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Abstract

Considering the �exibility and applicability of Bayesian modeling, in
this work we revise the main characteristics of two hierarchical models in
a regression setting. We study the full probabilistic structure of the models
along with the full conditional distribution for each model parameter. Under
our hierarchical extensions, we allow the mean of the second stage of the
model to have a linear dependency on a set of covariates. The Gibbs sampling
algorithms used to obtain samples when �tting the models are fully described
and derived. In addition, we consider a case study in which the plant size
is characterized as a function of nitrogen soil concentration and a grouping
factor (farm).

Key words: Bayesian inference; Clustering; Gibbs Sampling; Hierarchical
model; Linear regression.

Resumen

Considerando la �exibilidad y aplicabilidad del modelamiento Bayesiano,
en este trabajo se revisan las principales características de dos modelos
jerárquicos en un escenario de regresión. Se estudia la estructura pro-
babilística completa de los modelos junto con la distribución condicional
completa para cada parámetro del modelo. Las extensiones jerárquicas
que se presentan permiten que la media de la segunda etapa del modelo
tenga una dependencia lineal de un conjunto de covariables. Se describen y
derivan completamente los algoritmos de muestreo de Gibbs para ajustar los
modelos. Además, se considera un caso de estudio en el que se caracteriza el
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tamaño de plantas en función de la concentración de nitrógeno en el suelo y
un factor de agrupación (�ncas).

Palabras clave: Agrupamiento; Inferencia bayesiana; Muestreador de
Gibbs; Modelo jerárquico; Regresión lineal.

1. Introduction

A key characteristic of many problems is that the observed data can be used to
estimate aspects of the population even though they are never observed. Often, it
is quite natural to model such a problem hierarchically, with observable outcomes
modeled conditionally on certain parameters, which themselves are assigned a
probabilistic speci�cation in terms of further random quantities.

Hierarchical models can have enough parameters to �t the data well, while
using a population distribution to structure some dependence into the parameters,
thereby avoiding problems of over-�tting. In addition, by establishing hierarchies
we are not forced to choose between complete pooling and not pooling at all as
the classic analysis of variance does (Gelman et al., 2013).

In this work we analyze observational continuous data arranged in groups.
Speci�cally, we discuss hierarchical models for the comparison of group-speci�c
parameters across groups in a regression setting. Our hierarchical approach
is conceptually a straightforward generalization of a standard Normal model.
Emulating Ho� (2009), we use an ordinary regression model to describe
within-group heterogeneity of observations, and also, describe between-group
heterogeneity using a sampling model for the group-speci�c regression parameters.
Then, we take a step further and develop another hierarchical model adding a
speci�c layer for carrying out clustering tasks. At this point, we explicitly note
that the main di�erence between two given models relies on the stochastic structure
of the regression parameters. For instance, the hierarchical approach (also known
as HLRM later) embraces a way to borrow information across groups through
a shrinkage e�ect promoted by the prior formulation, whereas the clustering
speci�cation (also known as CHLRM later) additionally aims to collect groups
with similar �xed e�ects.

Since the intended audience for this article needs to be knowledgeable in
statistical methods, the reader should be aware that hierarchical linear modeling
from a Bayesian perspective is a well developed area within the Statistics literature.
There are available many technical and methodological developments ranging from
standard linear models (Gelman et al., 2013), generalized linear models (Dey et al.,
2000) to even more sophisticated such as nonparametric linear models (Müller
et al., 2015). Finally, the literature is also very broad in the treatment of these
topics when applied to speci�c statistical disciplines such as longitudinal data
analysis (Wake�eld, 2013), spatio-temporal data analysis (Banerjee et al., 2014),
and statistical analysis of network data (Kolaczyk & Csárdi, 2020), just to name
a few.
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Even though our modeling approach is quite conventional under the Bayesian
paradigm, our main contribution mainly relies in how models are structured and
developed. Thus, we provide for each model all the details regarding model
and (hierarchical) prior speci�cation, careful hyperparameter selection under little
external information, and simulation-based algorithms for computation. Finally,
we also consider several metrics to quantify the performance aspects of our models
by means of both goodness-of-�t and in-sample model checking metrics. In every
instance along the way, we go over several building blocks of the literature about
hierarchical modeling techniques and clustering tasks.

This paper is structured as follows: Section 2 revisits all the details related
to the Normal linear regression model (LRM). Sections 3 and 4 provide a full
development of hierarchical Normal linear regression models (HLRM) as well
as clustering hierarchical Normal linear regression models (CHLRM). Section 5
discusses in depth other modeling approaches. Section 6 shows several speci�cs
related to computation and model �tting. Section 7 presents several speci�cs
about model checking through tests statistics, and also, model section through
information criteria. Section 8 makes a complete analyzes of a case study. Finally,
Section 9 discusses our �ndings and future developments.

2. Normal Linear Regression Model (LRM)

Here, we show some relevant aspects about linear regression modeling in a
Bayesian setting, which is a powerful data analysis tool quite useful for carrying
out many inferential tasks such as data characterization and prediction. Roughly
speaking, our goal is to �nd a model for predicting the dependent variable
(response) given one or more independent (predictor) variables.

2.1. Model Speci�cation

First, we consider a simple scenario in which we want to characterize the
sampling distribution of a random variable y through a set of explanatory variables
x = [x1, . . . , xp]

T. Thus, we look upon a Normal linear regression model of the
form

yi,j = xTi,jβ + ϵi,j , ϵi,j | σ2 iid∼ N(0, σ2) , i = 1, . . . , n , j = 1, . . . ,m ,

where yi,j , xi,j , and ϵi,j are the response variable, the covariates, and the random
error, respectively, corresponding to the i-th observation from the j-th group,
and β = [β1, . . . , βp]

T are the regression parameters of the model. Note that the
previous model can be re-expressed as

y | X,β, σ2 ∼ Nnm(Xβ, σ2I)

where y is the response vector given by y = [yT1 , . . . ,y
T

m]T, with yj =

[yj,1 . . . , yj,n]
T, and X is the design matrix arranged in a similar fashion.
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In order to perform full Bayesian analysis using the likelihood given above, we
consider a semi-conjugate prior distribution for β and σ2 of the form

β ∼ N(β0,Σ0) and σ2 ∼ IG(ν0/2, ν0σ
2
0/2)

as in most Normal sampling problems.

2.2. Prior Elicitation

In the absence of convincing external information to the data, it is customary
using a defuse prior distribution in order to be as minimally informative as possible.
In the same spirit of the unit information prior as in Kass & Wasserman (1995), we

let g = nm and ν0 = 1, and set β0 = β̂OLS, Σ0 = g σ2
0(X

TX)−1, with σ2
0 = σ̂2

OLS,

where ϕ̂OLS stands for the ordinary least squares (OLS) estimate of ϕ. This choice
of g makes the ratio g

g+1 very close to 1, and therefore, β is practically centered

around 0; similarly, the prior distribution of σ2 is weakly centered around σ̂2
OLS

since ν0 = 1. Note that large values of g as well as small values of ν0 re�ect weak
prior beliefs. This prior distribution cannot be strictly considered a real prior
distribution, as it requires knowledge of y to be constructed. However, it only
uses a small amount of the information given in y, and can be loosely thought of
as the prior distribution of a researcher with unbiased but weak prior information.

2.3. Posterior Inference

The posterior distribution can be explored using Markov chain Monte Carlo
(MCMC) methods (Gamerman & Lopes, 2006) such as the Gibbs sampling.
Implementing such an algorithm under the previous model is quite simple since
the full conditional distributions are

β | y,X, σ2 ∼ Np((Σ
−1
0 + σ−2XTX)−1(Σ−1

0 β0 + σ−2XTy), (Σ−1
0 + σ−2XTX)−1)

and

σ2 | y,X,β ∼ IG((ν0 + nm)/2, (ν0σ
2
0 + (y −Xβ)T(y −Xβ))/2) .

See for example Christensen et al. (2011) for details about this result.

Under the previous setting, we need to carefully choose values for the set of
model hyperparameters, namely, β0, Σ0, ν0, and σ2

0 . Often, the analysis must be
done in the absence of prior information, so we should use a prior distribution as
minimally informative as possible. The so-called g-priors (see for example Albert
(2009) for a brief discussion) o�er this possibility and the desirable feature of
invariance to changes in the scale of the regressors. A popular alternative in this
direction consists in letting β0 = 0 and Σ0 = gσ2(XTX)−1 for some positive
value g that re�ects the amount of information in the data relative to the prior
distribution (choosing a large value of g naturally induces a di�use prior). It can
be shown that under the g-prior speci�cation, p(σ2 | y,X) is an Inverse Gamma
distribution, which means that we can use direct sampling as follows:
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1. Sample σ2 ∼ IG
(
(ν0 + nm)/2, (ν0σ

2
0 + yT(I− g

g+1X(XTX)−1XT)y)/2
)
.

2. Sample β ∼ Np

(
g

g+1 (X
TX)−1XTy, g

g+1σ
2(XTX)−1

)
.

See for example Ho� (2009) for more details.

3. Hierarchical Normal Linear Regression Model
(HLRM)

We present the treatment of a hierarchical model, in which the observed
data is assumed to be normally distributed with both group-speci�c �xed e�ects
(and therefore subject-speci�c means) and group-speci�c variances. The model
speci�cation provided below is quite convenient because in addition to a global
assessment of the mean relationship between the covariates and the response
variable (as allowed by a standard linear regression model), it gives the means
to carry out speci�c inferences within each group as well as comparisons among
groups.

(a) HLRM (b) CHLRM

Figure 1: DAG representations.

3.1. Model Speci�cation

We consider m independent groups, each one of them with n independent
normally distributed data points (i.e., a balanced experiment), yi,j , each of which
with subject-speci�c mean µi,j = xTi,jβj , with βj = (β1,j , . . . , βp,j), and group-

speci�c variance σ2
j ; i.e.,

yi,j | xi,j ,βj , σ
2
j

ind∼ N
(
xTi,jβj , σ

2
j

)
, i = 1, . . . , n , j = 1, . . . ,m .

In addition, we propose a hierarchical prior distribution with the following stages:

βj | β,Σ
iid∼ Np(β,Σ) and σ2

j | ξ2 iid∼ IG(ν0/2, ν0ξ
2/2) ,
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with
β ∼ Np(µ0,Λ0) , Σ ∼ IW(n0,S

−1
0 ) , ξ2 ∼ G(a0, b0) ,

where ζ = (β1, . . . ,βm), σ2 = (σ2
1 , . . . , σ

2
m), β, Σ, and ξ2 are the unknown model

parameters, and µ0, Λ0, n0, S0, ν0, a0, and b0 are hyperparameters carefully
selected according to external information. Figure 1 provides a directed acyclic
graph (DAG) representation of the model. As a �nal remark, note that �tting this
hierarchical model is not equivalent to �tting regular regression models to each
group independently since the information shared across groups (shrinkage e�ect)
would be lost.

3.2. Prior Elicitation

Following the same unit-information-prior-inspired approach considered to
select the hyperparameters of the Normal linear regression model (once again
we refer the reader to Kass & Wasserman (1995)), we again let g = nm and

ν0 = 1, and set µ0 = β̂OLS, Λ0 = g σ2
0(X

TX)−1, with σ2
0 = σ̂2

OLS (see Section 2
for details). In addition, aiming to establishing a di�use and reasonable centered
prior for Σ, we let n0 = p+ 2 and S0 = Λ0 because such a speci�cation produces
a mean vague concentration of β around µ0 since E(Σ) = Λ0 a priori. Finally, we
let a0 = 1 and b0 = 1/σ2

0 because this choice leads to a di�use prior for ξ2 such
that E(ξ2) = σ0 with CV(ξ2) = 1, which clearly emulates the prior elicitation in a
regular regression setting for which E(σ2) = σ2

0 .

3.3. Posterior Inference

Joint posterior inference for the model parameters can be achieved by
constricting a Gibbs sampling algorithm (Gamerman & Lopes, 2006), which
requires iteratively sampling each parameter from its full conditional distribution.

Let Θ = (ζ,σ2,β,Σ, ξ2) be the full set of parameters in the model. The
posterior distribution of Θ is

p(Θ | y,X) ∝ p(y | X, ζ,σ2) p(ζ | β,Σ) p(β) p(Σ) p(σ2 | ξ2) p(ξ2) ,

which leads to

p(Θ | y,X) ∝
m∏

j=1

n∏
i=1

σ
−1/2
j exp

{
− 1

2σ2
j

(
yi,j − xTi,jβj

)2
}

×
m∏

j=1

|Σ|−1/2 exp
{
− 1

2
(βj − β)TΣ−1(βj − β)

}
× exp

{
− 1

2
(β − µ0)

TΛ−1
0 (β − µ0)

}
× |Σ|−(n0+p+1)/2 exp

{
− 1

2
tr(S0Σ

−1)
}

×
m∏

j=1

(ξ2)ν0/2(σ2
j )

−(ν0/2+1) exp

{
− ν0ξ

2/2

σ2
j

}
× (ξ2)a0−1 exp {−b0ξ

2} .

Let ϕ represent any parameter in Θ. The full conditional distribution (fcd) of ϕ
given the rest of the parameters, the design matrix X, and the data y is denoted
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by p(ϕ | rest). We derived these distributions looking at the dependencies in the
full posterior distribution. Thus, we have that:

� The fcd of βj , for j = 1, . . . ,m, is

βj | rest ∼ Np

((
Σ−1 + σ−2

j XT

j Xj

)−1 (
Σ−1β + σ−2

j XT

j yj

)
,
(
Σ−1 + σ−2

j XT

j Xj

)−1
)

where Xj = [x1,j , . . . ,xn,j ]
T.

� The fcd for β is

β | rest ∼ Np

((
Λ−1

0 +mΣ−1)−1
(
Λ−1

0 µ0 +Σ−1 ∑m
j=1 βj

)
,
(
Λ−1

0 +mΣ−1)−1
)
.

� The fcd of Σ is

Σ | rest ∼ IW

(
n0 +m,

(
S0 +

∑m
j=1(βj − β)(βj − β)T

)−1
)

.

� The fcd of σ2
j , for j = 1, . . . ,m, is

σ2
j | rest ∼ IG

(
(ν0 + n)/2,

(
ν0ξ

2 +
∑n

i=1(yi,j − xTi,jβj)
2
)
/2
)
.

� The fcd of ξ2 is

ξ2 | rest ∼ G
(
a0 +mν0/2, b0 +

ν0

2

∑m
j=1 σ

−2
j

)
.

Let ϕ(b) denote the state of parameter ϕ in the b-th iteration of the Gibbs
sampling algorithm, for b = 1, . . . , B. Then, such an algorithm in this case is as
follows:

1. Choose an initial con�guration for each parameter in the model, say

β
(0)
1 , . . . ,β(0)

m , β(0), Σ(0), (σ2
1)

(0), . . . , (σ2
m)(0), and (ξ2)(0).

2. Update β
(b−1)
1 , . . . ,β(b−1)

m , β(b−1), Σ(b−1), (σ2
1)

(b−1), . . . , (σ2
m)(b−1), and

(ξ2)(b−1) until convergence:

a) Sample β
(b)
j from the fcd p(βj | (σ2

j )
(b−1),β(b−1),Σ(b−1),yj ,Xj), for

j = 1, . . . ,m.

b) Sample β(b) from the fcd p(β | {β(b)
j },Σ(b−1)).

c) Sample Σ(b) from the fcd p(Σ | {β(b)
j },β(b)).

d) Sample (σ2
j )

(b) from the fcd p(σ2
j | β

(b)
j , (ξ2)(b−1),yj ,Xj), for j =

1, . . . ,m.

e) Sample (ξ2)(b) from the fcd p(ξ2 | {(σ2
j )

(b)}).

3. Cycle until achieve convergence.
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4. Clustering Hierarchical Normal Linear
Regression Model (CHLRM)

Here we extend the hierarchical approach provided in the previous section
by adding more structure to the model in order to perform clustering task at
a group level (clusters whose elements are groups). Speci�cally, we consider a
mixture model instead of a regular Normal distribution in the likelihood, and
then, introduce a new set of parameters known as cluster assignments to �break�
the mixture and then be able to identify those groups belonging to the same cluster.

4.1. Model Speci�cation

A natural way to extend the standard hierarchical model consists in relaxing
the normality assumption about the response variable by replacing it with a �nite
mixture of Normal components in such a way that

yi,j | xi,j , {βk}{σ2
k}

ind∼
K∑

k=1

ωkN
(
yi,j | xTi,jβk, σ

2
k

)
, i = 1, . . . , n , j = 1, . . . ,m ,

where K is a positive �xed integer that represents the number of clusters in
which groups can be classi�ed, β1, . . . ,βK and σ2

1 , . . . , σ
2
K are the cluster-speci�c

regression parameters and cluster-speci�c variances of the mixture components,
and ω1, . . . , ωK are mixture probabilities such that 0 < ωk < 1 and

∑K
k=1 ωk = 1.

Note that under this formulation we recover the Normal linear regression model
by setting K = 1.

According to the previous mixture, the probability that the group j is part of
the cluster k is ωk, i.e., Pr(γj = k | ωk) = ωk, for j = 1, . . . ,m and k = 1, . . . ,K,
where γj is a categorical variable (known as either cluster assignment or cluster
indicator) that takes integer values in 1, . . . ,K with probabilities ω1, . . . , ωK ,
respectively. Thus, we can use the cluster assignments γ1, . . . , γm to �break� the
mixture and write the model as

yi,j | xi,j , γj ,βγj
, σ2

γj

ind∼ N
(
yi,j | xTi,jβγj

, σ2
γj

)
i = 1, . . . , n , j = 1, . . . ,m .

In addition, a parsimonious way to formulate a hierarchical prior distribution can
be achieved by letting

γ | ω ∼ Cat(ω) , βk | β,Σ iid∼ Np(β,Σ) and σ2
k | ξ2 iid∼ IG(ν0/2, ν0ξ

2/2) ,

with

ω ∼ Dir(α0) , β ∼ Np(µ0,Λ0) , Σ ∼ IW(n0,S
−1
0 ) , ξ2 ∼ G(a0, b0) ,

where γ = (γ1, . . . , γm), ω = (ω1, . . . , ωK), ζ = (β1, . . . ,βK), σ2 = (σ2
1 , . . . , σ

2
K),

β, Σ, and ξ2 are the unknown model parameters, and α0, µ0, Λ0, n0, S0, ν0, a0,
and b0 are hyperparameters carefully selected according to external information.
Finally, note that the DAG representation of the model is very similar to that
of HLRM, but including an extra random node corresponding to the clustering
process (see Figure 1).
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4.2. Prior Elicitation

Under the same approach as before, we let once again g = nm and ν0 = 1,
and set µ0 = β̂OLS, Λ0 = g σ2

0(X
TX)−1, with σ2

0 = σ̂2
OLS, n0 = p + 2, S0 = Λ0,

a0 = 1, and b0 = 1/σ2
0 . Thus, the only hyperparameter that remains unspeci�ed

is α0. To do so in a sensible way, we let α0 =
(

1
K , . . . , 1

K

)
, which has a direct

connection with a Chinese restaurant process prior (Ishwaran & Zarepour, 2000)
and places a di�use prior distribution for the number of occupied clusters in the
data.

4.3. Posterior Inference

Once again we appeal to MCMC methods as in Section 3 to explore the
posterior distribution of the model parameters Θ = (γ,ω, ζ,σ2,β,Σ, ξ2). The
posterior distribution of Θ is such that

p(Θ | y,X) ∝ p(y | X,γ, ζ,σ2) p(γ | ω) p(ω) p(ζ | β,Σ) p(β) p(Σ) p(σ2 | ξ2) p(ξ2) ,

which leads to

p(Θ | y,X) ∝
m∏

j=1

n∏
i=1

σ
−1/2
j exp

{
− 1

2σ2
γj

(
yi,j − xTi,jβγj

)2
}
×

m∏
j=1

K∏
k=1

ω
[γj=k]

k ×
K∏

k=1

ω
α0k
k

×
K∏

k=1

|Σ|−1/2 exp
{
− 1

2
(βk − β)TΣ−1(βk − β)

}
× exp

{
− 1

2
(β − µ0)

TΛ−1
0 (β − µ0)

}
× |Σ|−(n0+p+1)/2 exp

{
− 1

2
tr(S0Σ

−1)
}

×
K∏

k=1

(ξ2)ν0/2(σ2
k)

−(ν0/2+1) exp
{
− ν0ξ

2/2

σ2
k

}
× (ξ2)a0−1 exp {−b0ξ

2} ,

where [x = i] is the Iverson bracket. Such a posterior distribution is quite
reminiscent of the one that we derived for the hierarchical model in Section 3,
but this time it includes a portion related with the clustering process, and also,
group-speci�c parameters cycle over K terms instead of m.

Once again, we derive the fcd's from the posterior distribution, obtaining that:

� The fcs of γj , for j = 1, . . . ,m, is a Categorical distribution such that

Pr(γj = k | rest) ∝ ωk

n∏
i=1

N(yi,j | xTi,jβk, σ
2
k) , for k = 1, . . . ,K .

� The fcs of ω is

ω | rest ∼ Dir(α01 + n1, . . . , α0K + nK)

where nk = #{j : γj = k} is the number of elements in cluster k, for
k = 1, . . . ,K.
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� The fcd of βk, for k = 1, . . . ,K, is

βk | rest ∼ Np

((
Σ

−1
+ σ

−2
k X

T

(k)X(k)

)−1 (
Σ

−1
β + σ

−2
k X

T

(k)y(k)

)
,
(
Σ

−1
+ σ

−2
k X

T

(k)X(k)

)−1
)

where X(k) = [XT

j : γj = k]T and y(k) = [yTj : γj = k]T. Note that if cluster
k is empty, then the fcd of βk is just βk | rest ∼ Np(β,Σ).

� The fcd for β is

β | rest ∼ Np

((
Λ−1

0 +K∗Σ−1
)−1 (

Λ−1
0 µ0 +Σ−1 ∑K

k:nk>0 βk

)
,
(
Λ−1

0 +K∗Σ−1
)−1

)
where K∗ is the number of non-empty clusters.

� The fcd of Σ is

Σ | rest ∼ IW

(
n0 +K∗,

(
S0 +

∑K
k:nk>0(βk − β)(βk − β)T

)−1
)

.

� The fcd of σ2
k, for k = 1, . . . ,K, is

σ2
k | rest ∼ IG

(
(ν0 + nk)/2,

(
ν0ξ

2 +
∑m

j:γj=k

∑n
i=1

(
yi,j − xTi,jβγj

)2
)
/2

)
.

Again, note that if cluster k is empty, then the fcd of σ2
k is just σ2

k | rest ∼
IG(ν0/2, ν0ξ

2/2).

� The fcd of ξ2 is

ξ2 | rest ∼ G
(
a0 +K∗ν0/2, b0 +

ν0

2

∑K
k:nk>0 σ

−2
k

)
.

Thus, the Gibbs sampling algorithm in this case is as follows:

1. For a given value of K, choose an initial con�guration for each

parameter in the model, say γ
(0)
1 , . . . , γ

(0)
m , ω(0), β

(0)
1 , . . . ,β

(0)
K , β(0), Σ(0),

(σ2
1)

(0), . . . , (σ2
K)(0), and (ξ2)(0).

2. Update γ
(b−1)
1 , . . . , γ

(b−1)
m , ω(b−1), β

(b−1)
1 , . . . ,β

(b−1)
K , β(b−1), Σ(b−1),

(σ2
1)

(b−1), . . . , (σ2
K)(b−1), and (ξ2)(b−1) until convergence:

a) Sample γ
(b)
j from the fcd p(γj | ω(b−1), {β(b−1)

k }, {(σ2
k)

(b−1)},Xj), for
j = 1, . . . ,m.

b) Sample ω(b) from the fcd p(ω | {γ(b)
j }).

c) Sample

β
(b)
k from the fcd p(βk | {γ(b)

j }, (σ2
k)

(b−1),β(b−1),Σ(b−1), {yj}, {Xj}), for
k = 1, . . . ,K.

d) Sample β(b) from the fcd p(β | {β(b)
k },Σ(b−1)).

e) Sample Σ(b) from the fcd p(Σ | {β(b)
k },β(b)).

f) Sample (σ2
k)

(b) from the fcd p(σ2
k | {γ(b)

j }, {β(b)
k }, (ξ2)(b−1), {yj}, {Xj}),

for k = 1, . . . ,K.

g) Sample (ξ2)(b) from the fcd p(ξ2 | {(σ2
k)

(b)}).

3. Cycle until achieve convergence.
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5. Further Extensions

In order to gain stochastic �exibility, yet another way of extending the model
provided in Section 3 consists in completely relaxing the normality assumption
about the response variable by assigning a prior distribution to it. Speci�cally, we
consider a Dirichlet process (DP) mixture model of the form

yi,j | xi,j , σ
2
j , G

ind∼
∫

N
(
yi,j | xTi,jβj , σ

2
j

)
dG(βj) and G ∼ DP(α,H)

where α is a positive scalar parameter and H is a base distribution function. In
this case, the DP generates cumulative distribution functions on R (see for example
Müller et al. (2015) for a formal treatment of the DP). The model given above can
be also written as

yi,j | xi,j ,βj , σ
2
j

ind∼ N
(
xTi,jβj , σ

2
j

)
, βj | G ∼ G and G ∼ DP(α,H) ,

which makes evident why the µi,j = xTi,jβj can be interpreted as subject-speci�c
random e�ects. Such an extension is beyond the scope of this work and will be
discussed in detail elsewhere.

Other straightforward parametric extensions are considering group-speci�c
e�ects θ1, . . . , θm in a way that E(yi,j | xi,j ,βj , θj) = xTi,jβj + θj , for i = 1, . . . , n,
j = 1, . . . ,m, as well as extra model hierarchies such as letting ν0 to be a
integer random value ranging from 1 to a �xed large upper bound in a way
that p(ν) ∝ e−κ0ν , where κ0 is a hyperparameter. For clustering tasks, more
sophisticated extensions require the speci�cation of nonparametric priors of the

form γj | {ωk}
iid∼

∑∞
k=1 ωkδk, for j = 1, . . . ,m, where ωk = uk

∏
h<k(1 − uh) are

weights constructed from a sequence u1, u2, . . ., with uk
ind∼ Beta(1− a, b+ ka) for

0 < a < 1 and b > −a. The joint distribution of the set of weights ω1, ω2, . . .
is called a stick-breaking prior with parameters a and b. This formulation
is connected to the stick-breaking construction of the Poisson-Dirichlet process
(Pitman & Yor, 1997). The stick-breaking representation associated with the
Dirichlet process is a special case with a = 0.

6. Computation

We implement the models provided in Sections 2, 3, and 4 following the
corresponding algorithms provided in each section (our code is available for those
readers that explicitly ask it from the corresponding author). Every time our
results are based on B = 50, 000 samples of the posterior distribution obtained
after thinning the original chains every 10 observations and a burn-in period of
10,000 iterations. In addition, before using the MCMC samples with inferential
purposes, we determine �rst if there is any evidence of lack of convergence of
any chain to its stationary distribution. Following standard practices, we produce
log-likelihood traceplots of each model. Fitting the models to the data provided
in Section 8, such plots strongly suggest that there are no stationary concerns
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since the log-likelihoods move in a consistent direction (see Figure 2). Further,
autocorrelation plots of model parameters (not shown here) indicate that there
are no signs of strong dependence in the chains. Thus, we are very con�dent of
our MCMC samples to perform inductive tasks.

0 10000 20000 30000 40000 50000

−
43

8
−

43
2

−
42

6

Iteración

Lo
g−

lik
el

ih
oo

d

(a) LRM

0 10000 20000 30000 40000 50000

−
28

0
−

26
0

−
24

0

Iteración

Lo
g−

lik
el

ih
oo

d

(b) HLRM

0 10000 20000 30000 40000 50000

−
29

0
−

27
0

−
25

0

Iteración

Lo
g−

lik
el

ih
oo

d

(c) CHLRM

Figure 2: Log-likelihood traceplots when �tting the models for the plant size data
analyzed in Section 8.
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7. Model Checking and Goodness-of-Fit

We check the in-sample performance of the model by generating new data
from the posterior predictive distribution, and then, calculating a battery of test
statistics (such as the mean), aiming to compere the corresponding empirical
distributions with the actual values observed in the sample (Gelman et al., 2013).
In this spirit, for each quantity of interest, we also compute the posterior predictive
p-value (ppp), which can be calculated as

ppp = Pr(t(yrep) > t(y) | y)

where yrep is a predictive dataset and t a test statistic, in order to measure how
good the model is in �tting the actual sample.

Finally, in order to asses the goodness-of-�t of each model as a measure
of their predictive performance, in what follows we consider two metrics that
account for both model �t and model complexity. The goal here is not necessarily
picking the model with lowest estimated prediction error but to determine if
improvements in �tting the model are large enough to justify the additional
di�culty. That why such measures also serve as model-selection tools. The model-
based literature has largely focused on the Bayesian Information Criteria (BIC)
as a mechanism for model selection. However, the BIC is typically inappropriate
for hierarchical models since the hierarchical structure implies that the e�ective
number of parameters will typically be lower than the actual number of parameters
in the likelihood (Gelman et al., 2014). Two popular alternatives to the BIC that
address such an issue are the Deviance Information Criterion (DIC) (Spiegelhalter
et al., 2002, 2014),

DIC = −2 log p(y | Θ̂) + 2pDIC ,

with pDIC = 2 log p(y | Θ̂) − 2E (log p (y | Θ)) or pDIC = Var (log p (y | Θ)), and
the Watanabe-Akaike Information Criterion (WAIC) (Watanabe, 2010, 2013),

WAIC = −2
∑
i,j

log E (p (yi,j | Θ)) + 2 pWAIC ,

with pWAIC = 2
∑

i,j

{
log E (p (yi,j | Θ)) − E (log p (yi,j | Θ))

}
, where Θ̂ is the

posterior mean of model parameters, and pDIC and pWAIC are penalty terms
accounting for model complexity. Note that in the previous expressions all
expectations, which are computed with respect to the posterior distribution, can be
approximated by averaging over Markov chain Monte Carlo (MCMC) samples (see
Section 6 for details). Next section we use the two versions of the DIC presented
here.

Additional out-of-sample goodness-of-�t assessments can be carried out
through a series of cross-validation experiments (randomly selected subsets of
roughly equal size in the dataset are treated asmissing and then predicted using
the rest of the data) on several datasets exhibiting di�erent kinds of grouping
factors as well as samples sizes. We refer the reader to Gelman et al. (2013, Chap.
7) for such protocol.
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8. Illustration

Nitrogen is an essential macro-nutrient needed by all plants to thrive. It is
an important component of many structural, genetic, and metabolic compounds
in plant cells. Increasing the levels of nitrogen during the vegetative stage can
strengthen and support the plant roots, enabling them to take in more water
nutrients. This allows a plant to grow more rapidly and produce large amounts
of succulent, green foliage, which in turn can generate bigger yields, tastier
vegetables, and a crop that is more resistant to pests, diseases, and other adverse
conditions. Using too much nitrogen, however, can be just as harmful to plants
as to little. A researcher took n = 5 measurements of nitrogen soil concentration
(x) and plant sizes (y) within each of m = 24 farms. Thus, we have that yi,j
and xi,j are the plant size and the nitrogen soil concentration values, respectively,
associated the i-th plant from the j-th farm, i = 1, . . . , 5 and j = 1, . . . , 24.
This dataset is given in Crawley (2012, p. 704) and remains publicly available at
https://github.com/shifteight/R-lang/blob/master/TRB/data/farms.txt.
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Figure 3: Descriptive plots. The second panel exhibit the ordinary least squares
regression line for this data. Colors in the third panel correspond to di�erent
farms.

8.1. Exploratory Data Analysis

A histogram of the plant size is shown in the �rst panel of Figure 3. The
plant size ranges from 76.56 to 117.50 which seems quite large in comparison with
the plant size range within each farm (see the bottom panel). The second and
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third panels show the relationship between the plant size and the nitrogen soil
concentration. In particular, the second panel exhibits the ordinary least squares
(OLS) regression line for these data, which is given by y = 92.57 + 0.36x with
a standard error of σ̂OLS = 8.46 with 118 degrees of freedom, and an adjusted
R-squared of R2

adj = 2.56%. The third panel presents the same plot but taking
into account the farm where the measurements belong to. These panels along
with the OLS �t indicate two main features about this experiment: (1) there is an
important relationship between the nitrogen soil concentration and the plant size
(in our OLS �t the slope turns out to be signi�cant, p-value = 0.04); and (2) there
is a clear farm e�ect on plant size since colors in the scatter plot reveal clustering
patters, and also, the corresponding boxplots strongly suggest di�erences in terms
of mean plant growth among farms.

8.2. Fitting a LRM

We �t the LRM given in Section 2 to these data without taking into account
the farm information. Posterior summaries of the model parameters are provided
in Table 1. Even though the posterior mean of the model parameters practically
coincide with their corresponding OLS estimates, these results are again quite
limited since they do not allow us to isolate any kind of e�ect over the plant
size arising from the grouping factor. Such limitation strongly motivates the
hierarchical approaches that we present in this paper.

Table 1: Posterior summaries of the model parameters in the linear regression model.

Parameter Mean SD Q2.5% Q97.5%

β1 92.59 3.60 85.53 99.61

β2 0.36 0.18 0.01 0.70

σ2 72.89 9.67 56.35 94.07

8.3. Fitting a HLRM

Now we go further and �t the HLRM given in Section 3 to the plant size
data considering both group-speci�c �xed e�ects β1, . . . ,βm and group-speci�c
variances σ2

1 , . . . , σ
2
m. Such a group-speci�c approach is very convenient because it

allows us to carry out separate-group inferences as opposed to its non-hierarchical
counterpart.

We present our main results in Figures 4 and 5 where we display 95% quantile-
based credible intervals for β1, . . . ,βm and σ2

1 , . . . , σ
2
m, respectively. At this point

we are capable of making evident some important �ndings. The uncertainty about
the group-speci�c parameters is not constant since the amplitude of the credible
intervals clearly varies across farms. This e�ect is particularly evident for the
variance components. In addition, point estimates (posterior means) of the group-
speci�c parameters are also quite variable, which strongly suggests that for these
data considering this approach is bene�cial because it allows us to characterize
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for each farm its own unique features. However, some farms show some signs of
similar features, which was also evident before in Figure 3. We explore clustering
patterns in the next subsection.
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Figure 4: 95% quantile-based credible intervals and posterior means (squares) for the
regressor �xed-e�ects regressor parameters in the hierarchical Normal linear
regression model. Colored thicker lines correspond to credible intervals that
do not contain zero. Top panel: β1,1, . . . , β1,m (intercepts). Bottom panel:
β2,1, . . . , β2,m (slopes). OLS estimates are depicted through a red horizontal
line.

As expected, we see that all the intercepts are statistically signi�cant, but
also highly variable (ranging from 61.48 to 106.81). On the other hand, the story
behind the slopes (ranging from 0.08 to 1.04) is quite di�erent. We see that just 9
out of 24 (37.5%) of such parameters turn out to be signi�cant, namely, for farms
1, 7, 9, 15, 18, 20, 21, 22, and 23 (Figure 6 shows the corresponding estimated
regression lines for these farms). The previous fact strongly suggests that the
relevance of the relationship between the nitrogen soil concentration and the plant
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size is not consistent across farms. Therefore, in this case, considering farms as a
grouping factor makes a substantial impact on the analysis.
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Figure 5: 95% quantile-based credible intervals and posterior means (squares) for the
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Figure 6: Estimated lines of the hierarchical Normal linear regression model for those
farms whose nitrogen soil concentration is statistically signi�cant. Colors are
used to represent di�erent farms.

8.4. Fitting a CHLRM

It is quite reasonable attempting to identify clusters composed of farms given
the abundant evidence of similarities among groups and cluster formation detected
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in both the exploratory data analysis and the hierarchical modeling stage of the
analysis. Here, we �t the CHLRM model given in Section 4 in order to provide a
formal partition of farms. To this end, we �t the model using K = m as a default
number of communities. Such an extreme case represents the prior belief that
there are no clustering patterns at all. A moderate large value of K is convenient
in situations like this because it allows the data to self-select how many non-empty
clusters should be considered. We will see in what follows that out from the m
clusters, many turn out to be empty and only a few remain.
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Figure 7: Posterior inference on the cluster assignments γ1, . . . , γm.

Let K∗ be the number of non-empty clusters in the partition induced by
γ1, . . . , γm. The left panel of Figure 7 shows the posterior distribution of K∗.
We see that the most highly probable values are K∗ = 7 and K∗ = 8. In fact,
Pr(K∗ ∈ {7, 8} | y,X) = 0.76, which means that around three quarters of the
posterior partitions are composed of either 7 or 8 clusters of farms. The estimated
number of non-empty clusters in the data is K∗ = 7 (maximum a posteriori with
a reference value very close to 0.4).

On the other hand, the right panel in Figure 7 shows them×m incidence matrix
A = [aj,j′ ] obtained from the posterior distribution of the cluster assignments
γ1, . . . , γm. The incidence matrix is a pairwise-probability matrix whose elements
are given by aj,j′ = Pr(γj = γj′ | y,X), for j, j′ = 1, . . . ,m (note that aj,j = 1 for
all j). Thus, aj,j′ simply represents the posterior probability that farms j and j′

belong to the same community. Such probabilities are indeed identi�able, however
labels themselves are not since the likelihood is invariant to relabelling of the
mixture components (this is known as the label switching problem; see Stephens
(2000) and references therein). On top the incidence matrix, we also present a
point estimate of the partition induced by such a matrix (represented by black
lines), which can be obtained by employing the clustering methodology proposed
in Lau & Green (2007) with a relative error cost of 0.5. As expected, we see that
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eight clusters are formed from the data. Labels in both rows and columns are
deliberately arranged in a way that the corresponding partition can be visualize
easily. The corresponding cluster sizes are 6, 6, 5, 2, 2, 1, 1, and 1. Speci�cally,
the clusters are composed of the following farms: C1 = {2, 3, 5, 12, 18, 22},
C2 = {4, 6, 8, 11, 15, 21}, and C3 = {14, 16, 17, 19, 24}, C4 = {7, 13}, C5 = {9, 20},
C6 = {1}, C7 = {10}, and C8 = {23}. These clusters along with their estimated
regression lines are also represented in Figure 6. We see that the estimated clusters
make sense spatially according to the data points. The slope parameters turn out
to be signi�cant for every cluster.

8.5. Model Checking and Goodness-of-Fit

First, we evaluate in-sample predictive performance of each model by means
of the mean square error (MSE) of replicated data as well as the posteriori
predictive p-values (ppp's) associated with the predictive distribution of a set of
test statistics (mean, median, interquartile range, and the standard deviation),
both locally and globally (i.e., with and without considering the farm as grouping
factor, respectively). Furthermore, as discussed in Section 7, we also consider the
deviance information criterion (DIC) in order to assess the overall goodness-of-�t
of the models.

In what follows we examine the performance of all the �tted models, namely,
the linear regression model (LRM), the hierarchical linear regression model
(HLRM), and the clustering hierarchical linear regression model (CHLRM). Our
main �ndings at a global level are presented in Table 2. As expected, the
performance of LRM at predicting new data is the worst. Interestingly, both
HLRM and CHLRM practically have the same behavior in this regard. A
similar result is encountered again in terms of model �t, but this time both
versions of the DIC favor HLRM over CHLRM. These results strongly suggest
that considering a hierarchical structure when building a model clearly favor both
in-sample predictive performance as well as goodness-of-�t.

Table 2: Global measures associated with the mean square error, posterior predictive p-
values, and deviance information criterion for all the models �tted to the plant
size data. LRM: Normal linear regression model. HLRM: Hierarchical Normal
linear regression model. CHLRM: Clustering hierarchical Linear regression
model.

Model MSE pDIC1 DIC1 pDIC2 DIC2

LRM 144.528 2.972 857.158 0.792 854.381

HLRM 10.206 30.469 526.450 22.804 511.122

CHLRM 10.068 32.167 555.020 18.929 528.545

At global level, all the models seem to predict adequately the test statistics
since there are no evidence of extreme ppp values close to either 0 or 1 (table not
shown here). However, the story locally is quite di�erent. Figure 8 show boxplots
summarizing the ppp distribution at a local level (i.e., within each farm). As
opposed to its early global conduct, LRM misbehaves and fails at capturing the the

Revista Colombiana de Estadística - Applied Statistics 45 (2022) 231�255



250 Juan Sosa & Jeimy-Paola Aristizabal

test statistics because the ppp's are too extreme. On the other hand, both HLRM
and CHLRM �t the data properly since the ppp distribution is approximately
centered around 0.5. However, the ppp's for HLRM are less spread than those
for CHLRM, which indicates that HLRM tends to have a mild improvement in
predictive performance in this case.
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Figure 8: Local ppp's for a battery of test statistics.

9. Discussion

Hierarchical models provide a strong alternative to analyze complex and
realistic settings. Their parameter �exibility allow us to describe many charac-
teristics of a given dataset that a regular single-level model does not provide.
The ability to model within and between means and variances yields to better
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knowledge of the problem (even if we want to predict future values at any stage).
For even more detail and deep types of complexity, this kind of models provide
many alternatives for generalizations as discussed in Section 5. In addition, the
information criteria (e.g., DIC) discussed in Section 7 was proven to be successful
to be a powerful as a model selection tool.

If additional time-dependent covariates were available, we would be able to
extend the linear dependency in the model by letting E(y(t) | x,β(t)) = xTβ(t),
where β(t) = (β1(t), . . . , βd(t)) is a vector of arbitrary real smooth functions
called dynamic parameters. This model plays a fundamental role identifying and
characterizing dynamic tendencies and patterns over time in many scienti�c areas,
such as biology, epidemiology and medical science, among others (Sosa & Buitrago,
2021).

Finally, we recommend consider variational methods as alternative approaches
for parameter estimation in order to consider larger datasets. Such techniques
currently constitute an active research area in computational statistics (Blei et al.,
2017).
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Appendix A. Dirichlet process

A random distribution function F is generated from a Dirichlet Process with
parameters α > 0 and G a distribution function on R, denoted by F ∼ DP(α,G),
if for any �nite measurable partition B1, . . . , Bk of R,

(F (B1), . . . , F (Bk)) ∼ Dir(αG(B1), . . . , αG(Bk)) .

G plays the role of the center of the DP (also referred to as base probability
measure, or base distribution), where as α can be viewed as a precision parameter
(the larger α is, the closer we expect a realization F from the process to be to G).
See Ferguson (1973) for the role of G on more technical properties of the DP.

Alternatively, the constructive de�nition of the DP (Sethuraman, 1994) states
that F ∼ DP(α,G) if F is (almost surely) of the form

F (·) =
∞∑
k=1

ωkδϑk
(·)

where δϑ(·) denotes a point mass at ϑ (degenerate distribution putting probability

one on ϑ), ϑk
iid∼ G, ωk = zk

∏k−1
ℓ=1 (1− zℓ), zk

iid∼ Beta(1, α), for k = 1, 2, . . .. Hence,
the DP generates distributions that can be represented as countable mixtures of
point masses (the locations ϑk arise i.i.d. from the base distribution G), whose
weights ωk arise through a stick-breaking construction (it can be shown that∑∞

k=1 ωk = 1 almost surely).

Based on its constructive de�nition, it is evident that the DP generates (almost
surely) discrete distributions on R.

Appendix B. Notation

The cardinality of a set A is denoted by |A|. If P is a logical proposition, then
1P = 1 if P is true, and 1P = 0 if P is false. ⌊x⌋ denotes the �oor of x, whereas [n]
denotes the set of all integers from 1 to n, i.e., {1, . . . , n}. The Gamma function
is given by Γ(x) =

∫∞
0

ux−1 e−u du.

Matrices and vectors with entries consisting of subscripted variables are
denoted by a boldfaced version of the letter for that variable. For example,
x = (x1, . . . , xn) denotes an n×1 column vector with entries x1, . . . , xn. We use 0
and 1 to denote the column vector with all entries equal to 0 and 1, respectively,
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and I to denote the identity matrix. A subindex in this context refers to the
corresponding dimension; for instance, In denotes the n× n identity matrix. The
transpose of a vector x is denoted by xT; analogously for matrices. Moreover, if X
is a square matrix, we use tr(X) to denote its trace and X−1 to denote its inverse.

The norm of x, given by
√
xTx, is denoted by ∥x∥ .

Now, we present the form of some standard probability distributions:

� Multivariate normal:

A d × 1 random vector X = (X1 . . . , Xd) has a multivariate Normal
distribution with parameters µ and Σ, denoted by X | µ,Σ ∼ Nd(µ,Σ), if
its density function is

p(x | µ,Σ) = (2π)−d/2 |Σ|−1/2 exp
{
− 1

2 (x− µ)TΣ−1(x− µ)
}
.

� Inverse Wishart:

A d×d random matrixW has a Inverse Wishart distribution with parameters
ν y S−1, i.e., W ∼ WI(ν,S−1), if its density function is

p(W) ∝ |W|−(ν+d+1)/2 exp
{
− 1

2 tr(SW
−1)

}
, ν > 0 , S > 0.

� Gamma:

A random variable X has a Gamma distribution with parameters α, β > 0,
denoted by X | α, β ∼ G(α, β), if its density function is

p(x | α, β) = βα

Γ(α)
xα−1 exp {−βx} , x > 0 .

� Inverse Gamma:

A random variable X has an Inverse Gamma distribution with parameters
α, β > 0, denoted by X | α, β ∼ IG(α, β), if its density function is

p(x | α, β) = βα

Γ(α)
x−(α+1) exp {−β/x}, x > 0 .

� Beta:

A random variable X has a Beta distribution with parameters α, β > 0,
denoted by X | α, β ∼ Beta(α, β), if its density function is

p(x | α, β) = Γ(α+ β)

Γ(α) Γ(β)
xα−1 (1− x)β−1, 0 < x < 1 .

� Dirichlet:

A K × 1 random vector X = (X1, . . . , XK) has a dirichlet distribution
with parameter vector α = (α1, . . . , αK), where each αk > 0, denoted by
X | α ∼ Dir(α), if its density function is

p(x | α) =

{
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

∏K
k=1 x

αk−1
k , if

∑K
k=1 xk = 1;

0, otherwise.
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� Categorical:

A K × 1 random vector X = (X1, . . . , XK) has a categorical distribution

with parameter vector p = (p1, . . . , pK), where
∑K

k=1 pk = 1, denoted by
X | p ∼ Cat(p), if its probability mass function is

p(x | p) =

{ ∏K
k=1 p

1{x=k}
k , if

∑K
k=1 xk = 1;

0, otherwise.
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