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Abstract

For simple null hypothesis, given any non-parametric combination
method which has a monotone increasing acceptance region, there exists
a problem for which this method is most powerful against some alternative.
Starting from this perspective and recasting each method of combining p-
values as a likelihood ratio test, we present theoretical results for some
of the standard combiners which provide guidance about how a powerful
combiner might be chosen in practice. In this paper we consider the
problem of combining n independent tests as n — oo for testing a simple
hypothesis in case of extreme value distribution (EV(6,1)). We study the six
free-distribution combination test producers namely; Fisher, logistic, sum
of p-values, inverse normal, Tippett’s method and maximum of p-values.
Moreover, we studying the behavior of these tests via the exact Bahadur
slope. The limits of the ratios of every pair of these slopes are discussed
as the parameter 6 — 0 and § — oco. As 8 — 0, the logistic procedure is
better than all other methods, followed in decreasing order by the inverse
normal, the sum of p-values, Fisher, maximum of p-values and Tippett’s
procedure. Whereas, # — oo the logistic and the sum of p-values procedures
are equivalent and better than all other methods, followed in decreasing
order by Fisher, the inverse normal, maximum of p-values and Tippett’s
procedure.
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194 Abedel-Qader Al-Masri & Noor Al-Momani

Resumen

Para hipotesis nulas simples, dado cualquier método de combinacién no
paramétrico que tenga una regiéon de aceptacion creciente mondétona, existe
un problema para el cual este método es més poderoso frente a alguna
alternativa. Partiendo de esta perspectiva y reformulando cada método
de combinacién de valores p como una prueba de razén de verosimilitud,
presentamos resultados tedricos para algunos de los combinadores estandar
que brindan orientacién sobre cémo se podria elegir un combinador poderoso
en la practica. En este articulo consideramos el problema de combinar
pruebas independientes de n como n — oo para probar una hipétesis simple
en el caso de una distribucién de valor extremo (EV (6, 1)). Estudiamos los
seis productores de prueba de combinacién de distribucién gratuita, a saber;
Fisher, logistica, suma de valores p, normal inversa, método de Tippett
y maximo de valores p. Ademads, estudiamos el comportamiento de estas
pruebas a través de la pendiente exacta de Bahadur. Los limites de las
razones de cada par de estas pendientes se analizan como el pardmetro § — 0
v 0 — oo. Como 6 — 0, la logistica El procedimiento es mejor que todos los
demés métodos, seguido en orden decreciente por el inverso normal, la suma
de valores p, Fisher, el maximo de valores p y el procedimiento de Tippett.
Considerando que, 8 — oo la logistica y la suma de los procedimientos de
valores p so equivalentes y mejores que todos los deméas métodos, seguidos
en orden decreciente por Fisher, la inversa normal, maxima de valores p y
procedimiento de Tippett.

Palabras clave: combinacion de pruebas independientes; distribucién de
valor extremo; eficiencia Bahadur; pendiente Bahadur.

1. Introduction

We consider the asymptotic relative efficiency (ARE) of two test procedures
in which the probabilities of the two types of error change with increasing sample
size n, and with respect to the alternative behavior. Abu-Dayyeh & El-Masri
(1994) studied six methods of combining infinitely number of independent tests
in case of triangular distribution. These methods are sum of p-values, inverse
normal, logistic, Fisher, minimum of p-values and maximum of p-values. They
showed that the sum of p-values is the best of all other methods. Abu-Dayyeh
et al. (2003) combined infinity number of independent tests for testing simple
hypotheses against one-sided alternative for normal and logistic distributions, they
used four methods of combining (Fisher, logistic, sum of p-values and inverse
normal). Al-Masri (2010) studied six methods of combining independent tests.
He showed under conditional shifted Exponential distribution that the inverse
normal method is the best among six combination methods. Al-Talib et al. (2020)
considered combining independent tests in case of conditional normal distribution
with probability density function X|0 ~ N(v8), 6 € [a,00],a > 0 when 61,6,,...
have a distribution function (DF) Fy. They concluded that the inverse normal
procedure is better than the other procedures. Al-Masri (2021a) considered
combining n independent tests of simple hypothesis, vs one-tailed alternative as n
approaches infinity, in case of Laplace distribution L(~, 1). He showed that the sum
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Bahadur’s Stochastic Comparison in Case of Extreme Value Distribution 195

of p-values procedure is better than all other procedures under the null hypothesis,
and the inverse normal procedure is better than the other procedures under the
alternative hypothesis. Al-Masri & Al-Momani (2021) considered combining n
independent tests of simple hypothesis, vs one-tailed alternative as n approaches
infinity, in case of log-logistic distribution. They showed that the sum of p-values
procedure is better than all other procedures under the null hypothesis and under
the alternative hypothesis. Al-Masri (2021b) considered the problem of combining
n independent tests as n — oo for testing a simple hypothesis in case of log-normal
distribution. He showed that as £ — 0, the maximum of p-values is better than
all other methods, followed in decreasing order by the inverse normal, logistic,
the sum of p-values, Fisher and Tippett’s procedure. Also, as & — oo the worst
method the sum of p-values and the other methods remain the same, since they
have the same limit.

2. Extreme Value (Gumbel) Distribution

The extreme value Gumbel distribution (EV(6,1)) is used to model maximums
and minimums. For example, it has been used to predict earthquakes, floods and
other natural disasters, as well as modeling operational risk in risk management
and the life of products that quickly wear out after a certain age.

Extreme value distributions are the limiting distributions for the minimum
or the maximum of a very large collection of random observations from the same
arbitrary distribution. Extreme value distributions for the minimum are frequently
encountered. For example, if a system consists of n identical components in series,
and the system fails when the first of these components fails, then system failure
times are the minimum of n random component failure times. In extreme value
theory, independent of the choice of component model, the system model will
approach a Weibull as n becomes large. The same reasoning can also be applied
at a component level, if the component failure occurs when the first of many similar
competing failure processes reaches a critical level.

The EV (0, 1) distribution with location parameter 6, has distribution function
(DF) and probability density function (pdf) are given, respectively, by

F0)=e* """ zeROER (1)
f(z;0) = e=(@=0)—e ¢ _ —F(z;0)In F(x;0),z € R,0 € R (2)
3. The Basic Problem
Consider testing the hypothesis
Hy g =, vs, Hy o€ Q- {h) 3)
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196 Abedel-Qader Al-Masri & Noor Al-Momani

such that Héi) becomes rejected for large values of some real valued continuous
random variable T, i = 1,2,...,n. The n hypotheses are combined into one as

H(()Z) : (7717---77}n> = (776’7778)’ Vs 7H1(i) : (7717"'77711)

E{Hﬂz_{(né7ﬂn8)}} (4)

For i =1,2,...,n, the p-value of the i-th test is given by

Pi(t)=P

(20 (T(i) > t) =1-Fym () (5)

Hg

where F', i) (t) is the DF of 7@ under H(()i). Note that P; ~ U(0,1) under H((,i).
0

As a special case where 1; = 6 and 1} = 6 for i = 1,...,n, and assume that
TW, ..., T™ are independent, then (3) reduces to

Hy:0=0y, vs, H; 5069—{90} (6)

It follows that the p-values Pi,...,P, are also iid rv’s that have a U(0,1)
distribution under Hp, and under H; have a distribution whose support is a
subset of the interval (0,1) and is not a U(0,1) distribution. Therefore, if f is
the probability density function (pdf) of P, then (6) is equivalent to

Hy:P~U(0,1), vs, Hy:P~=U(0,1) (7)

where P has a pdf f with support a subset of the interval (0, 1).

This study considers the case: 1; = 0,7 =1,...,n. Also we are assuming that
T, 7). T™ are independent. Then (6) reduced to

Hy:6=0, vs, H :0>0 (8)

Thus, under Hy, the p-values Py, Ps, ..., P, are iid rv’s distributed with a uniform
distribution U(0, 1) which is given by (8).

By sufficiency we may assume n; = 1 and T = X, for i = 1,...,n. Then
we consider the sequence {T(")} of independent test statistics that is we will take
a random sample Xi,...,X, of size n and let n — oo and compare the four
non-parametric methods via exact Bahadur slope (EBS).

The producers will be used in this paper are Fisher, logistic, sum of p-values,
inverse normal, Tippett’s method and maximum of p-values. These producers are
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based on p-values of the individual statistics T;, and reject Hy if

\IIFisher = - 22111(131) > X%n,oﬂ
i=1

n P
‘I’logistic = - Zhl (1 _IP'> > ba,
i=1 v

\Ijnormal = - Z(I)_I(Pi) > \/{E(I)_l(l - Oé),
=1

\Psum = 7iP’L > Com
=1

1
U0ee = —max P, < an,

1
n

Ur= —min P, <1—(1—-a)

where @ is the DF of standard normal distribution.

4. Definitions

This section lays out some tools basic to Bahadur’s stochastic comparison
theory as used in this article

Definition 1 (Serfling 2009, Bahadur efficiency and exact Bahadur slope (EBS)).
Let Xq,...,X,, beii.d. from a distribution with a probability density function

f(z,0), and we want to test Hyp : 8 = 0y vs Hy : 0 € © — {6p}. Let {T,(ll)}
and {T,(LQ)} be two sequences of test statistics for testing Hy. Let the significance
attained by T be LY = 1 - F, (T,S“), where F (T,(f)) — Pp, (T,(f) < t)

i = 1,2. Then there exists a positive valued function C;(6) called the exact
Bahadur slope of the sequence {T,(Ll)} such that

Ci(0) = 91i_>rrolo —2n"'In (L)

with probability 1 (w.p.1) under 6 and the Bahadur efficiency of {Tfll)} relative
to {Tff)} is given by ep (T, Ty) = C1(6)/Ca(6).

Theorem 1 (Serfling 2009, Large deviation theorem). Let X, Xo,..., X, be
i.i.d., with distribution F and put S, = Y., X;. Assume existence of the
moment generating function (mgf) M(z) = Ep (e**), z real, and put m(t) =
inf, e *(X= = inf, e *'M(z). The behavior of large deviation probabilities
P (S, >1t,), where t, — oo at rates slower than O(n). The case t, = tn, if
—o0o < t < EY, then P (S, < nt) < [m(t)]", the

—2n"'In Pp (S, > nt) — —2lnm(t) as. (Fp).
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Theorem 2 (Bahadur 1960, Bahadur theorem). Let {1} be a sequence of test
statistics which satisfies the following:

1. Under Hy : 0 € © — {6y} :
n~3T, — b)) a.s. (Fp),
where b(0) € R.

2. There exists an open interval I containing {b(0) : 0 € © —{6p}}, and a
function g continuous on I, such that

lim —2n "' log sup [1 — Fy, (n?t)| = lim —2n""log [1 — Fy, (n%t)]
n [ASCH n

g(t), tel.

If {T,,} satisfied (1)-(2), then for 8 € © — {6y}

—2n"tlog sup [1 — Fy, (T,)] = C(0) a.s. (Fp).
0€0y

Theorem 3 (Al-Masri 2010). Let Xi,...,X,, be i.i.d. with probability density
function f(x,0), and we want to test Hy : 6 = 0 vs Hy : § > 0. For j = 1,2,
let T,; = Yoi fi(zi)/v/n be a sequence of statistics such that Hy will be
rejected for large values of T}, ; and let ¢; be the test based on T, ;. Assume
Eg(fi(x)) > 0,V0 € ©, Eo(fi(x)) =0, Var(f;(z)) >0 for j =1,2. Then

1. If the derivative b’(0) is finite for j = 1,2, then

i C1(60) _ Varg—o(f(a)) {bam)r
6—0 C2(0)  Varg—o(fi(z)) [05(0)] °

where b;(0) = Eq(f;(x)), and C;(0) is the EBS of test ¢; at 6.
2. If the derivative b(0) is infinite for j = 1,2, then

i C1(0) _ Varoo(fa(x)) [hm baw)r
90 Co(0)  Varg—o(f1(z)) [6—005(0) |

Theorem 4 (Serfling 2009). If T,(ll) and T,Sz) are two test statistics for testing
Hy : 0 =0 wvs H : 0 > 0 with distribution functions Fél) and FéQ) under Hy,
respectively, and that Tél) is at least as powerful as T,EQ) at 0 for any o, then if p;
is the test based on Ty(lj), 7 =1,2, then

1 2
co) > (o)

Corollary 1 (Serfling 2009). If T,, is the uniformly most powerful test for all a,
then it is the best via EBS.
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Theorem 5 (Al-Masri 2010).
2t <mg(t) <et, V:0<t<0.5,

where

z
—1
mis(t) = inf e~ .

Theorem 6 (Al-Masri 2010). 1. mp(t) > 2te™t, Vt >0,
2. mp(t) <tet™t,  Vt>0.852,

3
3. mL(t) <t (li%) el—t’ vt > 4,
where mp(t) = inf,c1)e *'mz csc(nz) and csc is an abbreviation for

cosecant function.

Theorem 7 (Al-Masri 2010). For z > 0,

o) [ - %] <1-06) < 22

x s x
Where ¢ is the pdf of standard normal distribution.
Theorem 8 (Al-Masri 2010). For x > 0,

- o) > 2@

N

Lemma 1 (Al-Masri 2010). 1. mp(t) > inf e * =e7!

0<2z<1
o—t2/(t+1) ( it )
t+1
2 ma(t) < )
: s
S (m)
5 L ma) =it TS Cinfg S8 < —et, <0
ms(t) > —2t, —5 <t <0.

5. Deviation of the EBS for EV(0,1)

In this section we will study testing problem (8). We will compare the six
methods Fisher, logistic, sum of p-values, the inverse normal, Tippett’s method
and maximum of p-values via EBS.

Let Xi,...,X, be iid with probability density function (2) and we want to test
(8). Then by (1), the P-value is given by

—x

Pu(X,)=1-FAo(X,)=1—-¢"¢ (9)

The next three lemmas give the EBS for Fisher (Cr), logistic (Cf), inverse

normal (Cy), and sum of p-values (Cs), Tippett’s method (C7) and maximum of
p-values (Cypqz )methods.
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200 Abedel-Qader Al-Masri & Noor Al-Momani

Lemma 2. The exact Bahadurs slope (EBSs) result for the tests, which is given
in Section 2, are as follows:

B1. Fisher method. Cp(0) =bp(0) —21In(bp(6)) + 21n(2) — 2,

where

bp(0) = =2 (¥(1) — ¥(e + 1)),

and Y(x) = I;/((;c)) is the digamma function.

B2. Logistic method. Cp(0) = —21In(m(b(0))), where

mp(t) = Zei&)fl) e *'rz esc(mz)

and

b1(0) = (e’ +1) — ™" —w(1).
B3. Sum of p-values method. Cg(8) = —21In(m(bs(h))), where

— efz
mg(t) = ;r;% e*Zti

and )
bs(0) = — (e +1) .

Bj. Inverse Normal method. Cn(0) = —21In(m(bx(0))) = b3 (6).
Where
bN(e) = _69 IEB(—:ta(egfl,l) (b ((P_l(l - W))

Proof of B1. By Theorem (2)

n In [1 — 6_671}
Tr = _2;T

By the strong law of large number (SLLN)

Tr wpa C oEHi ] et
7= 5 () = 2K ln[l e }

then
br(0) = —2/ In {1 — e—e””} e—(m—o)_e%z—e) du.
R

Now, let U =e~ X9 and Z=1—-e—° "V, then
—x —(z—0) 0 1 0_1
/ In [1 —e ¢ } e (@=0)—e de=e / In(z)(1—2)¢ " dz
R 0
= EBeta(l,ee) InZ = ¢(1) - ¢(€9 + 1)

Then bp(0) = —2 (¥(1) — (e +1)).
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Now under Hp, then by Theorem 1, we have mg(t) = inf,~¢ e "** Mg(z), where

Ms(2) = Ep(e*X). Under Hy : — (1 - e’e_m) ~ U(-1,0), so Mg(z) = 17272, by
part (2) of Theorem 2 we complete the proof, that is
br(0
Cr(0) = — 21n(mp(bp(9))) = —21n< F2( )el”Fz“”>
= bp(0) —2In(bp(0)) + 21n(2) — 2.
O
Proof of B2.
n In {71_:: }
T, = — _te 1
L ; NG

By the strong law of large number (SLLN)

TL wp. l—e "
L Pl (0) = B In | ————
¥a e

:/ In [1 —_ e*e*w} ef(mfﬁ)fe*(mfe) d — / e,zei(rig)fe—(mfe) da.
R R

o —(2—0)—e= (=0 _
/eme (@=6)—e dr =e?,
R

Now,

and from Proof (B1), /

In {1 — e*e_m} e~ (@=0)=e"" gy (1) —1p(e? +1). Then
R

br(0) = (e’ +1) —e ¥ — (1)

Proof of BS.

" l—e ¢
Tg=-S -
By the strong law of large number (SLLN)

7= S bs(0) = _E™ (1 - e—e’”)

then

bs(0) = 7/ <1 - e*e_m) e~ (@)= gy (60 + 1)71 .
R
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Now, by Theorem 1, we have mg(t) = inf,~q e ** Mg(z), where Mg(z) = Ep(e*X).
Under Hy : — (1 — e*e_x> ~U(-1,0), so Mg(z) = £=¢—, by part (2) of Theorem

2 we complete the proof, that is Cs(0) = —21n(mg(bs(0))). O

Proof of B4.

zn: o1 (1 — e“’fl’)
Ty =— .
P vn

By the strong law of large number (SLLN)

Ty wp1  _EHip-1(]_ e
T (0 = —ET @ (1 e )

by (6) = _ea/ -1 (1 3 e,e—m> ——
R
then put U = &1 (1 _ e—e*f) to get

de(u)

U

0 e?—1 0 e?—1
by(0) = —e” | uo(u) (1 — P(u)) du=e (1—®(u)) du,
R R
d
where —u¢p(u) = @QZ)(u)
Now, by using integration by parts and put W =1— ® (U) to get

1
by () = — €’ (ee - 1)/ wegfzqﬁ (@11 —w)) dw
0
= - 69 ]EBeta(ee—l,l) Qb (@—1(1 - W))
_ (1 —w)
where ¢ (@71 (1 —w)) = \/%qb (\/§> .
Now, by Theorem 1, we have my(t) = inf,sge **Mpy(2), where My(z) =
Er(e*X). Under Hy : — (1 - e‘eﬂ) ~ N(0,1), so My(z) = /2, by part (2)
of Theorem 2, Cn(0) = —2In(my (by(6))) = b3 (0). O
Theorem 9 (Abu-Dayyeh & El-Masri 1994). Let Uy, Us,... be i.i.d. like U with
probability density function f and suppose that we want to test Ho : U; ~ U(0,1)

vs Hy : U; ~ f on (0,1) but not U(0,1). Then Crnax(f) = —21n (ess.sups(u))
where ess.Supy(u) = sup{u: f(u) > 0} w.p.1 under f.

Lemma 3.

Craz(0) = 0.
Proof. By Theorem (9) Cmax(f) = —2In(ess.supy(u)) where ess.Sups(u) =
Sup {u: f(u) > 0} w.p.1 under 6.

For f(x) = e @=0)=e"""" L 9 e R letY =1—e~¢ ", then Y ~ Beta (e?,1).
Then ess.supys(u) = 1.
Therefore, Cipax(#) = —21In (1) = 0. O
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Theorem 10 (Abu-Dayyeh & El-Masri 1994). If A(In A)?2f(A) — 0 as A — 0,
then Cr(f) = 0.
Lemma 4.

Cr(9) = 0.
Proof. By Theorem (10)

lim A(InA)?f(A) = lim A(In A)Qe_(A_‘g)_ei(Aie) = e/t lim A(ln A)%
A—0 A—0

A—0

Clearly, by L’Hopital rule twice, lima_,0 A(InA)2 = 0 which implies Cr(8) =
0. O

5.1. Comparison of the EBSs when 6 — 0

Now, we will compare the EBSs that obtained in Section (4). We will find the
limit of the ratio of the EBSs of any two methods when 6 — 0.

Corollary 2. The limits of ratios of different tests are as follows:

Cr(6)  Cuaxlt)
C1. Co(0) ~ Col0) 0, where Cp(0) € {Cr(9),CL(0),Cs(0),Cn(0)} .

C2. e (Ts, Tr) — 1.80314

C3. ep (T, Tr) — 1.97729
C4. ep (T, Tr) — 1.96121
C5. ep (T, Tw) — 1.0082

C6. e (T, Ts) — 1.08764
C7. e (Ty, Ts) — 1.09656

Proof of C2.
br(0) = =2 (p(1) —w(e’ +1)).

Therefore
V() = 2e%41 (1 + €%),

where 11 (z) = “L(z) is the trigamma function.

. 2

gl_,r%bF(H) =2 (6 — 1) < 00.

Also )
bs(0) = — (e +1)
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then

: / — | 1 -1 = 1
él—{% b (0) = gl_rg 5 (cosh(0) + 1) 7 < 00.

Now under Hy : hp(x) = —2In [1 - 6_671 ~ X% and hg(z) = — (1 _ e—e*“”) -~

b's(0
U(=1,0), so Varg—o(hr(z)) = 4 and Varg—p(hs(z)) = 5, also, bfﬁoi -
F
A Cs(0 27
% -8 . By applying Theorem 3 we can get gii% Ci%@; = 7 67 =

1.80314. Similarly we can prove the other parts.
O

5.2. The Limiting ratio of the EBS for different tests when
6 — oo

Now, we compare the limit of the ratio of the EBSs of any two methods when
0 — oo.

Corollary 3. The limits of ratios for different tests are as follows:
D1. eB (TL,TF) —1

D2. ep (T57TF) — 1

D3. eéB (TN,Ts) —0

D4. lim {Cr(0) = C(0)} <0
—00

D5. ep (TN,TF) — 0,ep (TN,TL) — 0,ep (TL,Ts) — 1.

Proof of D1. By Lemma 1 part (1) Cr(6) < 2b.(6). So

CrL(0) < 2by,(0)
Cp(e) - bF(e) — 2111(1)17(9)) + 2ln(2) -2
It is sufficient to obtain lim QbL(e).
6—o00 bF(G)
Therefore,
_20p(0) (1) —e (1)
e br(0) o, V(1) —y(e? +1) L
Then,
. CL(9)
< 1.
A e =1
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Also, by Theorem 6 part (2), we have Cr(6) > 2br,(6) —2In (br.(0)) — 2. So

C1(60) 2b1.(6) — 21n (b (6)) — 2

li > 1 .
600 Cp(0) = 600 bp(8) — 21n(bp(8)) + 21n(2) — 2
It is sufficient to obtain the limit of lim QbL(G).
6—o0 bF(Q)
Therefore,
. 20.(0) (e’ +1) —e? — (1)
1 =1 1.
6500 bp(0)  0bee (1) —(e? 1 1)
Then,
. CL(9)
1 >1
951010 CF(Q) o
By pinching theorem, we have 9121{)10 g}iig; =1.

Proof of D2. By Lemma 1 part (3) Cs(0) < —21In(2) — 21In(—bg(h)). So

< lim —21In(2) — 21In(—bs(6))
§—c0 Cp(0) ~ 0500 bp(0) —2In(bp(0)) +2In(2) — 2°

It is sufficient to obtain the limit of lim M

60— 00 bF(e)
Then
. —2In(=bs(0)) .. In (1+ %) L In (14 ¢€%)
R R =R S VR &yt pp

Now, by using Gauss’s integral for asymptotic expansion of v

1~/ 11
=1 - — - _ = —tzdt
¥(z) =lnz— o7 /0 (2 P et—1>e ’

we get
Y(l+e’)=In(1+e) - !
2(1+ e?)
/1 1 1 e(14e? 0
/0 (2t+et—1)6 (1+) gt In (1 + ¢%) as 6 — oo.
Therefore,
_—2In(=bs(0)) .. In(l+e)
s br(0) s ) —ln(l+e)
So Cs(0)
i S <1
Ogrolo CF(Q) B

Revista Colombiana de Estadistica - Theoretical Statistics 45 (2022) 193-208



206 Abedel-Qader Al-Masri & Noor Al-Momani

Also, by Theorem Lemma 1 part (3), we have Cg() > —2 — 21In(—bg(f)). So, in
the same manner, we get
lim Cs(0)
0— 00 CF(9

0
By pinching theorem, we have lim gﬁie)) -

> 1.

~

1. O

Proof of D3. From B4 we have

CN(Q) = 629 [EBeta(eefl,l) (b ((I)_l(l - W))]2 .

By Lemma 1 part (3) Cs(0) > —2 — 21In(—bg(6)). So

2

lim Cn () < lim e [EBeta(ef’_Ll) 10) (@71(1 _ W))]
0— 00 CS(G) T -0 _92_ 21n(—bs(9))
- 2
= lim e [EB“a(ee—lal) ¢ ((I) "1 - W))]
0— o0 _2+1n(1+€9) .

Now by using reflection symmetry, then W ~ Beta (69 -1, 1) then 1 - W ~
Beta (1,@9 — 1) .

Now we will find the limiting distribution for Hy = 69W9 when e — oco.
G, (hg) = Py [Hy < hg] = Py [Wp < e °hy| = Fw, (e ’he)

) e Ohe o h0 e’ —1
:(6 *1) (171[)9) dw(;:lf 17879 .
0

limyo_ 0 [1— 2a]"
h

lim G, (hg) =1— =1-e"
Hm Gy (ho) limeo o0 [1— 28]
Then, lim e’ Beta(1,e’ — 1) = Exponential(1). Then,

e? =00

o C3(0) _ [Ergny ¢ (27 (W)

600 Cg(0) ~ limg oo {—2+In (1 +€)} v

Then Onl(d
lim ~ (0)

0— o0 05(9) =0

Proof of D4. By Theorem 6 (2), we have
Cr(0) — CL(0) < bp(8) — 2Inbp(6) + 21n(2) + 21n by () — 2b,.(9)

br(0)
br(0)

:bF(G)—QbL(G)—i-an( ) +21n(2).
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Now,
bp(e) — 2bL(9) = 26_0.
Also,
cobo(0) L (ef 1) —e? —y(1) 1
e br(0) e 2(p(1) — (e +1)) 27
Then,
: : : b (6)
lim (Cp(0) — Cr(0)) < lim (bp(f) —2Inbp(0))+ 2 lim In
6—o00 60— 00 60— o0 bF(G)
+2In(2) =0 —2In(2) +2In(2) = 0.
So, Cr(0) < Cr(0) for large 6 O
Proof of D5. By using D1-D3 O

5.3. Comparison of the EBS for the Four Combination
Procedures

From the relations in section (4.1) we conclude that locally as 8 — 0, the
logistic procedure is better than all other procedures since it has the highest EBS,
followed in decreasing order by the inverse normal, sum of p-values procedure and
the Fisher’s procedure. The worst are the Tippett’s and the maximum of p-values
procedures, i.e.,

CL(Q) > CN(Q) > 05(9) > CF(Q) > CT(Q) = Cmax(g).

Whereas, from result of Section (4.2) as 6 — oo the worst methods are
Tippett’s and the maximum of p-values, the logistic and sum of p-values methods
remain the same, they are better than all other procedures since it has the highest
EBS, followed in decreasing order by Fisher’s and the inverse normal procedures,
ie.,

CL(0) = Cs(0) > Cp(B) > Cn(0) > Cr(0) = Crax(6).
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