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Abstract

Asymmetric probability distributions have been widely studied by various
authors in recent decades. Special interest has been had families of �exible
distributions with the capability to have into account degree of skewness and
kurtosis greater than the classical distributions widely known in statistical
theory. While, most of the new distributions �t unimodal data, and a few
�t bimodal data, in the bimodal proposals, singularity problems have been
found in the information matrices. Therefore, in this paper, extensions of the
alpha-power family of distributions are developed, which have non-singular
information matrix. The new proposals are based on the bimodal-normal
and bimodal elliptical skew-normal distributions. These new extensions allow
modeling asymmetric bimodal data, which are commonly found in several
areas of scienti�c interest. The properties of these new distributions of
probability are also studied in detail, and the statistical inference process is
carried out to estimate the parameters of the proposed models.The stochastic
convergence for the maximum likelihood estimator (MLE) vector can be
found due to the non-singularity of the expected information matrix in the
corresponding support. We also introduced extensions of the asymmetric
bimodal normal and bimodal elliptical skew-normal models for the situations
in which the data present censorship. A small simulation study to evaluate
the properties of the MLE is also presented and, �nally, two applications to
real data set are presented for illustrative purposes.
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Resumen

Las distribuciones de probabilidad asimétricas han sido ampliamente
estudiadas por diversos autores en las últimas décadas. Se ha tenido especial
interés en familias de distribuciones �exibles con la capacidad de tener en
cuenta grados de asimetría y curtosis mayores que las distribuciones clásicas
ampliamente conocidas en teoría estadística. Si bien la mayoría de las
nuevas distribuciones se ajustan a datos unimodales y unas pocas a datos
bimodales, en las propuestas bimodales se han encontrado problemas de
singularidad en las matrices de información. Por lo tanto, en este artículo
se desarrollan extensiones de la familia de distribuciones alfa-potencia, que
tienen matriz de información no singular. Las nuevas propuestas se basan
en las distribuciones bimodal-normal y bimodal elíptica sesgada-normal.
Estas nuevas extensiones permiten modelar datos bimodales asimétricos, que
se encuentran comúnmente en varias áreas de interés cientí�co. También
se estudian en detalle las propiedades de estas nuevas distribuciones de
probabilidad, y se realiza el proceso de inferencia estadística para estimar
los parámetros de los modelos propuestos. La convergencia estocástica para
el vector estimador de máxima verosimilitud (EMV) se puede encontrar
debido a la no singularidad de la matriz de información esperada en el
soporte correspondiente. También introdujimos extensiones de los modelos
asimétrico bimodal normal y bimodal elíptico sesgado-normal para las
situaciones en las que los datos presentan censura. También se presenta
un pequeño estudio de simulación para evaluar las propiedades del EMV
y, �nalmente, se presentan dos aplicaciones a conjuntos de datos reales con
�nes ilustrativos.

Palabras clave: Distribución normal bimodal; Distribución alfa-potencia;
Datos censurados; Modelos asimétricos; Estimación por máxima
verosimilitud.

1. Introduction

The normal distribution has been used to model a wide variety of variables of
interest because it provides the basis for the classical statistical inference due to its
relationship with the central limit theorem. In applications of the scienti�c area
such as biology, economics and medicine, among others, it is common to suppose
normality in the data set, however, this assumption many times is deviated from
the reality, leading to errors in the estimation and inference process. One of these
cases occurs when asymmetric or heavy-tailed data are being analyzed, and we
reparameterize or transform the variables, which can lead to di�culties in the
interpretation of the results.

The most recognized distributions to analyze data with high degree of
asymmetry corresponds to the skew-normal (SN) proposed by Azzalini (1985).
The SN distribution is an extension of the normal distribution for modeling the
asymmetric structures present in the data; however, this model has a di�culty,
since its information matrix is singular when the asymmetry parameter is close to
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zero. The probability density function (PDF) of the SN model is given by

fSN(z;λ) = 2ϕ(z)Φ(λz), z ∈ R, (1)

where ϕ and Φ are the PDF and the cumulative distribution function (CDF),
respectively, of the standard normal distribution; and λ is a parameter that
controls the asymmetry of the data. The SN model is denoted by Z ∼ SN(λ) and
has been extensively studied by Azzalini (1985), Azzalini (1986), Henze (1986),
Pewsey (2000), among others.

In the same sense of modeling asymmetric data, Durrans (1992) introduced the
distribution of fractional order statistics, also called exponentiated model by Gupta
& Gupta (2004), and power distribution by Pewsey et al. (2012). This model
generates a good base for the creation of distributions that can �t asymmetric
data, and it has served as fundamental support for the solution of the problem
of the singularity presented by the information matrix of the SN model, since the
information matrix of the exponentiated distribution for the normal case, which
is called power-normal (PN) distribution, is non-singular for values close to one
in the skewness parameter. The PN distribution denoted by Z ∼ PN(α), has the
PDF given by

fPN(z;α) = αϕ(z){Φ(z)}α−1, z ∈ R, α ∈ R+, (2)

where α > 0 is a shape parameter. The location-scale extension of the random
variable Z, that is, X = ξ+ ηZ, where ξ ∈ R is a location parameter, and η ∈ R+

is a scale parameter, has the PDF given by

fPN(x; ξ, η, α) =
α

η
ϕ

(
x− ξ

η

){
Φ

(
x− ξ

η

)}α−1

, x ∈ R, (3)

and we denoted it as X ∼ PN(ξ, η, α). The properties of the PN model have been
studied in detail by Gupta & Gupta (2008) and Pewsey et al. (2012).

An extension of the PN model for the case of the SN model was introduced
by Martínez-Flórez et al. (2014), where the PDF and the CDF of the normal
distribution were replaced by the respective functions of the SN model. This
proposal turns out more �exible regarding skewness and kurtosis than the normal,
SN and PN models.

Although the SN and PN models �t data presenting high (or low) skewness
or kurtosis, they only �t data sets whose shape of the density is unimodal, not
being e�cient concerning bimodal data. To �t data sets that present bimodality,
the mixture of normal distributions is frequently used; however, this option is not
always the best since there are some problems in the estimation of the parameters,
and therefore, the mixture of distributions becomes a controversial topic, see Marin
et al. (2005), mainly because one has to deal with identi�ability issues.

Proposals for modeling data sets with bimodal shape have been studied by
many authors; Elal-Olivero (2010) for example, introduced the bimodal-normal
(BN) model which provides an excellent tool for studying variables with two
maximums in the support, even so, this model only �ts symmetric bimodal
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structures. For the case of skewed data, Elal-Olivero, Gómez & Quintana (2009)
proposed the bimodal version of the SN distribution and studied its properties;
while Gómez et al. (2009) considered a class of �exible bimodal SN model. Other
type of symmetric bimodal SN model was studied by Kim (2005), whereas, Arnold
et al. (2009) extended the Kim's model to the SN asymmetric bimodal case.
Additional works have been published by Elal-Olivero, Olivares-Pacheco, Gómez
& Bolfarine (2009), who studied a new class of distributions for non-negative
data; Bolfarine et al. (2018) introduced a bimodal extension of the PN model, and
Martínez-Flórez et al. (2020) proposed a type of distribution capable to �t data
with up to three modes.

Unfortunately, the asymmetric bimodal models de�ned from the SN
distribution inherit the issue of singularity of the information matrix (even in the
positive data case); conversely case to the bimodal PN model whose information
matrix turned out non-singular. Taking advantage of the non-singularity of the
information matrix of the alpha-power (AP) model and the �exibility to �t bimodal
data from the BN and elliptical bimodal normal (ELBN) models; it is useful to
study the behavior of the resulting distribution from the combination of the generic
AP structure and the BN and ELBN distributions.

This paper is organized as follows: in Section 2 the BN distribution of Elal-
Olivero (2010) and some of its main properties are featured. In Section 3, the
exponentiated bimodal normal (EBN) model is introduced and its properties are
studied in detail. The location-scale extension is considered, too. The maximum
likelihood (ML) method to obtain the estimates of the parameter model is used
and the information matrix is calculated, which is shown to be non-singular.
In Section 4, the asymmetric exponentiated elliptical bimodal normal (EEBN)
model is introduced. This proposal is an extension of the skew-elliptical bimodal
family considered by Elal-Olivero, Gómez & Quintana (2009). The properties and
inference process for the models is also presented. The version of the EBN and
EEBN models for the situations of censored data are also considered here. The
Section 5 presents a small Monte Carlo simulation and, �nally, in Section 6 two
real data applications are presented.

2. Bimodal Models

The SN (Azzalini, 1985) and generalized gaussian (GG) (Durrans, 1992) models
are characterized by being models for �tting unimodal data, that is, they must not
be used in situations where the data present bimodality, as occurs in some areas
such as economics, health, engineering, among others. The models of bimodal
type have been studied by Kim (2005), who introduced the bimodal extension of
the SN model, called �two-pieces skew-normal model (TN)�, whose PDF is given
by

fTN(u;λ) = cλϕ(u)Φ
(
λ|u|

)
, u ∈ R, (4)

where λ is a real number, and cλ = 2π/(π+2arctan(λ)) is a normalizing constant.
We use the notation TN(λ). For λ > 0, Kim (2005) shown that the TN model is
bimodal and symmetric around zero.
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An asymmetric extension of the Kim's model was presented by Arnold et al.
(2009), which is called �the extended two-pieces skew-normal model (ETN)�, and
whose PDF is given by

fETN(u; θ) = 2cλϕ(u)Φ(λ|u|)Φ(βu), u ∈ R, (5)

where β and λ are real numbers and, cλ is a normalizing constant. This model is
denoted by ETN(λ, β). Gómez et al. (2009) de�ned an asymmetric bimodal model
named �exible skew-normal distribution, which is denoted by FSN(α, δ), and has
PDF is given by

fFSN(u; θ) = cδϕ(|u|+ δ)Φ(αu), u ∈ R, (6)

where δ is a real number and cδ = (1 − Φ(δ))−1 is a normalizing constant. For
δ < 0, Gómez et al. (2009) shown that the FSN model is bimodal and, for δ ≥ 0
the model is unimodal. Elal-Olivero (2010) studied the asymmetric bimodal alpha-
skew-normal (ASN) model with PDF given by

fASN(x;α) =
(1− αx)2 + 1

2 + α
ϕ(x), x ∈ R, (7)

with α ∈ R. The model in equation (7) is denoted by ASN(α), and the location-
scale extension by ASN(ξ, η, α), where ξ ∈ R is a location parameter and η > 0
is a scale parameter. The properties of the model (7) as well as the study of the
estimation process of its parameters can be seen in Elal-Olivero (2010). On the
other hand, Elal-Olivero, Olivares-Pacheco, Gómez & Bolfarine (2009) presented
a type of general distribution which is possible to obtain a bimodal density, the
PDF of this distribution is given by

f(z; γ) =
1 + γz2

1 + γk
f0(z), z ∈ R, (8)

where f0(·) is a symmetric unimodal PDF around zero, k is such that k =∫∞
−∞ z2f0(z) <∞ and, γ ∈ R+∪{0} is a parameter that controls the bimodality of
the model. For the case f0(z) = ϕ(z), the PDF of the standard normal distribution,
it has

fELBN(z; γ) =
1 + γz2

1 + γ
ϕ(z), z ∈ R, (9)

which is called the elliptical bimodal normal distribution and, is denoted by
ELBN(γ). The ELBN model is a symmetric bimodal model and, for γ = 0,
the distribution reduces to the PDF of the normal distribution.

2.1. Bimodal Normal Model

A random variable Z is said to have a bimodal normal distribution (Elal-
Olivero, 2010), if its PDF is given by

fBN(z) = z2ϕ(z), z ∈ R. (10)
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This is denoted by Z ∼ BN. The CDF and survival function of the BN
distribution are given, respectively by

FBN(z) = Φ(z)− zϕ(z), for z ∈ R, (11)

and
SBN(t) = 2

(
1− Φ(t) + tϕ(t)

)
= 2
(
SN(t) + tϕ(t)

)
, for t > 0, (12)

where Φ(·), ϕ(·) and SN(·) are de PDF, CDF and survival function of the standard
normal distribution, respectively. The Hazard function is given by

hBN(t) =
t2ϕ(t)

2
(
1− Φ(t) + tϕ(t)

) , t > 0.

If Z ∼ BN, then E(Z) = 0, E(Z2) = 3, E(Z3) = 0 and E(Z4) = 15. Therefore,
the coe�cients of asymmetry and kurtosis are given by β1 = 0 and

√
β2 = 1,

respectively. Similarly, the moment-generating function (MGF) can be expressed
as

MZ(t) = 2 exp

(
t2

2

)
.

The location and scale parameters are introduced by considering the random
variable Z following a BN distribution. Thus, if Z ∼ BN, then the random variable
X = ξ + ηZ is a BN with location parameter ξ and scale parameter η. Its PDF is
given by

fBN(x; ξ, η) =
1

η

(
x− ξ

η

)2

ϕ

(
x− ξ

η

)
, x ∈ R,

which is denoted byX ∼ BN(ξ, η). The MGF of the random variableX ∼ BN(ξ, η)
is given by

MX (t) = exp

(
ξt+

1

2
η2t2

)(
η2t2 + 1

)
.

2.1.1. Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be a random sample such that, Xi ∼ BN(ξ, η) for
i = 1, 2, . . . , n. The log-likelihood function for estimating the parameters vector
θ = (ξ, η)⊤ is given by

ℓ (θ;X) = −n log (η) + 2

n∑
i=1

log (zi) +

n∑
i=1

log (ϕ (zi)) . (13)

The score functions, which are de�ned as the �rst partial derivative of the
log-likelihood function regarding each of the parameters, are given by

∂ℓ

∂ξ
= −1

η

{
2

n∑
i=1

1

zi
−

n∑
i=1

zi

}
and

∂ℓ

∂η
= −1

η

{
3n−

n∑
i=1

z2i

}
.
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By equating to zero the score functions ∂ℓ
∂ξ = 0 and ∂ℓ

∂η = 0, the score equations
are obtained and then, we have the following system of equations

η2 =
1

3n

n∑
i=1

(xi − ξ)2 and 2η2
n∑

i=1

1

xi − ξ
=

n∑
i=1

(xi − ξ). (14)

The maximum likelihood estimates are obtained as the solution of the system
of equations in (14), which can be solved by using iterative numerical methods such
as Newton-Raphson or quase-Newton. The elements of the observed information
matrix are de�ned as minus the second-order partial derivatives of the log-
likelihood function regarding each of the parameters, ξ and η; that we denoted
by ψξξ, ψξη and ψηη, can be expressed as

ψξξ =
1

η2

{
2

n∑
i=1

1

z2i
+ n

}
, ψξη =

2

η2

n∑
i=1

zi and ψηη =
3

η2

{
n∑

i=1

z2i − n

}
.

To get the elements of the expected information matrix, we multiply by n−1

the elements of the observed information matrix, and we denoted them by iξξ, iξη
and iηη. These elements can be written as

iξξ =
3

η2
, iξη = 0 and iηη =

3

η2
E
(
Z2
i

)
− 3

η2
=

9

η2
− 3

η2
=

6

η2
.

It is easy to see that, the determinant of the information matrix is det(I(θ̂)) =
18/η4 ̸= 0, and therefore, the information matrix is non-singular, guaranteeing the
existence of the covariance matrix of the MLEs. The Fisher information matrix is
given by

Var(θ̂) = I−1(θ) =

(
η2

3 0

0 η2

6

)
. (15)

The existence of I(θ)−1 also guarantees the asymptotic properties of the MLE

θ̂ = (ξ̂, η̂)⊤, so that, the θ̂ follows asymptotic normal distribution when n value
increase.

(ξ̂, η̂)⊤
D−→ N2

(
(ξ, η)⊤, I(θ)−1

)
,

that is, the maximum likelihood estimators of the model parameters are consistent
and asymptotically follow a normal distribution with a covariance matrix, the
inverse of the Fisher information matrix.

3. Exponentiated Bimodal Normal Model

In this section, we introduce the exponentiated bimodal normal model which
is an extension of the BN model to the case of the AP family of distributions and
has the PDF given by

fEBN(z;α) = αz2ϕ(z) [Φ(z)− zϕ(z)]
α−1

, z ∈ R, (16)
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where α ∈ R+. We use the notation EBN(α). One can see that, for α = 1 the BN
model is obtained and the graph is symmetric around zero in this standard case;
for other values of α, the model is asymmetric and bimodal. Then, it is concluded
that the parameter α explains the asymmetry of the model. Figure 1(a) shows the
behavior of the EBN(α) model for some selected values of the α parameter.
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Figure 1: PDF and hEBN(t) for α = 3 (solid line), 2 (dashed line), 1 (dotted line) and
0.5 (dotted-dashed line). (a) PDF and (b) hEBN(t).

As an inherited property of the AP family of distributions, one can note that,
the distribution function of this model corresponds to the power of the distribution
function of the BN model of Elal-Olivero (2010). Thus, the CDF of the EBN model
is given by

FEBN(z;α) = [Φ(z)− zϕ(z)]
α
= [FBN(z)]α , z ∈ R, (17)

where FBN(·) is the CDF of the BN model of Elal-Olivero (2010). It follows that
the survival and Hazard functions of the EBN model are given by

SEBN(t) = 1− [Φ(t)− tϕ(t)]
α

and hEBN(t) = αt2ϕ(t)
[Φ(t)− tϕ(t)]

α−1

1− [Φ(t)− tϕ(t)]
α ,

respectively. The behavior of the Hazard function for t > 0 can be seen in Figure
1-(b) which is non-decreasing (strictly) and convergent.

3.1. Moments for the Standard Case

The moments of the EBN model do not have a particular shape since they
cannot be calculated explicitly, and they can only be calculated numerically. In
general, the r-th moment of the random variable Z with EBN distribution is given
by

µr = E(Zr) = α

∫ ∞

−∞
zr+2ϕ(z) [Φ(z)− zϕ(z)]

α−1
dz. (18)
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3.2. Location-Scale Extension

If Z ∼ EBN(α), the location-scale extension of the EBN model is obtained
from the transformation X = ξ + ηZ, where ξ ∈ R and η ∈ R+. The PDF of X is
given by

fEBN(x; ξ, η, α) =
α

η
z2ϕ(z) [Φ(z)− zϕ(z)]

α−1

where z = (x− ξ)/η. We denote this extension by EBN(ξ, η, α) and its CDF for
FEBN(x;θ), where θ = (ξ, η, α)⊤.

3.3. Moments andMoment Generating Function for Location-

scale Model

For the location-scale version of the EBN(ξ, η, α) model, the r-th moment is
obtained from the expression

E(Xr) =

r∑
l=0

(
r

l

)
µlσr−lE(Zr−l),

where Z ∼ EBN(α). The central moments, µ′
r = E

(
X − E(X)

)r
, for r = 2, 3, 4

can be calculated by using the expressions

µ′
2 = µ2 − µ2

1, µ′
3 = µ3 − 3µ2µ1 + 2µ3

1 and µ′
4 = µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1.

Therefore, the variance, the coe�cient of variation, and the asymmetry and
kurtosis coe�cients can be calculated as

σ2 = µ′
2, CV =

√
σ2

µ1
,
√
β1 =

µ′
3

[µ′
2]

3/2
and β2 =

µ′
4

[µ′
2]

2
,

respectively. The MGF of the EBN distribution does not have special shape and
is calculated from the general formula

MX(t) = αeξt+
η2t2

2

∫ ∞

−∞
z2ϕ(z − ηt) [Φ(z)− zϕ(z)]

α−1
dz. (19)

3.4. Maximum Likelihood Estimation

For a random sample of size n, X = (x1, x2, . . . , xn)
⊤, with Xi ∼ EBN(ξ, η, α),

for i = 1, . . . , n, the log-likelihood function is given by

ℓ(θ;X) = n log(α)− n log(η) +

n∑
i=1

log
(
z2i
)
− 1

2

n∑
i=1

z2i

+ (α− 1)

n∑
i=1

log [Φ(zi)− ziϕ(zi)] ,
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where θ = (ξ, η, α)⊤ and zi = (xi− ξ)/η, for i = 1, . . . , n. After some calculations,
we obtain the following score functions

∂l

∂ξ
= −1

η

[
n∑

i=1

2

zi
−

n∑
i=1

zi + (α− 1)

n∑
i=1

z2i ϕ(zi)

FBN(zi)

]
,

∂l

∂η
= −1

η

[
3n−

n∑
i=1

z2i + (α− 1)

n∑
i=1

z3i ϕ(zi)

FBN(zi)

]
,

∂l

∂α
=
n

α
+

n∑
i=1

log [Φ(zi)− ziϕ(zi)] ,

where FBN(zi) is the CDF of the BN model given in (11). Taking the second partial
derivative to the log-likelihood function, the following elements of the observed
information matrix are obtained

jξξ =
1

η2

[
n∑

i=1

2

z2i
+ n+ (α− 1)

n∑
i=1

ziϕ(zi)

F2
BN

(zi)

[(
z2i − 2

)
FBN(zi) + z3i ϕ(zi)

]]
,

jξη =
1

η2

[
2

n∑
i=1

zi + (α− 1)

n∑
i=1

z2i ϕ(zi)

F2
BN

(zi)

[(
z2i − 3

)
FBN(zi) + z3i ϕ(zi)

]]
,

jηη =
1

η2

[
−3n+ 3

n∑
i=1

z2i + (α− 1)

n∑
i=1

z3i ϕ(zi)

F2
BN

(zi)

[(
z2i − 4

)
FBN(zi) + z3i ϕ(zi)

]]
,

jξα =
1

η

n∑
i=1

z2i ϕ(zi)

FBN(zi)
, jηα =

1

η

n∑
i=1

z3i ϕ(zi)

FBN(zi)
, jαα =

n

α2
.

Taking the expected value to the previous expressions, we obtain the following
elements of the Fisher information matrix I(θ)

iξξ =
1

η2
[
1 + E(Z−2) + (α− 1)b12

]
, iξη =

1

η2
[2E(Z) + (α− 1)b23] ,

iηη =
1

η2
[
−3 + 3E(Z2) + (α− 1)b34

]
, iξα =

a2
η
, iηα =

a3
η
, iαα =

1

α2
,

where aj = E
[
Zjϕ(z)
F (z)

]
and bj = E

[
aj

(
Z2−k
F (z) + a3

)]
. When α = 1 is obtained

using numerical calculations

I(θ) =



3

η2
0

0.7663

η

0
6

η2
−1.0103

η

0.7663

η
−1.0103

η
1


,
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whose determinant is

det(I(θ)) =
11.4165

η4
̸= 0.

Then, the information matrix of the model is non-singular at the boundary of
α = 1. Here, the regularity conditions are generally satis�ed and the usual

√
n

property for the MLEs is valid for all ξ, η and α. Therefore, for large sample sizes
it follows that

(ξ̂, η̂, α̂)⊤
D−→ N3

(
(ξ, η, α)⊤, I(θ)−1

)
,

then, the MLEs are consistent and have asymptotic normal distribution with
covariance matrix the inverse of the Fisher information matrix.

4. Asymmetric Exponentiated Elliptical Bimodal

Normal Model

According to Elal-Olivero, Gómez & Quintana (2009), within the skew-elliptical
bimodal family of ditributions, we �nd the elliptical bimodal normal model with
PDF given by

fELBN(z; γ) =

(
1 + γz2

1 + γ

)
ϕ(z), z ∈ R, (20)

where γ ≥ 0 is a shape parameter. This model is denoted by ELBN(γ) and is
unimodal for γ = 0 (normal case) and symmetric bimodal in other cases (γ > 0).
The CDF is given by

FELBN(z; γ) = Φ(z)− γ

1 + γ
zϕ(z), z ∈ R.

Now, we propose an extension of the exponentiated type for the ELBN(γ)
model whose PDF is given by

fEEBN(z; γ, α) = α

(
1 + γz2

1 + γ

)
ϕ(z)

[
Φ(z)− γ

1 + γ
zϕ(z)

]α−1

, (21)

where z ∈ R, γ ≥ 0 and α ∈ R+. Here α is an asymmetry parameter. The model
in (21) is called exponentiated elliptical bimodal normal (EEBN) model and we
denoted it by EEBN(γ, α). One can be seen that, for α = 1 the ELBN(γ) model is
obtained, for γ = 0, the PN(α) model is followed, and if γ → ∞, the EBN model
is obtained; likewise, for γ → ∞ and α = 1 the BN model follows, and when γ = 0
and α = 1 then the standard normal is obtained. Thus, EEBN model is more
�exible than BN, PN, ELBN, EBN and normal distributions.

For the EEBN model can be shown that, when α tends to 1, the mode of the
distribution approaches to ±

√
2 and the distribution tends to be symmetric. In

the standard case, the distribution has one mode for values of the random variable
less than zero, and the other for values greater than zero. In addition, when α < 1
the maximum value of the PDF is found for the mode that takes the smallest
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(negative) value, while for α > 1, the maximum value of the PDF is found for the
mode which takes the highest (positive) value.

The graphs in Figure 2(a), (b) and (c) show the behavior of the EEBN
distribution for di�erent values of γ and α. One can observe from the �gure that
the γ parameter determines the bimodality or unimodality of the distribution,
while the α parameter explains the asymmetry of the model.
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Figure 2: EEBN distribution for γ = 0.25 (dotted-dashed line), γ = 0.75 (dotted line),
γ = 1.5 (dashed line) and γ = 3 (solid line). (a) α = 0.75, (b) α = 1.5 and
(c) α = 2.25.

4.1. Properties of the EEBN Model

As an inherited property of the AP family of distributions, it can be seen that
the distribution function of this model corresponds to the power of the distribution
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function of the ELBN model, thus, the CDF of the EEBN(γ, α) is

FEEBN(z; γ, α) =
[
Φ(z)− γ

1 + γ
zϕ(z)

]α
, z ∈ R.

Therefore, the survival and hazard functions are given by

SEEBN(t) = 1−
[
Φ(t)− γ

1 + γ
tϕ(t)

]α
, t ∈ R,

and

hEEBN(t) = α

(
1 + γt2

1 + γ

)
ϕ(t)

[
Φ(t)− γ

1+γ tϕ(t)
]α−1

1−
[
Φ(t)− γ

1+γ tϕ(t)
]α , t ∈ R,

respectively. The moments of the EEBN distribution do not have a speci�c
shape and are obtained numerically from the general de�nition, as well as for
the calculation of the variance and the asymmetry and kurtosis coe�cients.

The location-scale version of the Z ∼ EEBN(γ, α) model, follows from the
linear transformation X = ξ + ηZ, where ξ ∈ R and η ∈ R+. Then, letting
z = (x− ξ)/η, the PDF of X is given by

fEEBN(x;α, ξ, η) =
α

η

(
1 + γz2

1 + γ

)
ϕ(z)

[
Φ(z)− γ

1 + γ
zϕ(z)

]α−1

. (22)

4.2. Parameters Estimation in EEBN Model

Let X1, X2, . . . , Xn be a random sample of size n such that, Xi ∼
EEBN(ξ, η, γ, α) for i = 1, 2, . . . , n. The log-likelihood function for estimating
the parameters vector θ = (ξ, η, γ, α)⊤ is given by

ℓ(θ;X) = n log(α)− n log(η) +

n∑
i=1

log
(
1 + γz2i

)
− n log(1 + γ)− 1

2

n∑
i=1

z2i

+ (α− 1)

n∑
i=1

log

[
Φ(zi)−

γ

1 + γ
ziϕ(zi)

]
, (23)

where zi = (xi − ξ)/η, for i = 1, . . . , n. After some calculations, the elements of
the score function are given by

∂ℓ

∂ξ
= −1

η

[
n∑

i=1

2γzi
1 + γz2i

−
n∑

i=1

zi +
α− 1

1 + γ

n∑
i=1

(1 + γz2i )ϕ(zi)

FELBN(zi;ϑ)

]
,

∂ℓ

∂η
= −1

η

[
n+

n∑
i=1

2γz2i
1 + γz2i

−
n∑

i=1

z2i +
α− 1

1 + γ

n∑
i=1

zi(1 + γz2i )ϕ(zi)

FELBN(zi;ϑ)

]
,

∂ℓ

∂γ
=

n∑
i=1

z2i
1 + γz2i

− n

1 + γ
− α− 1

(1 + γ)2

n∑
i=1

ziϕ(zi)

FELBN(zi;ϑ)
,

∂ℓ

∂α
=
n

α
+

n∑
i=1

log

[
Φ(zi)−

γ

1 + γ
ziϕ(zi)

]
,
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where ϑ = (ξ, η, γ)⊤. The elements of the observed information matrix can be
written as

ıξξ =
1

η2

[
n− 2γ

n∑
i=1

1

(1 + γz2i )
2 + 2γ2

n∑
i=1

z2i

(1 + γz2i )
2

]
+

α− 1

η2(1 + γ)2

n∑
i=1

(1 + γ)ziϕ(zi)
[
(1− 2γ) + γz2i

]
FELBN(zi;ϑ) + (1 + γz2i )ϕ

2(zi)

F2
ELBN

(zi;ϑ)
,

ıξη =
1

η2

[
−2γ

n∑
i=1

zi

(1 + γz2i )
2 + 2γ2

n∑
i=1

z3i

(1 + γz2i )
2 +

n∑
i=1

zi

]
+

α− 1

η2(1 + γ)2

n∑
i=1

(1 + γ)z2i ϕ(zi)
[
(1− 2γ) + γz2i

]
FELBN(zi;ϑ) + zi(1 + γz2i )ϕ

2(zi)

F2
ELBN

(zi;ϑ)
,

ıηη =
1

η2

[
−n− 2γ

n∑
i=1

z2i (3 + γz2i )(
1 + γz2i

)2 + 3

n∑
i=1

z2i

]

+
α− 1

η2(1 + γ)2

n∑
i=1

(1 + γ)ziϕ(zi)
[
−2 + (1− 4γ)z2i + γz4i

]
FELBN(zi;ϑ) + z2i (1 + γz2i )

2ϕ2(zi)

F2
ELBN

(zi;ϑ)
,

ıξγ =
2

η

n∑
i=1

zi

(1 + γz2i )
2

+
α− 1

η(1 + γ)3

n∑
i=1

zi
(1 + γ)(z2i − 1)ϕ(zi)FELBN(zi;ϑ) + zi(1 + γz2i )ϕ

2(zi)

F2
ELBN

(zi;ϑ)
,

ıηγ =
2

η

n∑
i=1

z2i
(
1− γzi + γz2i

)
(1 + γz2i )

2

+
α− 1

η(1 + γ)3

n∑
i=1

(1 + γ)(z2i − 1)ϕ(zi)FELBN(zi;ϑ) + zi(1 + γz2i )ϕ
2(zi)

F2
ELBN

(zi;ϑ)
,

ıξα =
1

η(1 + γ)

n∑
i=1

(1 + γz2i )ϕ(zi)

FELBN(zi;ϑ)
, ıηα =

1

η(1 + γ)

n∑
i=1

zi(1 + γz2i )ϕ(zi)

FELBN(zi;ϑ)

ıγα =
1

(1 + γ)2

n∑
i=1

ziϕ(zi)

FELBN(zi;ϑ)
, ıαα =

n

α2
.

Then, the elements of the expected information matrix κθjθj′ , are obtained by
taking the expected value of the elements of the observed information matrix and
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by the structure of these elements, these cannot be found explicitly, so numerical
methods must be used to �nd the respective expected values for each value of ξ,
η, γ and α.

Letting κθjθj′ = E
(
ιθjθj′

)
, then, the expected information matrix is J(θ) =

(κθjθj′ ) where θj , θj′ are in θ = (ξ, η, γ, α)⊤. Since the observed information
matrix converges asymptotically to the expected information matrix, for γ ̸= 0
and large sample sizes, we have

(ξ̂, η̂, γ̂, α̂)⊤
D−→ N4

(
(ξ, η, γ, α)⊤,J(θ)−1

)
,

Therefore, the MLE is consistent and have asymptotic normal distribution,
with the covariance matrix being the inverse of the observed information matrix.

4.3. Asymmetric Censored Exponentiated Bimodal Normal

Model

This section presents the extension of the EBN model to the case of censored
data. Suppose a latent random variable

yi =

{
y∗i , if y∗i > c,

c, otherwise
(24)

where Y ∗
i follows an asymmetric exponentiated bimodal normal EBN(ξ, η, α)

distribution, for i = 1, 2, ..., n, then the resulting variable Y is said to have
an asymmetric censored EBN distribution which is denoted by CEBN(ξ, η, α).
For getting the estimates of the parameters vector θ = (ξ, η, α)⊤, the maximum
likelihood method is used. Thus, for a random sample X = (X1, X2, . . . , Xn)

⊤,
with Xi ∼ CEBN(ξ, η, α), the log-likelihood function has the form

ℓ(θ;X) = α
∑
0

log [Φ(z0i)− z0iϕ(z0i)] +

∑
1

[
log(α)− log(η) + log

(
z2i
)
− 1

2
z2i + (α− 1) log [Φ(zi)− ziϕ(zi)]

]
,

where
∑

0 and
∑

1 refer to the sum over the censored and uncensored observations,
respectively; and z0i = (c− ξ)/η. The maximization of this function regarding the
vector of parameters leads to the MLE of the parameters of the model.

4.4. Asymmetric Censored Exponentiated Elliptical Bimodal

Normal

We consider a latent random variable as in (24) and we change the assumption
of EBN distribution by Y ∗

i ∼ EEBN(ξ, η, γ, α) for i = 1, 2, . . . , n. In this case,
the random variable Y follows an asymmetric censored exponentiated elliptical
bimodal normal distribution and we use the notation CEEBN(ξ, η, γ, α).
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In the same way as in CEBN model, for obtaining the estimates of the
parameters vector θ = (ξ, η, γ, α)⊤, the ML method is used, thus, for a random
sample X = (X1, X2, . . . , Xn)

⊤, with Xi ∼ CEEBN(ξ, η, γ, α), the log-likelihood
function is given by

ℓ(θ;X) = α
∑
0

log

[
Φ(z0i)−

γ

1 + γ
z0iϕ(z0i)

]
+
∑
1

[
log(α)− log(η) + log

(
1 + γz2i

)]
+
∑
1

[
− log (1 + γ)− 1

2
z2i + (α− 1) log

(
Φ(zi)−

γ

1 + γ
ziϕ(zi)

)]
,

where θ = (ξ, η, γ, α)⊤),
∑

0 and
∑

1 refer to the sum over the censored and
uncensored observations, respectively, and Z0i = (c− ξ)/η.

5. Simulation Study

5.1. Asymptotic Properties

In order to study the performance of the maximum likelihood estimator
θ̂ = (ξ̂, η̂, α̂)⊤ of the parameter θ = (ξ, η, α)⊤ in the EBN model, a small
Monte Carlo simulation study was carried out with sample sizes n = 20, 30, 60
and 90. The true values of the parameters were taken as ξ = 0, η = 1 and
α = 1.25, 1.5, 1.75. For each combination of parameters 104 = 10, 000 samples of
the EBN model were generated. To evaluate the performance of the estimators,
the absolute value of the bias (AVB) and the root of the mean square error (MSE)
were considered, they are given by

AVB(θ̂i) =
1

10.000

∣∣∣∣∣∣
10.000∑
j=1

(θ̂
(j)
i − θi)

∣∣∣∣∣∣ ; RMSE(θ̂i) =
1

100

√√√√10.000∑
j=1

(θ̂
(j)
i − θi)2,

respectively, where θ̂i is the estimator of θi for the j-th sample, for θ̂i ∈ (ξ, η, α)⊤.
The ML estimates of the parameters were calculated by using the optim function
of R Development Core Team (2021). The optimization of the likelihood function
was done by using iterative methods based on the Newton-Rapshon algorithm.

One can be seen from the Table 1 that the bias is very close to zero and tends
to decrease when the value of n increases. The RMSE also tends to decrease when
the value of n increases, indicating that estimates based on the ML method have
good asymptotic properties. That pattern is the same for all di�erent scenarios
under consideration. Likewise, it can be concluded that the ML estimates are
asymptotically consistent.
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Table 1: Asymptotic behavior of the MLE for the parameters of the EBN model.

ξ̂ η̂ α̂

α n AVB RMSE AVB RMSE AVB RMSE

20 0.0545 0.2202 0.3321 0.0968 0.1336 0.5461

30 0.0538 0.1971 0.3273 0.0786 0.0993 0.4138

1.25 60 0.0537 0.1717 0.3227 0.0589 0.0660 0.3183

90 0.0524 0.1593 0.3209 0.0503 0.0631 0.2772

120 0.0512 0.1519 0.3199 0.0460 0.0597 0.2591

20 0.0570 0.2699 0.3053 0.1040 0.3863 1.2141

30 0.0529 0.2139 0.3022 0.0814 0.3033 0.5320

1.50 60 0.0522 0.1827 0.2980 0.0623 0.2612 0.4017

90 0.0502 0.1690 0.2965 0.0549 0.2461 0.3470

120 0.0490 0.1573 0.2952 0.0486 0.2447 0.3162

20 0.0472 0.4547 0.2804 0.1430 1.2301 7.9987

30 0.0460 0.2656 0.2786 0.0945 0.5556 2.0027

1.75 60 0.0499 0.1958 0.2759 0.0686 0.4581 0.4745

90 0.0499 0.1759 0.2737 0.0598 0.4406 0.4042

120 0.0482 0.1638 0.2725 0.0538 0.4317 0.3663

5.1.1. Coverage Probability for the Standard Asymptotic Con�dence

Intervals

The likelihood function for a random sample of size n, X = (X1, . . . , Xn)
⊤,

from the distribution EBN(ξ, η, α) is given by

ℓ(θ;X) = n log(α)− n log(η) +

n∑
i=1

log
(
z2i
)
− 1

2

n∑
i=1

z2i

+ (α− 1)

n∑
i=1

log [Φ(zi)− ziϕ(zi)] ,

with zi = (xi − ξ)/η, i = 1, . . . , n. Therefore, the MLE of α can be obtained as

α̂ = − n∑n
i=1 log [Φ(zi)− ziϕ(zi)]

,

which is a complete and su�cient statistic for the parameter α,

T (X) =

n∑
i=1

log [Φ(zi)− ziϕ(zi)] .

Therefore,
∂2ℓ(α;y)

∂α2
= − n

α2
.

It can be shown that the asymptotic variance of α̂ is given by α2/n, which
agrees with the asymptotic variance in the EBN model.
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Since the distribution function of a random variable with EBN distribution
follows uniform distribution on the interval (0, 1) and, minus the logarithm of a ran-
dom variable has uniform distribution, has an exponential distribution with param-
eter 1, then it follows that the random variableW = −

∑n
i=1 log [Φ(Zi)− Ziϕ(Zi)]

has Gamma(n, 1) distribution. Hence, α̂ follows a distribution according to nα/W ,
for n > 2. Therefore,

E(α̂) = nαE
(

1

W

)
=

n

n− 1
α.

In addition, one can show that

Eα(α̂− α)2 =
n+ 2

(n− 1)(n− 2)
α2.

From Chebyshev's inequality, it follows that

Probα(|α̂− α| ≥ ϵ) ≤ Eα(α̂− α)2

ϵ2
=

n+ 2

(n− 1)(n− 2)ϵ2
α2,

therefore, when n tends to ∞, it follows that Probα(|α̂− α| ≥ ϵ) tends to zero,
and we conclude α̂ is a consistent estimator for the parameter α.

It can be shown that, a pivotal quantity for α is given by

−2α

n∑
i=1

log [Φ(zi)− ziϕ(zi)] ,

then, a con�dence interval for α with level of con�dence 100(1− ρ)% is given by(
α̂χ2

(2n,ρ/2)

2n
,
α̂χ2

(2n,1−ρ/2)

2n

)
.

Note that, as n increases the length (L) of the interval is smaller, so as n → ∞,
then L→ 0 is expected, thus, as n increases the probability of parameter coverage
may decrease.

For this case we implement a small Monte Carlo simulation study, with
10, 000 = 104 iterations for the sample sizes of n = 20, 30, 60, 90 and 120, and α
values of 1.25 , 1.50, 1.75 and 2.25. We calculate the coverage rate of the parameter
α for a level con�dence of 95%. One can see that, (Table 2) as α is higher, the
coverage percentage has at true level of trust.

6. Illustrations

In this section, two illustrations are presented where, it can be seen that the
EBN and EEBN models are new alternatives to �tting bimodal data with high (or
low) asymmetry and/or kurtosis coe�cients.
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Table 2: Coverage probability for the standard asymptotic con�dence intervals of the
EBN model.

α n PC(%)

20 98.22

30 95.46

1.25 60 78.86

90 57.01

120 35.5

20 99.13

30 98.05

1.50 60 90.59

90 77.01

120 60.35

20 99.47

30 98.47

1.75 60 95.10

90 87.90

120 78.86

20 99.25

30 99.00

2.25 60 97.15

90 94.63

120 91.32

6.1. Illustration 1

In the �rst illustration, the geyser data set, which is available online in the (R
Development Core Team, 2021) was used. This data set can be downloaded in the
web site https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/

faithful.html, and consists of 272 observations about the waiting times between
eruptions (measured in minutes) of the Old Faithful geyser in the Yellowstone
National Park, Wyoming, U.S. Additional information about the data can be found
in Azzalini & Bowman (1990).

The Table 3 shows the descriptive statistics for the data, where
√
b1 and

b2 represent the asymmetry and kurtosis coe�cients respectively. The previous
results show that the data present a negative skewness and kurtosis below of the
usual normal model.

Table 3: Statistical summary for the data.

x̄ s2x
√
b1 b2

70.897 13.594 -0.414 1.843

The bimodality test of Hartigan & Hartigan (1985) yields the value of the
test statistic D = 0.0414, with p-value of 0.00181, indicating that the data have a
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bimodal distribution. In addition, the histogram in Figure 3(a) shows this bimodal
behavior.

We �t the proposed asymmetric exponentiated bimodal normal (EBN) and
the exponentiated elliptical bimodal normal (EEBN) models. We also �t the
asymmetric bimodal normal (BN) model of Elal-Olivero (2010) and the symmetric
bimodal model of Arnold et al. (2009) (ETN). Furthermore, we used the maximum
likelihood (ML) method to obtain the estimates of the parameters in the �tted
models. The ML estimates are presented in the Table 4. The standard errors
of the estimates were obtained by using the observed information matrix, and to
compare models, we also present the AIC (Akaike, 1974) BIC (Schwarz, 1978) and
CAIC (Bozdogan, 1987) criteria, which are de�ned as follows:

AIC = −2ℓ(θ̂) + 2p, BIC = −2ℓ(θ̂) + p log(n)

and
CAIC = −2ℓ(θ̂) + p(log(n) + 1),

where p is the number of estimated parameters in the �tted model. The best
model is the one with the smallest AIC, BIC or CAIC. According to either of the
considered criteria, the EEBN model presented the best �t to the data, followed
by the BPN and the BN.

Table 4: Estimated parameters (standard errors) for the �tted models.

Parameters EBN BN ETN EEBN

ξ 66.676(0.158) 67.228(0.242) 66.899(0.916) 66.045(0.636)

η 8.109(0.212) 8.109(0.204) 13.036(0.589) 8.930(0.295)

γ � 25.111(8.807) 1.547(0.336) 7.642(2.816)

α 1.358(0.088) � 0.337(0.107) 1.456(0.128)

AIC 2106.75 2127.04 2156.89 2083.50

BIC 2117.57 2137.86 2171.31 2097.92

CAIC 2120.57 2140.86 2175.31 2101.92

A more speci�c justi�cation for using the EBN model is by hypothesis testing
under the assumption of a bimodal normal distribution, that is, hypothesis test

H0 : α = 1 versus H1 : α ̸= 1,

which use the likelihood-ratio statistic given by

Λ =
LBN(θ̂)
LEBN(θ̂)

,

where L denotes the likelihood function. For the considered data is obtained

−2 log(Λ) = 2(1056.26− 1050.37) = 11.78,

so, the p−value = Prob(χ2
1 > 11.78) < 0.05 gives strong evidence for the rejection

of the null hypothesis, that is, the data set are not symmetric bimodal, and
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therefore, an asymmetric bimodal model must be �tted in accordance with the
results of the bimodality test of Hartigan & Hartigan (1985) and Hartigan (1985).

To assess the �t of our model, we apply some normality �t tests. First,
we apply the modi�ed Lilliefors goodness-of-�t test by Sulewski (2019) and
the normality test based on the empirical function proposed by Torabi et al.
(2016). In Second place, we also performed the Kolmogorov-Smirnov goodness-
of-�t test. The modi�ed Lilliefors test produced the statistic D = 0.1553 with
p − value = 0.001; therefore, we reject the normality hypothesis. Similarly, the
results of the normality test based on the empirical distribution produced the
statistic Hn = 0.2462 which is greater than the critical value at 5%, of signi�cance,
H106,5% (see Table 1 Torabi et al., 2016), and again the hypothesis of normality in
the data is rejected.

On the other hand, we perform again the Kolmogorov-Smirnov goodness-
of-�t test to evaluate our EEBN model and we obtained D = 0.12661 with
p−value = 0.1704. Hence, the hypothesis of good �t to the distribution on EEBN
of the set of observations is not rejected. Thus, we conclude that the EEBN model
best �ts the geyser dataset.

Finally, the Figures 3(a) and (b) show the behaviour of the �tted models and
the empirical CDF for the �tted models BN, EBN and EEBN. It can be seen that
the EEBN model has the best �t compared to the EBN, BN and ETN models.
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Figure 3: (a) Histogram for the variable under study. Models: EEBN (solid line), EBN
(dotted line), BN (dashed line) and ETN (dotted-dashed line), (b) empirical
CDF for EEBN (dotted line), EBN (dashed line) and, BN (dotted-dashed
line).

6.2. Illustration 2

For the second application, we consider a data set corresponding to 1.275 HIV-
infected people who have been reported in Surveillance and Epidemiology Service
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of the city of Bucaramanga, Colombia. Among other variables observed in this
data set, we �nd the age, sex, date of admission to the SIVIGILA system, the
presence or absence of HAART treatment, highly active antiretroviral therapy,
CD-4 count and viral load measured as HIV-1 RNA copy number. This data set
was provided by the Secretary of Departmental Health of Santander, Colombia and
maintains absolute con�dentiality and reserve on the identi�cation of patients.

The database contains patients who are in di�erent stages of treatment, we
illustrate the application of the censored bimodal model with the viral load data
for the 106 women who have been treated for at least one year with HAART drugs.
The proportion of women below the detection limit of 50 copies per millimeter on
a base 10 logarithmic scale, log10(50), is 34.90%, additionally for the Hartigan &
Hartigan (1985) bimodality test D = 0.0686 with p−value = 0.0133. rejecting the
hypothesis of uniform distribution of viral load. The histogram shown in Figure
4(a) illustrates the existence of bimodality in the distribution of the data set. The
Table 5 contains the descriptive statistics for the uncensored data, where it is
observed an important positive asymmetry.

Table 5: Statistics summary of log10 HIV-1-RNA for the 69 female observations for the
uncensored data.

ȳ s2y
√
b1 b2

3.410 1.424 0.362 2.042

Given the results of the bimodality test of Hartigan & Hartigan (1985) and
the skewness presented in the uncensored data, we �t the asymmetric censored
ETN model, see Martínez-Flórez et al. (2018), censored EBN and EEBN models
to explain the viral load for the 106 women under study, we also �tted the censored
BN model.

For �tting the CETN, CEBN and CEEBN models, the MLEs are obtained
using the optimization method of the R Development Core Team (2021). The
obtained estimates (standard errors in parentheses) are found in Table 6, where it
can be observed that according to the AIC, BIC and CAIC criteria, the asymmetric
censored CETN, CEBN and CEEBN models �t better than the CBN model,
which was to be expected given that the CBN model is bimodal symmetric. The
estimated proportion of censorship for the CEBN and CEEBN models is 33.44%
and 33.89% respectively, illustrating the good �t of these models.

For this data set, the modi�ed Lilliefors test produced the value D = 0.1318
with p−value = 0.01, while for the Torabi et al. (2016) normality test, the value of
the statistic was Hn = 0.3792 > H106.5%; therefore both tests reject the hypothesis
of normality of the data.

Regarding the Kolmogorov-Smirnov test to assess the hypothesis of good �t
of the EEBN distribution to the HIV data set, we obtained D = 0.4717, with
p − value = 0.3577; therefore we do not reject the null hypothesis and conclude
that the EEBN model �ts better. The graphs in Figure 4(b) and (c) show the
QQplot for the EBN and EEBN models of the estimated models, the good �t of
the CEBN and CEEBN models can be observed.
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Table 6: Estimates parameters (standard errors) for �tted models

Parameters CBN CETN CEBN CEEBN

µ 1.485(0.040) 1.587(0.160) 1.550(0.044) 1.604(0.166)

η 0.889(0.042) 1.840(0.213) 0.804(0.044) 0.907(0.075)

γ � 2.261(1.508) � 2.090(1.047)

α � -0.588(0.199) 0.571(0.082) 0.547(0.116)

AIC 353.95 328.69 335.00 325.02

BIC 364.25 349.29 351.45 345.62

CAIC 366.25 353.24 354.45 349.62
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Figure 4: (a) Histogram for the variable under study viral load and �tted models
CETN(dotted line), CEBN(dashed line) CEEBN(solid line); (b) QQplot
CEBN and (c) QQplot CEEBN.
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7. Conclusions

In this paper, new families of distributions were introduced to model
asymmetric bimodal data. The new proposals arise from the extension of the
bimodal-normal model to the case of the alpha-power family of distributions. The
case of models for censored data is also considered. The main properties of the
proposed models are studied in detail and the inference process in the models
was carried out using the maximum likelihood method. Among the main results
of these proposals, one can note that, the information matrices of the studied
models are non-singular, which is an advantage over other models support on the
skew-normal distribution. Two applications with data sets allow to illustrate the
applicability of the studied models, showing very good results compared to other
existing models in the literature.
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