + τϕ] ,

so that
E
[
MeτM |a∗,x

]
E [eτM |a∗,x]

= b′ [θ(a∗,x) + τϕ] ,

and

I2(t|a, a∗,x) =
∫
b′ [θ(a∗,x) + (B2(t) +B3(t)a)ϕ] dPX(x|TaMa∗ ≥ t).

On the one hand, using assumptions (A1)-(A4),

P(TaMa∗ ≥ t|x) =
∫

P(TaMa∗ ≥ t|Ma∗ = m,x)dPMa∗ (m|x),

so that
P(TaMa∗ ≥ t|x) =

∫
P(Tam ≥ t|m,x)dPM (m|a∗,x).

Therefore,
P(TaMa∗ ≥ t|x) = E [ST (t|a,M,x)|a∗,x] ,

where ST (t|a,m,x) is the survival function of T . Besides that,

P(TaMa∗ ≥ t) =

∫ ∫
P(TaMa∗ ≥ t|Ma∗ = m,x′)dPMa∗ (m|x′)dPX(x′)

so that
P(TaMa∗ ≥ t) =

∫
E [ST (t|a,M,x′)|a∗,x′] dPX(x′).

Hence,

dPX(x|TaMa∗ ≥ t) =
E [ST (t|a,M,x)|a∗,x] dPX(x)∫
E [ST (t|a,M,x′)|a∗,x′] dPX(x′)

.

From (2),

E [ST (t|a,M,x)|a∗,x]
= exp

{
B0(t) +B1(t)a+B4(t)

⊤x
}

E [exp {(B2(t) +B3(t)a)M} |a∗,x]

and then using (A1),

E [ST (t|a,M,x)|a∗,x]

= exp

{
B0(t) +B1(t)a+B4(t)

⊤x+
b [θ∗(x) + (B2(t) +B3(t)a)ϕ]− b [θ∗(x)]

ϕ

}
,

so that

dPX(x|TaMa∗ ≥ t) =

exp

{
B4(t)⊤x+

b[θ∗(x)+(B2(t)+B3(t)a)ϕ]−b[θ∗(x)]
ϕ

}
dPX(x)∫

exp
{
B4(t)⊤x′ + b[θ∗(x′)+(B2(t)+B3(t)a)ϕ]−b[θ∗(x′)]

ϕ

}
dPX(x′)

.
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Therefore, if we write for notational convenience dPX(x|TaMa∗ ≥ t) ≡
dQt(x|a, a∗), then

I2(t|a, a∗,x) =
∫
b′ [θ(a∗,x) + (B2(t) +B3(t)a)ϕ] dQt(x|a, a∗).

and

λTaMa∗ (t) = β0(t)+β1(t)a+

∫
β4(t)

⊤xdQt(x|a, a∗)+(β2(t)+β3(t)a)I2(t|a, a∗,x),

or

λTaMa∗ (t) =β0(t) + β1(t)a

+ EX
t

[
β4(t)

⊤X + (β2(t) + β3(t)a)Eθ(a∗,X)+(B2(t)+B3(t)a)ϕM |a, a∗
]
.

Appendix A.3. Proof of formula (10 – Cox Model)

Assuming the Cox model, we know that

λTaMa∗ (t|x) = λo(t) exp
{
β1a+ β⊤

4 x
}
r(t|a, a∗,x),

where

r(t|a, a∗,x) =

∫
e(β2+β3a)m exp

{
−Λo(t)e

β1a+β⊤
4 x+(β2+β3a)m

}
dP (m|a∗,x)∫

exp
{
−Λo(t)eβ1a+β⊤

4 x+(β2+β3a)m
}
dP (m|a∗,x)

,

see VanderWeele (2015), Proposition 4.4, p. 496. Now, if the events are rare, i.e.
Λo(t) ≈ 0, and using (A1), then

r(t|a, a∗,x) ≈ E
[
e(β2+β3a)M |a∗,x

]
= exp

{
b [θ(a∗,x) + (β2 + β3a)ϕ]− b [θ(a∗,x)]

ϕ

}
.

Hence,

λTaMa∗ (t|x) ≈ λo(t) exp

{
β1a+ β⊤

4 x+
b [θ(a∗,x) + (β2 + β3a)ϕ]− b [θ(a∗,x)]

ϕ

}
.

Appendix B. Binomial and Poisson Distributions
for M

Binomial Mediator

Writing g(π) = log{π/(1 − π)}, ϕ = 1 and b(θ) = m log(1 + eθ), we have the
following cases:

• AFT and Cox Models: using (4) and (5) (or (11) and (12)), it follows that

NIECox ≈ NIEAFT = m log
(1 + eθ(a,x)+β2+β3a)/(1 + eθ(a,x))

(1 + eθ(a∗,x)+β2+β3a)/(1 + eθ(a∗,x))
,
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and

NDECox ≈ NDEAFT = β1(a− a∗) +m log
1 + eθ(a

∗,x)+β2+β3a

1 + eθ(a∗,x)+β2+β3a∗ .

• Aalen Model: using (8) and (9), we get

NIEAalen = EX
t

[
m(β2(t) + β3(t)a)

e−(B2(t)+B3(t)a)+θ(a,X)) + 1
−

m(β2(t) + β3(t)a)

e−(B2(t)+B3(t)a)+θ(a∗,X)) + 1

∣∣∣∣a, a∗
]

and NDEAalen = β1(t)(a− a∗) + E(t; a, a∗)− E(t; a∗, a∗), with

E(t; a, a∗) = EX
t

[
β4(t)

⊤X +
m(β2(t) + β3(t)a)

e−(B2(t)+B3(t)a+θ(a∗,X)) + 1

∣∣∣∣a, a∗]
and dQt(x|a, a∗) ∝ exp

{
B4(t)

⊤x
} [

1+eθ(a
∗,x)+B2(t)+B3(t)a

1+eθ(a∗,x)

]m
dPX(x).

Poisson Mediator

Writing g(µ) = log µ, ϕ = 1 and b(θ) = eθ, we have the following cases:

• AFT and Cox Models: using (4) and (5) (or (11) and (12)), it follows that

NIECox ≈ NIEAFT =
(
eβ2+β3a − 1

) (
eθ(a,x) − eθ(a

∗,x)
)
,

and

NDECox ≈ NDEAFT = β1(a− a∗) + eβ2+θ(a∗,x)
(
eβ3a − eβ3a

∗
)
.

• Aalen Model: from (8) and (9), we have

NIEAalen = (β2(t) + β3(t)a)e
B2(t)+B3(t)aEX

t

[
eθ(a,X) − eθ(a

∗,X)|a, a∗
]

and NDEAalen = β1(t)(a− a∗) + E(t; a, a∗)− E(t; a∗, a∗), with

E(t; a, a∗) = EX
t

[
β4(t)

⊤X + (β2(t) + β3(t)a)e
B2(t)+B3(t)a+θ(a∗,X)|a, a∗

]
and dQt(x|a, a∗) ∝ exp

{
B4(t)

⊤x+ eθ(a
∗,x)

(
eB2(t)+B3(t)a − 1

)}
dPX(x).

Appendix C. Responsiveness Measures for the
Aalen’s Model

Write the density in (7) as qt,a,a∗(x) = φt,a,a∗(x)/Φt,a,a∗ , where

φt,a,a∗(x) = exp

[
B4(t)

⊤x+
b [θ(a∗,x) + (B2(t) +B3(t)a)ϕ]− b [θ(a∗,x)]

ϕ

]
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and Φt,a,a∗ =
∫
φt,a,a∗(x′)dPX(x). Then, ∂aφt,a,a(x) = ϕ−1ψ̃1,t(a,x)φt,a,a(x),

where

ψ̃1,t(a,x) = (θ′(a,x) +B3(t)ϕ)Eϕ(B2+B3a)+θ(a,x)M − θ′(a,x)Eθ(a,x)M

and ∂aΦt,a,a = ϕ−1
∫
ψ0,t(a,x

′)φt,a,a(x
′)dPX(x′), so that

∂aΦt,a,a

Φt,a,a
=

1

ϕ
EX
t,aψ̃1,t(a,X),

with EX
t,a = EX

t,a,a. Hence, ∂aqt,a,a(x) = ϕ−1ψ1,t(a,x)qt,a,a(x), with

ψ1,t(a,x) = ψ̃1,t(a,x)− EX
t,aψ̃1,t(a,X).

From (6), we have

TRAalen = ∂aλTaMa
(t)|a=a∗ = β1(t) + Ξ1 + Ξ2 + Ξ3, (A2)

where Ξ1 = β3(t)EX
t,a∗Eϕ(B2(t)+B3(t)a∗)+θ(a∗,X)M ,

Ξ2 = ϕ−1(β2(t) + β3(t)a
∗)EX

t,a∗ (ϕB3(t) + θ′(a∗,X))Varϕ(B2(t)+B3(t)a∗)+θ(a∗,X)M,

and

Ξ3 = ϕ−1EX
t,a∗

[
β4(t)

⊤X + (β2(t) + β3(t)a
∗)Eϕ(B2(t)+B3(t)a∗)+θ(a∗,X)M

]
ψ1,t(a

∗,X).

Similarly, ∂aφt,a,a∗(x) = ψ̃2,t(a,x)φt,a,a∗(x), where

ψ̃2,t(a,x) = B3(t)Eθ(a∗,x)+(B2+B3a)ϕM

and ∂aΦt,a,a∗ =
∫
ψ̃2,t(a,x

′)φt,a,a∗(x′)dPX(x′). Hence,

∂aΦt,a,a∗

Φt,a,a∗
= EX

t,aψ̃2,t(a,X),

so that ∂aqt,a,a∗(x) = ψ2,t(a,x)qt,a,a(x), where

ψ2,t(a,x) = ψ̃2,t(a,x)− EX
t,aψ̃2,t(a,X)

and, using (6) again,

NDRAalen = ∂aλTaMa∗ (t|x)|a=a∗ = β1(t) + Ξ1 + Ξ′
2 + Ξ′

3, (A3)

where

• Ξ′
2 = (β2(t) + β3(t)a

∗)B3(t)EX
t,aVarϕ(B2(t)+B3(t)a∗)+θ(a∗,X)M ;

• Ξ′
3 = EX

t,a∗
[
β4(t)⊤X + (β2(t) + β3(t)a∗)Eϕ(B2(t)+B3(t)a∗)+θ(a∗,X)M

]
ψ2,t(a∗,X).
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Finally,

NIRAalen = TRAalen − NDRAalen = (Ξ2 − Ξ′
2) + (Ξ3 − Ξ′

3), (A4)

where

Ξ2 − Ξ′
2 = ϕ−1(β2(t) + β3(t)a

∗)EX
t,aθ

′(a∗,X)Varϕ(B2(t)+B3(t)a∗)+θ(a∗,X)M

and

Ξ3 − Ξ′
3 = EX

t,a∗

[
β4(t)

⊤X + (β2(t) + β3(t)a
∗)Eϕ(B2(t)+B3(t)a∗)+θ(a∗,X)M

]
ψ3,t(a

∗,X)

with ψ3,t(a
∗,x) = ϕ−1ψ1,t(a

∗,x)− ψ2,t(a
∗,x).

Appendix D. Additional results for causal
mediation analysis

Figure 6: Deviance residual analysis when assuming (a) Normal, (b) Gamma with log
link and (c) Gamma with inverse link distributions.
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