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Abstract

Electronic health records (EHR) provide valuable resources for
longitudinal studies and understanding risk factors associated with poor
clinical outcomes. However, they may not contain complete follow-ups,
and the missing data may not be at random since hospital discharge
may depend in part on expected but unrecorded clinical outcomes that
occur after patient discharge. These non-ignorable missing data requires
appropriate analysis methods. Here, we are interested in measuring and
analyzing individual treatment bene�ts of medical treatments in patients
recorded in EHR databases. We present a method for predicting individual
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bene�ts that handles non-ignorable missingness due to hospital discharge.
The longitudinal clinical outcome of interest is modeled simultaneously
with the hospital length of stay using a joint mixed-e�ects model, and
individual bene�ts are predicted through a frequentist approach: the
empirical Bayesian approach. We illustrate our approach by assessing
individual pain management bene�ts to patients who underwent spinal fusion
surgery. By calculating sample percentiles of empirical Bayes predictors of
individual bene�ts, we examine the evolution of individual bene�ts over time.
We additionally compare these percentiles with percentiles calculated with
a Monte Carlo approach. We showed that empirical Bayes predictors of
individual bene�ts do not only allow examining bene�ts in speci�c patients
but also re�ect overall population trends reliably.

Key words: Electronic health records; Empirical Bayesian prediction; Joint
mixed models; Non-ignorable missing data; Observational data; Random
e�ects.

Resumen

Los registros de salud electrónicos (RSE) suministran recursos valiosos
para estudios longitudinales y para comprender los factores de riesgo
asociados con pobres resultados clínicos. Sin embargo, estos podrían no
contener seguimientos completos, y los datos faltantes podrían no ser al
azar, debido a que el alta hospitalaria puede depender en parte de resultados
clínicos esperados pero no registrados que ocurren después de dar de
alta al paciente. Esta ausencia de datos no ignorables requiere métodos
apropiados de análisis. Aquí estamos interesados en medir y analizar
bene�cios individuales de tratamientos médicos en pacientes consignados
en bases de datos RSE. Proponemos un método para predecir bene�cios
individuales el cual maneja los datos faltantes debidos al alta hospitalaria.
La respuesta clínica longitudinal de interés se modela junto con el tiempo
de estadía en el hospital usando un modelo conjunto de efectos mixtos, y los
bene�cios individuales se predicen por medio de un enfoque frecuentista:
el enfoque Bayesiano empírico. Nuestro enfoque es ilustrado evaluando
los bene�cios individuales del tratamiendo para el dolor en pacientes
que fueron sometidos a cirugía de fusión espinal. Aquí examinamos la
evolución de los bene�cios individuales a través del tiempo mediante el
cálculo de los percentiles muestrales de los predictores de Bayes empíricos
de los bene�cios individuales. También comparamos estos percentiles con
percentiles calculados mediante un enfoque Monte Carlo. Los resultados
mostraron que los predictores de Bayes empíricos de bene�cios individuales
no sólo permiten examinar bene�cios en pacientes especí�cos sino que
también re�ejan con�ablemente las tendencias poblacionales globales.

Palabras clave: Datos faltantes no ignorables; Datos observacionales;
Efectos aleatorios; Modelos mixtos conjuntos; Predicción Bayesiana
empírica;Registros de salud electrónicos.
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1. Introduction

It is increasingly recognized that a patient's response to a medical treatment is a
statistically heterogeneous phenomenon (de Leon, 2012). Average treatment e�ects
may not accurately represent a heterogeneous population of patients (Ruberg
et al. 2010; Gewandter et al. 2019). The bene�ts each patient receives from the
treatment could di�er; which implies that treatment bene�ts should be measured
at the patient level (Diaz 2016; 2019; 2021; Zhang et al. 2020; Wang & Diaz 2020).
Generalized linear mixed-e�ects models allow identifying the various sources of
variation of patients' responses (Andrews & Cho 2018; Botts et al. 2008; Cho
et al. 2017; Diaz & de Leon 2013; Diaz et al. 2007; 2008; 2012a; 2012b; 2013; 2014;
Diaz 2018; Senn 2016; Zhu & Qu 2016; Shirafkan et al. 2020), o�ering an excellent
tool for analyzing individual bene�ts and applications in personalized medicine.
In the context of clinical trials, Diaz (2016) has proposed a methodology based
on mixed models that allows quantifying and analyzing the individual bene�ts of
medical treatments. He de�nes an individual bene�t as the reduction in disease
severity produced by the treatment, whereas disease severity is de�ned as the
probability that the clinical outcome of interest is outside of the therapeutic
target. Individual bene�ts are thus measured on a probability scale. In practice,
to assess the bene�ts of a treatment for a speci�c patient, empirical Bayes (EB)
predictors of the individual bene�ts are calculated. This frequentist approach has
been implemented with both continuous (Diaz, 2019) and binary (Zhang et al.,
2020) clinical outcomes and has been proposed as the foundation of treatment
individualization methods in N-of-1 clinical trials (Diaz, 2021).

It is also recognized that real-world data such as electronic health records
(EHR) collected in a non-randomized setting hold critical value for clinical
evidence generation and play a complementary role to clinical trial data (Miksad
& Abernethy, 2018). EHR data provide longitudinal follow-up for patient's
outcomes. One limitation of EHR data, however, is that there is usually incomplete
follow-up due to hospital discharge. Since hospital discharge often depends on
the patient's response, non-recorded responses after discharge are nonignorable
missing data (Little & Rubin 2002; Pantazis & Touloumi 2010; Albers et al.
2018). This creates a problem for building models to predict treatment bene�ts
because generalized mixed e�ects models assume missingness at random (Hedeker
& Gibbons 2006; Laird 1998). When the missingness is non-ignorable, statistical
analyses with these models may be seriously biased if the model does not
appropriately incorporate the variable causing the missingness (Touloumi et al.,
1999).

This study has three objectives. The �rst is to extend the methodology for
measuring and analyzing individual treatment bene�ts proposed by Diaz (2016;
2019; 2021) to longitudinal hospital data with non-ignorable missingness. The
second objective is to illustrate the methodology with a detailed data analysis
of the individual bene�ts of postoperative pain management in 330 patients who
underwent spinal fusion surgery, using EHR data (Cerner HealthFacts®; Kansas
City, MO). In our data analysis, we examine estimates of population percentiles of
individual bene�ts to understand population time trends using sample percentiles
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of EB predictions of individual bene�ts. The third objective is to compare our
approach based on EB predictors with an alternative approach based on Monte
Carlo approximations to the probability distribution of the individual bene�ts.
The goal of this comparison is to illustrate that, in addition to allowing measuring
the individual bene�ts to speci�c patients, EB predictors allow representing the
estimated overall population trends (Zhang et al., 2020).

Here, we propose to analyze individual treatment bene�ts with hospital data by
jointly modeling the patients' responses to the medical treatment and their hospital
length of stay (LOS). LOS is also called patient's discharge time. Joint mixed-
e�ects models that combine a generalized linear mixed e�ects model with a survival
model have been used to handle longitudinal clinical trial data with informative
drop-outs that produce non-ignorable missings (Schluchter 1992; De Gruttola &
Tu 1994; Touloumi et al. 1999; Pantazis & Touloumi 2010; Crowther et al. 2012;
Armero et al. 2018; Hickey et al. 2018; Shardell & Ferrucci 2018; Schluchter
& Piccorelli 2019; Papageorgiou et al. 2019). In particular, Touloumi, Pocock,
Babiker & Darbyshire (1999) developed a method of parameter estimation for joint
models that combines restricted iterative generalized least-squares with a nested
expectation-maximization algorithm. To our knowledge, these models have not
been used to model hospital data, which are unavoidably biased by non-ignorable
missingness due to the dependence of hospital discharge on the patient's response.

This study was motivated by the fact that many outcomes of clinical procedures
and pharmacological therapies, as well as patient-reported outcomes recorded in
longitudinal EHR data are associated with hospital LOS. For instance, laboratory
results such as biological markers of acute myocardial infarction (Gronski et al.,
2012) or acute kidney injury (Edelstein, 2008), as well as physical or behavioral
scores (Shaw et al., 2018), are often measured only during hospital stay and are
used in discharge planning and decision making. Another example is patients'
self-reported measurements of pain scores to monitor the e�ectiveness of a surgical
procedure, which are available before surgery, or during the hospital stay after the
surgery, but are no longer recorded after discharge.

Here, we apply our novel bene�t analysis methodology to the quanti�cation and
comparison of individual bene�ts of postoperative pain management. We evaluate
the e�ects of depression and geriatric age (age > 65 years) on patient-reported pain
levels. Although lumbar spinal fusion is the top treatment for chronic low back
pain and the second most common lower back operation overall, we need a better
understanding of how patients' characteristics in�uence postoperative outcomes
(Gaudin et al. 2017; Gerbershagen et al. 2014). Depression is known to be
associated with chronic pain such as back pain and is a negative predictor of spinal
fusion outcomes (Gaudin et al., 2017). Retrospective cohort studies have found
that: 1) patients with pre-existing depression were absent from work for more days
after spinal fusion surgery compared to those without depression (Anderson et al.,
2015), and 2) preoperative depression in�uences patient satisfaction independent of
the surgery's e�ectiveness (Adogwa et al., 2013). Patient-reported maximum pain
levels on a scale from 0 to 10 are often used as postoperative quality measures to
monitor pain relief and track patients' progress after spinal fusion. Studies of risk
factors for severe postoperative pain have provided varying results. The risk factors
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could be procedure-speci�c; however, preoperative chronic pain and younger age
were associated with higher postoperative pain level independent of the type and
extent of the surgery in pooled data from 150 German hospitals (Gerbershagen
et al., 2014). In a German registry of knee replacement, older age was associated
with lower reported maximum pain levels. On the other hand, the elderly patients
did not report less functional impairment caused by pain, suggesting that they
tend to underreport their pain levels (Weinmann et al., 2017).

2. Methods

2.1. Joint Model for Observational Longitudinal Continuous

Outcomes with Non-ignorable Missingness

Next, we describe a joint multivariate random e�ects model that simultaneously
models a continuous clinical outcome and the hospital LOS. In the application
presented in this article, the outcome is a transformed self-reported pain score
from patients who underwent lumbar spinal fusion surgery. In general, we assume
that we have data from N patients that underwent a medical treatment in the
hospital and that we want to measure the individual bene�ts of the treatment for
each patient after t days on treatment. Suppose patient i provided ni outcome
measurements on days ti,1 < · · · < ti,ni counted from treatment initiation. In
our application, day 0 is the day of the surgery and �treatment� refers to pain
management after surgery. Let y∗

i = (yi1, . . . , yini
)
T
be a vector containing the

outcome measurements for patient i in time order, where yi1 is assumed to be
measured right before treatment (the baseline measure at day 0), and yij , j > 1,
is measured after treatment initiation.

For patient i, let xi (t) = (g0 (t) , g1 (t) , . . . , gK (t) , xi,1, . . . , xi,p )
T
be a vector

of covariates corresponding to time t, where g0(t), g1(t), . . . , gK(t) are functions of
time and xi,1, . . . , xi,p are patient-level covariates (i.e, patient's characteristics).
Let z(t) be a vector containing some or all the functions g0(t), g1(t),. . . , gK(t).
Denote xij = xi (tij) and zij = z (tij). For instance, to model the evolution
of the outcome over time with a polynomial trend, we may use gk(t) = tk,
k = 0, 1, . . . ,K. Alternatively, the gk can be orthogonal polynomials (Zhang
et al., 2020).

For patient i, the design matrices for the �xed and random e�ects of

the outcome model are X∗
i =

(
xi,1, . . . ,xi,ni

)T
and Z∗

i =
(
zi,1, . . . ,zi,ni

)T
,

respectively (Pantazis & Touloumi, 2010). The model for the clinical outcome
variable is

y∗
i = X∗

iβ +Z∗
i bi + ei , (1)

where β is a vector of �xed regression coe�cients, bi is a normally distributed
vector of random e�ects with mean 0, and ei is a vector of residuals for patient
i that are assumed to be independent between patients and normally distributed
with mean 0 and variance-covariance matrix R∗

i = σ2
eIni . Moreover, bi and ei are

assumed to be independent.

Revista Colombiana de Estadística - Applied Statistics 45 (2022) 275�300



280 Xuan Zhang, Nikos Pantazis, Jose de Leon & Francisco J. Diaz

Let Ld
i be the hospital LOS in days for patient i and let x

d
i =

(
1, xd

i1, . . . , x
d
ir

)T
be time-independent patient's characteristics possibly related to LOS. The LOS
model is

log
(
Ld
i

)
= xd

i

T
βd + edi , (2)

where βd is a vector of �xed regression coe�cients and edi ∼ N(0, σ2
d) is a residual.

The joint multivariate random e�ects model combines equations (1) and (2)
into

yi = Xiβ
J +Zib

J
i + εi , (3)

where yi =

[
y∗
i

log
(
Ld
i

) ]
, Xi =

[
0 X∗

i

xd
i
T

0T

]
, βJ =

[
βd

β

]
, Zi =(

0 Z∗
i

1 0T

)
, bJi =

[
edi
bi

]
, and εi =

[
ei
0

]
.

Note that the residual of the LOS model (edi ) is treated as a random e�ect
in the joint model. This allows accounting for correlations between this residual
and the random e�ects of the outcome model, which are essentially the cause of
non-ignorable missingness.

The model assumes that hospital discharge always occurs right after the last
available outcome measurement. Thus, if Ld

i was available in the EHR dataset
and tni

= Ld
i we add a small o�set (i.e. 0.01 days) to make discharge time slightly

larger than the last outcome measurement time (Pantazis & Touloumi, 2010).
But the discharge time is considered censored at tni

+0.01 if Ld
i is missing in the

dataset or if Ld
i is available but tni ≤ Ld

i − 1.

By �tting the joint model (3) to the data provided by the N patients, we
calculate maximum likelihood estimators D̂, β̂, σ̂e and σ̂d for D, β, σe and σd,

respectively, where D = Var
(
bJi

)
(Touloumi et al. 1999; Pantazis & Touloumi

2010).

2.2. Individual Disease Severity and Individual Bene�ts

Here, we use the estimates of the model parameters to predict the individual
treatment bene�ts of the patients that were used to �t the joint model. Following
Diaz (2016; 2019; 2021), we de�ne the severity of a patient's disease or condition
at a given time point as the probability that the clinical outcome is outside of
the therapeutic target. Here, we assume that the therapeutic target is to achieve
an outcome ≤ y, where y is a number prespeci�ed by the clinician. (In the pain
management application, the treatment target was de�ned as achieving a daily
maximum pain score ≤ 6.) Therefore, for a speci�c patient i, the severity of the
patient's condition at time t after treatment initiation is

si (t) = Φ

(
y − yi (t)

σe

)
, (4)

where Φ is the standard normal cumulative distribution function and yi(t) is the
expected outcome at time t for patient i, that is, yi(t) = xT

i (t)β + zT (t)bi.
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The individual bene�t of the medical treatment for patient i after t days on the
treatment is therefore de�ned as the reduction in disease severity from baseline
(Diaz, 2016), that is,

b (t;β, bi, σe, xi,1, . . . , xi,p ) = si (0)− si (t) . (5)

Note that the bene�t depends on the number of days that the patient has
been under treatment. We multiply this quantity by 100 for convenience. For
instance, a bene�t of 25% at a speci�c day after treatment initiation means that
the probability that the patient has achieved the desired therapeutic target has
increased by 25 units on a probability scale from 0 to 100, using the patient's
condition before treatment as a reference point. This approach to measuring
the individual bene�t of a medical treatment allows modeling well-known clinical
phenomena that are relevant to personalized medicine (Diaz 2016; 2019; 2021;
Zhang et al. 2020).

2.3. Empirical Bayesian Prediction of Individual Bene�ts

In practice, to measure the individual bene�ts of the therapy for patient i, we
need the EB predictor b̂i of the patient's random e�ects bi (Diaz 2016; 2019; 2021).
Let êdi denote the EB predictor of edi . These two predictors are jointly obtained
with

bJEB,i =

[
êdi
b̂i

]
= D̂ZT

i V̂
−1

i ε̂i ,

where V̂ i is an estimator of V i = Var (yi) = Ri +ZiDZT
i , with Ri = Var (εi) =(

R∗
i 0

0T 0

)
, and ε̂i =

[
y∗
i −X∗

i β̂

0

]
is the estimated residual vector for patient

i.

The last row of ε̂i is set to 0 for the calculation of the random e�ects because
the error term of the LOS model (edi ) is already included in bJi . In other words,
bJEB,i includes predictors of both the LOS-model residual and the outcome-model
random e�ects for patient i.

Thus, the EB predictor of the individual bene�t for patient i at time t is
obtained by replacing the parameters in equation (5) with their estimates, that is,
calculating

b
(
t; β̂, b̂i, σ̂e, xi,1, . . . , xi,p

)
. (6)
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2.4. Application: E�ects of Depression and Age on

Individual Bene�ts of Pain Management Post Spinal

Fusion

2.4.1. Data Source and Study Subjects

The EHR dataset (Cerner Health Facts®, Kansas City, MO) is deidenti�ed
and has been used in previously published articles (Shaw et al. 2018; Urman
et al. 2018). An Institutional Review Board (IRB) exemption for this study
was granted by Western IRB (Olympia, WA) and the IRB from the University of
Kansas Medical Center agreed with this exemption. We selected adult inpatients
undergoing spinal fusion surgery in a university general hospital between January
1, 2014, and December 31, 2015, using International Classi�cation of Diseases
(ICD) -9 codes 81.00 to 81.08 and corresponding ICD-10 codes. The hospital had
more than 500 beds at that time and is in an urban area in the Northeast census
region of the United States.

Additional inclusion criteria were 1) at least one pain score on and after the day
of surgery (day 0); 2) a maximum score on day 0 between 7 and 10 inclusive; 3) 1
to 5 days post-surgical hospital stay; and 4) at least 6 months of history captured
in the database prior to the surgery. We identi�ed 330 patients who satis�ed the
inclusion criteria (Table 1).

2.4.2. Pain Assessments

Numerical patient-reported pain scores ranged from 0 to 10, with 0 indicating
no pain and 10 indicating the most severe pain. The outcome of interest was the
patient's maximum daily score, obtained at day 0 and during 1 to 5 days of post-
surgical hospital stay (Table 2). Since patients' pain levels were not measured
after discharge, this longitudinal observational study conveys the challenges of a
highly unbalanced dataset caused by non-random missing data. Since pain scores
are usually lower on or after the discharge day, the assumption that missing data
would be random, which is required by standard longitudinal statistical models,
is violated (Ibrahim & Molenberghs, 2009).

2.4.3. Depression Assessments

Depression comorbidity was de�ned as having an ICD-9 code (3004, 30112,
3090, 3091, or 311) or an ICD-10 code (F320, F321, F322, F323, F328, F3281,
F3289, F329, F330, F331, F332, F333, F338, F339, F341, or F4321) during
the hospital stay or within 6 months before admission, or having received
antidepressants during the stay (Table 1).
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Table 1: Demographics and clinical characteristics of 330 patients who underwent spinal
fusion surgery.

Table 1.  Demographics and clinical characteristics of 330 patients who underwent spinal fusion surgery. 
 

          
       Mean  SD  
Age (years)      53.9 12.4  
       %   
GERIATRIC AGE (>65 years)  
 Yes       18 (59/330) 
 No       82 (271/330) 
GENDER     
 Female       52 (173/330) 
 Male       48 (157/330) 
RACE     
 Caucasian      93 (308/330)    
 African American        2 (7/330) 
 Other          5 (15/330) 
PAIN MEDICATION   
 Opioids and acetaminophen    78 (257/330) 
 Opioids, NSAIDs and acetaminophen   18 (60/330)   
 Opioids only         4 (12/330)  
 Opioids and NSAIDs       <1 (1/330)  
DEPRESSIONa 

 Yes       46 (150/330) 
 No       54 (180/330)  
ANTIDEPRESSANT MEDICATION 
 Taking antidepressants      81 (121/150)    
 SSRI        34 (51/150)    
 SNRI        11 (17/150) 
 Othera              9 (13/150) 
 SSRI and other                7 (11/150) 
 SSRI and TCA               5 (8/150) 
 TCA              5 (7/150)  
 SNRI and TCA                4 (6/150)  
 SSRI and SNRI              1 (2/150)  
 SNRI and other                 1 (2/150)  
 MAOI            <1 (1/150) 
 Other and TCA            <1 (1/150) 
 SSRI, SNRI and other         <1 (1/150)  
 SSRI, other and TCA           <1 (1/150)                                
Abbreviations: MAOI, monoamine oxidase inhibitor; NSAID, nonsteroidal 
anti-inflammatory drug; SD, standard deviation; SNRI, serotonin 
norepinephrine reuptake inhibitor; SSRI, serotonin selective reuptake 
inhibitor; TCA, tricyclic antidepressant. 
aThe EHR database did not itemize the medications in the “Other” category. 

  

 

2.4.4. Hospital Length of Stay

The patients' hospital LOS after surgery may be a�ected by their
characteristics and responses to postoperative pain management. Pain levels are
usually not measured after discharge and even when patients are in the hospital
their pain measurements may be terminated for various reasons. Thus, hospital
LOS was included in the analyses and was de�ned as the number of days elapsed
from surgery to hospital discharge.

In most patients (326/330), the last pain score was observed on the day of the
discharge. In the remaining patients, it was determined before the day of discharge
and the outcome was therefore considered censored on the day of the last pain
score measurement. An o�set of 0.01 was added to both LOS and censoring times
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to make them slightly larger than the time of the last pain score (Pantazis &
Touloumi, 2010).

Table 2: Mean and SD of strati�ed maximum baseline pain scores and hospital LOS
after surgery in 330 patients who underwent spinal fusion surgery.

Table 2.  Mean and SD of stratified maximum baseline pain scores and hospital LOS after surgery in 330 
patients who underwent spinal fusion surgery         
 

             
     Baseline pain scores  LOS    
     Mean SD   Mean SD Min   Max 
All (N=330)   8.65  1.11   1.62  1.00      1.0    5.0 
GERIATRIC AGEa 

  Yes (N=59)        8.31  0.99   1.98  1.17      1.0    5.0 
   No (N=271)   8.72  1.12   1.54  0.94      1.0    5.0 
GENDER 
  Female (N=173)       8.66  1.11   1.64  1.03      1.0    5.0 
  Male (N=157)   8.62  1.11   1.59  0.97      1.0    5.0 
RACE 
  Caucasian (N=308)       8.62  1.11   1.61  1.00      1.0    5.0 
  African American (N=7)  8.71  1.25   1.71  1.50      1.0    5.0 
  Other (N=15)   9.20  1.21   1.67  0.62      1.0    5.0 
DEPRESSION 
  Yes (N=150)        8.81  1.13   1.67  1.03      1.0    5.0 
   No (N=180)   8.51  1.07   1.57  0.97      1.0    5.0          
Abbreviations: LOS, length of stay; SD, standard deviation.  
aGeriatric age was defined as age >65 years. 

 
 

2.4.5. Transformation of Pain Scores

We transformed the maximum daily pain scores before data analyses using a
transformation that we call �discrete logit transformation�, given by

yij = T (Pain Scoreij) = log

(
Pain Scoreij + 1

m+ 1− Pain Scoreij

)
, (7)

where m is the maximum value of the pain scale (m = 10 in this application),
and Pain Scoreij is the maximum daily pain score for patient i at day tij . This
transformation allows accounting for possible �oor e�ects � we expected the pain
scores of many patients to decrease over time and stabilize at a minimum value
due to the pain management therapy. Moreover, since the distribution of the
pain scores was highly skewed with higher frequencies for severe pain scores, this
transformation helped improve the goodness-of-�t of the outcome model. After the
transformation, the distribution of the EB predictor of the LOS model residuals
and those of the random intercept and random e�ect of time for the pain score
model were relatively normal, suggesting a good model �t.

The transformation in equation (7) can be viewed as an adaptation of the
logistic transformation to a bounded continuous latent variable measured with
�nite precision equal to 1. In fact, here, we imagine a patient's pain level as a
continuous latent variable, which has been measured with integer numbers from 0
to 10. The ability of the logistic transformation to produce approximate normal
distributions was originally investigated by Johnson (1949) for unbounded and
bounded outcomes. The bounded case was further investigated by Lesa�re, who
also applied the transformation to discrete measures of continuous latent variables.
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In the context of our study, using transformation (7) is essentially equivalent
to assuming that, conditional on the random e�ects, the distribution of the
pain scores can be approximated by a scaled distribution in the family of logit-
normal distributions, which is a very �exible family that includes distributions of
many di�erent shapes including right-skewed, left-skewed, symmetric and bathtub
shapes (Lesa�re et al., 2007).

To calculate individual bene�ts, we assumed that the clinician wants to achieve
pain scores ≤ 6. Since daily maximum pain scores were transformed using the
discrete logit transformation, the therapeutic target was therefore to reach a
transformed pain score ≤ T (6) = 0.3365. This was the value of y in equation
(4).

2.4.6. Joint model for Pain Scores and Hospital Discharge Day

We built a joint multivariate random-e�ects model, which is a generalized linear
mixed-e�ects model that accounts for non-ignorable missingness (Touloumi et al.
1999; Pantazis & Touloumi 2010). The model combined a model of daily maximum
pain scores with a model of LOS to account for the missing pain measurements
caused by hospital discharge (Table 3). The simultaneous modeling of LOS and
pain took into consideration the correlations between them. It reduced the bias
associated with the unbalanced data, providing more accurate estimation of the
e�ects of the covariates on pain scores (Touloumi et al., 1999).

To build the joint model, we followed a backward selection procedure that
locked the time variable and was based on both p-values from Wald tests and the
examination of covariate e�ect sizes at each step (Woodward 2014; Hedeker &
Gibbons 2006). The initial pain and LOS models included geriatric age (1 if age
> 65 years, 0 otherwise), depression (1 if the patient had depression comorbidity, 0
otherwise), and potential confounders available in the database including gender,
race, and some comorbidities (rheumatoid arthritis, diabetes, liver disease, renal
failure, peripheral vascular disease, and other neurological disorders). A variable
was kept in both the pain and LOS models if it was signi�cant in only one model
or in both at a 0.05 signi�cance level.

The variables included in the �nal pain model were geriatric age, depression,
time as the number of days after surgery, and the interaction between depression
and time. The transformed pain scores followed a linear time trend. The intercept
and the time slope were considered random, meaning they were di�erent for each
patient (Diaz 2016; 2019).

Results of the LOS model are also provided in Table 3. It was assumed that the
random residual of the LOS model was correlated with both the random intercept
and random time slope of the pain model. Gender, race, and the examined
comorbidities did not exhibit any signi�cant e�ects on pain scores or LOS and
were therefore not included in the �nal model.

In matrix notation, if xi1 and xi2 denote the dichotomous variables geriatric
age and depression, respectively, then X∗

i = [1 Xi1 Xi2 ti Xi3], where Xi1 =

(xi1, . . . , xi1)
T
, Xi2 = (xi2, . . . , xi2)

T
, ti = (ti1, . . . , tini)

T
is a vector containing
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the days from surgery on which the pain scores were observed for patient i,
Xi3 = (xi2ti1, . . . , xi2tini

)
T
is the interaction between depression and time, and 1 is

an ni×1 vector of ones. In the LOS model, the design vector was xd
i = (1, xi1, xi2).

In summary, the pain model included a random intercept and a random slope
for time and had the form

Transformed Scoresij = β0 + β1 × (Geriatric Age)i + β2 ×Depressioni

+ β3 × Timeij + β4 ×Depressioni × Timeij + b0i + b1i × Timeij + eij ,

where eij indicates the residuals for the pain score model for patient i at occasion
j which has mean 0 and residual variance σ2

e (Table 3). The parameters βk, k =
1, . . . , 4, are population-average e�ects (the �xed e�ects), whereas b0i and b1i are
parameters speci�c to patient i that represent deviations from the corresponding
population averages (the random e�ects). And the model of LOS for patient i had
the form

log (LOSi) = βd
0 + βd

1 × (Geriatric Age)i + βd
2 ×Depressioni + edi ,

where edi is a random residual following a normal distribution with mean 0.

We �tted the joint model using the jmre1 command of Stata and calculated
bJEB,i with the command �predict� (StataCorp LLC, College Station, TX) (Table
3) (Pantazis & Touloumi, 2010). To test the signi�cance of a correlation between
two random e�ects, we computed a likelihood ratio test that compared the �nal
model with a model for which the corresponding covariance was set to 0.

2.4.7. Individual Bene�ts of Pain Management

The severity of the patient's disease was de�ned as the probability of being
outside of the pain treatment target, which in turn was de�ned as a daily maximum
pain score ≤ 6 (Diaz 2016; 2019). The patient's individual treatment bene�t
was therefore the decrease in disease severity from baseline (×100). To examine
how much bene�t patients received from postoperative pain management during
the 5 days after spinal fusion, we predicted the patients' individual bene�ts.
The estimated random e�ects of a patient were used to predict his/her bene�ts,
combining the patient's available data with parameter estimates in Table 3, using
formula (6).

For each patient, individual bene�ts were predicted from day 0.2 to day 5 by
0.2 -day increments, by interpolation with formula (6). In fact, although the time
variable in the EHR data was available only in the form of integer days 0, 1, . . . , 5,
formula (6) allowed predicting bene�ts for any non-integer time point from 0 to 5
days (Diaz 2016; 2019). Median, 25th and 75th percentiles of individual bene�ts
were calculated. For each of the 4 groups determined by age and depression status,
these statistics were plotted in Figure 1. They are also presented in Table 4 for
days 1 through 5.
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Figure 1. Predicted evolution of individual pain management benefits (x100) after spinal fusion surgery 
over days 1 through 5 for 330 patients. For a particular patient, predicted individual treatment benefits were 
obtained by combining the patient’s data with the parameter estimates in Table 3. (A), (B), and (C) show 
50th, 25th and 75th percentiles of individual benefits, respectively.  

 

Figure 1: Predicted evolution of individual pain management bene�ts (x100) after
spinal fusion surgery over days 1 through 5 for 330 patients. For a particular
patient, predicted individual treatment bene�ts were obtained by combining
the patient's data with the parameter estimates in Table 3. (A), (B), and
(C) show 50th, 25th and 75th percentiles of individual bene�ts, respectively.

2.5. Monte Carlo Estimation of Quartiles of Individual

Bene�ts

For comparison purposes, we implemented Monte Carlo computations as an
alternative approach for estimating the population quartiles of the probability
distribution of individual bene�ts for the four subpopulations determined by
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Table 3: Joint random-e�ects model of transformed daily maximum pain scores and
hospital length of stay for 330 patients after spinal fusion surgery.

Table 3.  Joint random-effects model of transformed daily maximum pain scores and hospital length of 
stay for 330 patients after spinal fusion surgery. 
 

Parameter name Parameter 
estimate (SE) p-value 

Fixed effects for transformed pain scores   

Pain score intercept, 𝛽𝛽0 1.4704 (0.0544) <0.001 

Geriatric age,a 𝛽𝛽1 – 0.1853 (0.0931) 0.047 

Depression,b 𝛽𝛽2 0.2478 (0.0742) 0.001 

Time (days),c 𝛽𝛽3  – 0.6771 (0.0461) <0.001 

Interaction between depression and time, 𝛽𝛽4 0.1327 (0.0663) 0.045 

Fixed effects for LOS (days)   

LOS intercept, 𝛽𝛽0𝑑𝑑 0.2465 (0.0385) <0.001 

Geriatric age,a 𝛽𝛽1𝑑𝑑 0.2196 (0.0644) 0.001 

Depression,b 𝛽𝛽2𝑑𝑑   0.0886 (0.0532) 0.096 

Correlations between random effects   

LOS residual and pain score intercept, Corr(𝑒𝑒𝑖𝑖𝑑𝑑,𝑏𝑏0𝑖𝑖)   0.4985 <0.001 

LOS residual and time, Corr(𝑒𝑒𝑖𝑖𝑑𝑑,𝑏𝑏1𝑖𝑖)   0.6631 <0.001 

Pain score intercept and time, Corr(𝑏𝑏0𝑖𝑖,𝑏𝑏1𝑖𝑖)   0.8471 <0.001 

Variances of random effects   

LOS residual, 𝜎𝜎𝑑𝑑2  0.2281  -- 

Pain score intercept, Var(𝑏𝑏0𝑖𝑖)  0.1384 -- 

Time,c Var(𝑏𝑏1𝑖𝑖) 0.0916 -- 

Residual variance for pain model,  𝜎𝜎𝑒𝑒2 0.3835 -- 

Abbreviations: SE, standard error; LOS, length of stay. 
aThe dichotomous covariate geriatric age was defined as 1 if the age of the patient was  >65, and 0 otherwise.  
bThe dichotomous covariate depression was defined as 1 if the patient had a record of depression diagnosis 
or was under antidepressants, and 0 otherwise.  
cTime was defined as days post-spinal fusion surgery. 
 

 

geriatric age and depression status. In contrast to the approach that we used
to calculate Table 4 and Figure 1, this approach does not require EB prediction,
but it is more computationally demanding and does not allow examining individual
bene�ts for speci�c patients in the EHR data (Zhang et al., 2020). The Monte
Carlo approach, however, is useful as a reference standard for investigating whether
EB individual bene�t predictors re�ect estimated overall population trends reliably
(Zhang et al., 2020). Ideally, sample quartiles of EB predicted bene�ts should be
close to Monte Carlo estimates of population quartiles. The Monte Carlo approach
to the analysis of individual bene�ts has been previously used to validate the EB
approach in the context of longitudinal binary outcomes (Zhang et al., 2020).
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Table 4: Sample medians (and �rst and third quartiles) of individual bene�ts (Ö 100)
of postoperative pain management on days 1 through 5 for 330 patients after
spinal fusion. a Empirical Bayesian predictors of the patient's random e�ects
were used for predicting treatment bene�ts, combining the patient's data with
the parameter estimates given in Table 3.

Table 4. Sample medians (and first and third quartiles) of individual benefits (×100) of postoperative pain 
management on days 1 through 5 for 330 patients after spinal fusion.a  Empirical Bayesian predictors of the 
patient’s random effects were used for predicting treatment benefits, combining the patient’s data with the 
parameter estimates given in Table 3.  

 

Study group Day 1 Day 2 Day 3 Day 4 Day 5 

Age ≤ 65 and 
 no depression 

(N=191) 

18.6 
 (9.3, 37.1) 

59.3 
(35.9, 81.1) 

87.7 
 (70.9, 91.8) 

93.0 
 (87.3, 95.5) 

94.4 
(89.7, 97.0) 

Age ≤ 65 and 
depression 

(N=80) 

5.6 
(1.3, 17.3) 

23.8 
(5.7, 56.1) 

53.6 
(16.2, 87.3) 

81.3 
(34.4, 95.2) 

93.6 
 (57.2, 96.9) 

Age > 65 and 
 no depression 

(N=49) 

25.5 
 (4.4, 34.2) 

64.2 
 (15.4, 76.3) 

87.6 
 (34.6, 89.4) 

89.4 
 (58.3, 93.3) 

90.4 
(76.2, 93.8) 

Age > 65 and 
depression 

(N=10) 

12.1 
(3.5, 19.1) 

40.3 
(12.2, 56.4) 

72.5 
(28.9, 83.5) 

89.3 
(52.6, 92.8) 

91.6 
(75.1, 96.1) 

aThe individual benefit is the decrease in disease severity from baseline, where disease severity is the 
probability of being outside the treatment target (Diaz 2016, 2019). The treatment target was defined as 
achieving a maximum daily pain score ≤6. After transforming the scores with a discrete logit 
transformation, the treatment target corresponded to a transformed pain score ≤0.3365.   

 

 In the context of the joint model for pain scores and LOS, the Monte Carlo
estimates of population quartiles are in Table 6 and were produced with the
following algorithm:

1. Draw 1,000 random e�ects for each subpopulation of patients from the
estimated distribution of the random e�ects bi of the pain score model, using
the parameter estimates in Table 3. Each of these random e�ects vectors
represents a simulated new patient (Diaz 2016; 2019; Zhang et al. 2020).

2. Generate the random intercept and random coe�cient of time of the pain
score model for the 1,000 simulated patients in each subpopulation by adding
up the random e�ects to their corresponding estimated �xed e�ects given in
Table 3.

3. Calculate bene�ts for each of the 1,000 patients on days 1 through 5 post-
surgery by using the formula b(t; β̂, bi, σ̂e, xi,1, . . . , xi,p).

4. For each of the four subpopulations, calculate the median and the 25th and
75th percentiles of the bene�ts of the 1,000 patients for days 1 through 5
post-surgery.

The above Monte Carlo approach is a numerical method for calculating
population percentiles of the distribution of individual bene�ts that utilizes the
model parameter estimates in Table 3 (Zhang et al., 2020). By simulating many
patients, we take advantage of the law of large numbers to numerically approximate
the inverse of the cumulative distribution function of individual bene�ts. Thus,
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with this approach, we solve a deterministic numerical problem using random
number generation.

Note that the Monte Carlo approach is not an empirical Bayesian approach. In
fact, the former is not mediated by the calculation of the EB predictors given by
Formula (6). That is, we do not need to estimate the bene�ts of speci�c individuals
to implement the Monte Carlo approach. In this sense, the Monte Carlo approach
to the estimation of population percentiles is an alternative method that is useful
only to analyze population trends and does not allow for examining the bene�ts
of speci�c patients. In contrast, in the EB approach described in Section 2.4.7.,
we predict the individual bene�ts of each of the patients in the database and
then calculate the sample percentiles of these bene�ts as if these were a random
sample of true bene�ts. Showing that the Monte Carlo and EB approaches yield
similar estimates of population percentiles of individual bene�ts can be regarded
as evidence that the EB approach produces reliable estimates (Zhang et al., 2020).

3. Results

3.1. Patient Characteristics

Patients' characteristics, pain and antidepressant medications are in Table 1.
Almost half (46%) the patients had comorbid depression. Depression was more
frequent in females (54%, 94/173) than in males (36%, 56/157) and in non-geriatric
patients (49%, 132/271) than in geriatric patients (31%, 18/59). Baseline pain
scores and hospital LOS are in Table 1.

3.2. Correlations Between LOS Model Residuals and Pain

Model Random E�ects

Table 3 shows the correlations between the random e�ects of the pain model
and the residuals of the LOS model. The correlations were signi�cantly di�erent
from 0. Speci�cally, the correlation between the LOS residuals and the random
intercept of the pain model was 0.4985 (p < 0.001), whereas the correlation between
the LOS residuals and the random e�ect of time was 0.6631 (p < 0.001). These
signi�cant correlations con�rm the expected dependency of hospital discharge on
pain levels and, therefore, suggest that the pain scores that were not recorded
after discharge are nonignorable missing data. Our simultaneous modeling of pain
scores and hospital LOS is therefore justi�ed.

3.3. Joint Model and the Impact of Depression and Age on

Pain Scores and LOS

We found signi�cant correlations between 1) high baseline pain scores and
longer postoperative LOS (r = 0.4985, p < 0.001; Table 3), 2) slower pain
reduction and longer LOS (r = 0.6631, p < 0.001), and 3) high baseline pain
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scores and slower pain reduction post-surgery (r = 0.8471, p < 0.001). These
correlations indicated that 1) patients who had higher baseline pain scores tended
to stay longer after surgery; 2) patients whose pain decreased more slowly after
surgery tended to stay longer; and 3) patients with higher pain scores at baseline
tended to have slower pain reduction after surgery.

The pain model suggested that, on average: 1) a preoperative record of
depression was signi�cantly associated with higher baseline pain scores (p = 0.001;
Table 3); 2) geriatric age was signi�cantly associated with lower baseline pain
scores (p = 0.047); and 3) a signi�cant interaction existed between depression
and time (parameter estimate = 0.1327, p = 0.045), meaning that patients with
depression had signi�cantly slower pain reduction after surgery.

The LOS model suggested that, on average: 1) geriatric age was signi�cantly
associated with longer LOS (p = 0.001; Table 3); and 2) depression tended to
be associated with a slightly longer LOS, although it did not reach signi�cance
(p = 0.096).

3.4. Impact of Depression and Age on Individual Bene�ts of

Postoperative Pain Management

Although treatment bene�ts tended to increase over time for all four patient
groups, the amount and rate of change of achieved bene�ts varied across groups
(Table 4). For instance, at day 1, in non-geriatric patients without depression the
median decrease in disease severity was 18.6% probability units compared to 5.6%
in non-geriatric patients with depression.

By day 5, the median achieved bene�ts were comparable for patients with
or without depression. However, the �rst quartiles for patients with depression
tended to be smaller than those for non-depressed patients in the comparable age
group at speci�c times, indicating that there were more patients with depression
receiving small bene�ts than patients without depression after controlling for age
and time.

For patients with depression, non-geriatric age was associated with slower
individual bene�t development. For instance, in geriatric patients with depression,
the median decrease in disease severity was 12.1% probability units at day 1
compared to 5.6% for non-geriatric patients with depression. On day 5, the �rst
quartile for geriatric patients with depression (75.1%) was higher than that for
non-geriatric patients with depression (57.2%). Figure 1A illustrates that, for
average patients with depression, non-geriatric age was associated with smaller
bene�ts, compared to geriatric age. In general, average patients with depression
had much smaller bene�ts after controlling for age.

In patients receiving the least bene�t from pain management the combination
of depression and non-geriatric age was associated with the slowest responses,
whereas non-geriatric age without depression was associated with the fastest
responses (Figure 1B). Interestingly, for the patients achieving the greatest
bene�ts (Figure 1C), individual bene�ts were more clearly a�ected by depression
comorbidity than by age.

Revista Colombiana de Estadística - Applied Statistics 45 (2022) 275�300



292 Xuan Zhang, Nikos Pantazis, Jose de Leon & Francisco J. Diaz

Table 5: Hospital LOS (in days) for study patients grouped by quartiles of individual
pain management bene�ts at day 1 post-spinal fusion surgery. Individual
bene�ts were calculated with the empirical Bayes approach.

Table 5. Hospital LOS (in days) for study patients grouped by quartiles of individual pain management 
benefits at day 1 post-spinal fusion surgery. Individual benefits were calculated with the empirical Bayes 
approach.  
              
Individual Benefits   N Mean (SD) Median  Minimum Maximum  
1st quartile (0 to 3.28%)  82 2.44 (1.25) 2  1  5 
2nd quartile (3.29 to 13.64%) 83 1.69 (0.96) 1  1  5  
3rd quartile (13.65 to 27.92%) 84 1.19 (0.50) 1  1  3  
4th quartile (≥27.93%)  81 1.15 (0.45) 1  1  3   
Abbreviations: LOS, length of stay; SD, standard deviation. 

 

3.5. Individual Bene�ts One Day after Surgery as Predictors

of LOS

To examine whether levels of individual bene�ts from post-surgery pain
management achieved after 1 day are predictive of hospital LOS, we compared
the LOS of patients from among the 1st, 2nd, 3rd, and 4th quartiles for individual
bene�ts (Table 5). Patients with higher immediate bene�ts tended to have shorter
LOS.

3.6. Comparison of Quartiles of Empirical Bayesian

Individual Estimates with Monte Carlo Quartile

Estimates

The patterns of the evolution of individual antipsychotic bene�ts over time
shown by the Monte Carlo quartile estimates (Table 6) were very similar to those
observed when the sample quartiles of EB bene�t predictors were used (Table 4).
For instance, in patients with depression, those with non-geriatric age obtained
the bene�ts of pain therapy more slowly than older patients. Moreover, other
things being equal, patients with depression tended to obtain smaller bene�ts
than patients without depression. The �rst and third quartiles presented in Table
6 also allow conclusions like those obtained from Table 4 described in Section 3.4.
The similarities between Tables 4 and 6 suggest the adequacy of EB predictors of
individual bene�ts for detecting overall clinical population trends (Zhang et al.,
2020). EB predictors, however, have the additional advantage that they allow
examining the bene�ts achieved by single patients, which makes them useful for
potential applications in clinical practice (Diaz 2016; 2019; 2021).

Interestingly, the interquartile ranges of the EB predictions of individual
bene�ts tended to be shorter than those calculated through the Monte Carlo
approach (Tables 4 and 6). This should not be surprising, however, because EB
predictors tend to re�ect the shrinkage property of best linear unbiased predictors
(BLUPs) of random e�ects (Frees, 2004).

3.7. Limitations of the Application

Our data analysis included patients with severe pain (≥7) at baseline and
at least one pain score and who stayed at least 1 day in the hospital. These
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Table 6: Estimates of medians (and �rst and third quartiles) of individual bene�ts (Ö
100) of postoperative pain management on days 1 through 5 after spinal fusion,
obtained with Monte Carlo computation. The model in Table 3 was used for
simulating 1,000 patients in each study group.

Table 6. Estimates of medians (and first and third quartiles) of individual benefits (× 100) of postoperative 
pain management on days 1 through 5 after spinal fusion, obtained with Monte Carlo computation.  The 
model in Table 3 was used for simulating 1,000 patients for each study group.   

 

Study group Day 1 Day 2 Day 3 Day 4 Day 5 

Age ≤ 65, 
no depression 

18.5 
 (5.4, 39.8) 

57.6 
(21.6, 79.1) 

82.8 
 (49.2, 90.6) 

89.5 
 (72.1, 94.4) 

92.4 
(82.0, 96.3) 

Age ≤ 65, 
depression 

5.8 
(1.3, 21.8) 

28.5 
(5.4, 65.4) 

62.3 
(14.7, 88.7) 

85.1 
(29.8, 94.5) 

92.2 
 (51.1, 96.7) 

Age > 65, 
no depression 

25.1 
 (8.9, 46.2) 

63.7 
 (30.3, 77.6) 

80.1 
 (56.3, 87.8) 

86.0 
 (71.7, 92.1) 

88.9 
(78.2, 93.8) 

Age > 65, 
depression 

11.0 
(2.5, 28.9) 

38.0 
(9.2, 70.8) 

69.4 
(22.2, 87.4) 

84.9 
(40.5, 92.8) 

89.7 
(60.9, 94.9) 

 

 
criteria may have excluded less severe cases so our results cannot be extrapolated
to them. Moreover, the pain scores used in this study were self-reported. Patient-
reported measures such as pain scores and levels of satisfaction are important
measures for evaluating treatment e�ects (Lotzke et al., 2016). They could be
biased, however, since each patient may have di�erent levels of sensitivity and
expectation. However, predictors of individual bene�ts, which are on a probability
scale, compare baseline pain severity with post-treatment severity within a patient,
canceling out potential individual biases in the perception of pain.

We did not �nd evidence that gender or race had signi�cant e�ects on pain
scores or LOS. We cannot rule out, however, that other variables that were
not available in the EHR database such as surgeon may have had potentially
confounding e�ects. Moreover, 99% of the patients who had health insurance
information had some form of insurance covering. Thus, the lack of insurance
could not be a confounding variable in these analyses.

Unfortunately, it was not possible to include the type of pain treatment as a
covariate in the joint model because all patients were on opioids and nearly all (226
out of 330) received an additional pain medication (Table 1). Thus, it was not
possible to investigate whether pain treatment choice interacted with depression
or antidepressant use and impacted pain or LOS.

4. Discussion

Electronic health records (EHR) provide valuable resources for longitudinal
studies and understanding risk factors associated with poor clinical outcomes.
However, they may not provide complete follow-up, and the missing data are
not at random since hospital discharge may depend in part on expected but
unrecorded clinical outcomes after discharge (Ibrahim & Molenberghs, 2009). This
�non-ignorable missingness� requires appropriate statistical techniques (Pantazis
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& Touloumi, 2010). Ignoring the unbalanced nature of longitudinal EHR data
may lead to serious bias (Albers et al., 2018).

In this paper, we extended the methods for individual treatment bene�t
prediction based on mixed-e�ects models proposed by Diaz (2016; 2019; 2021) to
allow for non-ignorable missingness in the longitudinal data. Modeling informative
drop-out in the analysis of clinical trial data with some patients dropping out of the
study after randomization is common in statistical practice (Pantazis & Touloumi,
2010); however, our proposal of extending this concept to real-world hospital data
for which the follow-up data are incomplete due to hospital discharge is novel.
This is the �rst paper to analyze individual treatment bene�ts as de�ned by Diaz
(2016) using EHR data. Since EHR data are becoming more and more important
in clinical evidence generation, this work o�ers a useful way of analyzing treatment
e�ects from a personalized medicine perspective.

Generalized linear mixed-e�ects modeling of longitudinal outcomes is a
statistical approach useful for predicting individuated treatment bene�ts (Diaz
2016; 2019; 2021; Zhang et al. 2020; Wang & Diaz 2020), which takes into
consideration the heterogeneity of patients' characteristics including unknown
traits. While traditional statistical analyses focus on average treatment e�ects,
mixed-e�ects modeling can analyze the variation of treatment e�ects in individual
patients. Moreover, in the joint mixed modeling approach followed in this work,
the correlations between longitudinal outcomes and hospital LOS that cause non-
ignorable missingness are taken into consideration, leading to more reliable and
accurate estimation of the parameters of the outcome model (Touloumi et al.,
1999). More accurate parameter estimates in turn lead to better predictions of
individual treatment bene�ts.

In our application, longitudinal pain score data from patients undergoing
spinal fusion surgery were modeled simultaneously with post-surgical LOS, and
then individual bene�ts of pain management were measured in accordance with
the de�nition of treatment bene�ts proposed by Diaz (2016; 2019; 2021). Our
application showed that it is important to further understand the impact of
patients' characteristics such as preoperative depression and age upon individual
bene�ts of pain management after spinal fusion surgery. We compared individual
bene�ts of pain management among four groups of patients determined by
depression diagnosis and age. An examination of median bene�ts was not enough,
and other subgroups of individuals emerged (Figure 1). In �average� patients,
age played an important role in those with depression, who were prone to receive
less bene�t (Figure 1A). In contrast, among patients tending to receive the least
bene�t (Figure 1B), younger patients without depression achieved some bene�t
quicker than geriatric patients with depression, whereas younger patients with
depression bene�tted least from pain management. Moreover, among patients
achieving the highest bene�ts (Figure 1C), the e�ect of age on treatment bene�ts
was negligible compared to the e�ect of depression. Our �nding that the e�ect of
age is unimportant in patients receiving high bene�ts is consistent with a previous
study that found that, although elderly patients reported lower pain scores post-
total knee replacement, their functional impairment caused by pain did not di�er
from younger patients (Weinmann et al., 2017).
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Interestingly, patients who received less bene�t from one day of post-surgery
pain management tended to stay longer at the hospital (Table 5), suggesting that
early bene�t measurements may serve as predictors of hospital LOS after surgery.

To rule out the possibility that antidepressant medication explains the observed
slower response to pain management in patients with depression, we �tted an
additional joint mixed model using only patients with depression, similar to the
model in Table 3 except that the depression variable was replaced by antidepressant
use (data not shown). Antidepressants were not signi�cantly associated with
baseline pain scores or pain management response. Thus, the slow response to
pain management in patients with depression may be due to the comorbidity itself
instead of antidepressant medication.
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