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Abstract

In this work, we consider a nonparametric prediction of a spatio-
functional process observed under a non-random sampling design. The
proposed predictor is based on functional regression and depends on two
kernels, one of which controls the spatial structure and the other measures
the proximity between the functional observations. It can be considered,
in particular, as a supervised classi�cation method when the variable of
interest belongs to a prede�ned discrete �nite set. The mean square error
and almost complete (or sure) convergence are obtained when the sample
considered is a locally stationary α-mixture sequence. Numerical studies
were performed to illustrate the behavior of the proposed predictor. The
�nite sample properties based on simulated data show that the proposed
prediction method outperforms the classical predictor which not taking into
account the spatial structure.

Key words: Functional dependent data; Fixed design; Non-parametric
prediction; Supervised classi�cation.

Resumen

En este trabajo consideramos una predicción no paramétrica de un
proceso espacial y funcional observado bajo un diseño de muestreo no
aleatorio. El predictor propuesto se basa en la regresión funcional y depende
de dos núcleos, uno de los cuales controla la estructura espacial y el otro mide
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la proximidad entre las observaciones funcionales. Esta metodología puede
considerarse, en particular, como una nueva herramienta de clasi�cación
supervisada cuando la variable de interés pertenece a un conjunto �nito
discreto prede�nido. El error cuadrático medio y la convergencia casi
completa (o certera) se obtienen cuando la muestra considerada es una
secuencia α-mixta localmente estacionaria. Además, en este estudio se han
realizado estudios numéricos para ilustrar el comportamiento de nuestro
predictor. Esta aplicación mediante simulación de un modelo numérico
muestra que el método de predicción propuesto supera al predictor clásico
que no tiene en cuenta la estructura espacial.

Palabras clave: Clasi�cación supervisada; Datos funcionales dependientes;
Diseño �jo; Predicción no paramétrica.

1. Introduction

Functional data analysis (FDA) deals with the analysis and theory of data that
are in the form of functions, curves, images and shapes, or more general complex
objects (Wang et al., 2016).

In the last decade, FDA has undergone a large development in a wide variety
of �elds such as ecology, Embling et al. (2012),Yen et al. (2014),Yan et al.
(2015),Yates et al. (2021); medicine, Sørensen et al. (2013), Oshinubi et al.
(2022), Wu & Li (2022) or environmental sciences, Giraldo et al. (2011), Torres
et al. (2011), Dabo-Niang et al. (2010); monitoring networks of the weather and
pollutants see Escabias et al. (2005), Ignaccolo et al. (2013), among others. It has
been applied, for modeling purposes, in many areas that require spatial statistics;
a branch of mathematics that studies spatially dependent processes.

Functional data can be recored both in temporal and in spatial setting. The
analysis of processing of spatially distributed information that is measured, in
continuously way, in time or in space/space-time uses functional modeling. It
have contributed to the development of new mathematical theories in functional
statistics; with the emergence of continuous and spatially dependent data. It
gave birth to a branch of mathematics which is a combination of spatial statistics
and functional statistics. Indeed, Ruiz-Medina (2011) recognizes the necessity
of new developments in spatial correlated functional data and extends the real-
valued spatial autoregressive model and the spatial moving average model to
stochastic processes taking values in Hilbert spaces. The dimension reduction
methodology based on eigenfunctions basis of the auto-covariance operator has
been used in Ruiz-Medina M (2012) and Ruiz-Medina et al. (2015). FDA applies
tools on multivariate spatial statistics to address questions about prediction at
un-sampled locations, classifying spatial curves with unsupervised classi�cation
methods or/and discrimination rules, estimating relationships between a primary
variable and independent variables.

They are many situations in which one may wish to study the link between
two variables, with the main goal is to able to predict new values of one of them,
or classify it in k-given homogenous groups inside of each one. For example,

Revista Colombiana de Estadística - Theorical Statistics 45 (2022) 391�428



Nonparametric Prediction for Spatial Dependent Functional Data... 393

in marine biology, it is interesting to see the e�ect of the environment or other
ecology parameter to the variability of biomass and spatial distribution of one
specie or a group of species in marine wildlife fauna. In many ecological studies,
counts or biomass of interacting species are collected from several sites. Such data
are often very sparse, high-dimensional and include highly correlated responses,
and the main aim of the statistical analysis is to understand relationships among
such multiple, correlated responses Niku et al. (2019), Niku et al. (2021). In
Environmental & socio-economic studies, some aquatic species are useful as
indicators to study ecosystem health and habitat quality. Amphibian species
have been considered as useful ecological indicators. Soltysiak et al. (2016) use
a Machine-learning methods in the classi�cation of water bodies. The later use
Amphibian species as indicators of environmental contamination. In ecosystemic
approach, better understanding interaction between species and environment helps
to monitoring �sheries in the context of climate change.

In oil research, we can be interested in the prediction of the physical parameters
of oil layers by taking into account other parameters available in oil �elds Baouche
(2015). The explanatory relationship between variables (response variable and
co-variables) is widely studied, in prediction and classi�cation problems, using
classical FDA methods. Functional analysis in spatial statistics thus makes it
possible to build, among other things, regression, prediction and classi�cation
methods, see Ferraty & Vieu (2006), Mateu & Romano (2017), Cuesta-Albertos
et al. (2017), Li et al. (2018), Ballari et al. (2018), Chen et al. (2019), among others.
However, this study is relatively limited from a theoretical and practical point of
view. In addition, it relates, in large part, to parametric/and semi-parametric
models Menafoglio et al. (2013), Zhang (2019), Menafoglio (2021), Menafoglio
et al. (2022). The high intrinsic dimensionality of these data poses challenges both
for theory and computation, that vary with how the functional data were sampled.
This means that parametric/and semi-parametric models are not suitable in this
new spatio-functional context. Therefore, the modeling of these complex problems
uses non-parametric regression models as alternative methods especially when the
relationship between the two variables of interest is not linear.

Nonparametric prediction problem, in the spatial setting, has been widely
studied in the literature when variables are of �nite dimension Dabo-Niang et al.
(2016).

During the �rst half of the 20th century, spatial prediction was widely studied
in the scope of geostatistics, commonly known as Kriging. The latter is a spatial
linear interpolation method Cressie (1993). Krigging has been applied to a various
number of areas including marine biology to evaluate �sh abundances Rivoirard
et al. (2000). Other methods have also been applied such as K-function Ripley
(1987), Heppell et al. (1999), Gardner et al. (2008), Lefort et al. (2011), SDMs
model using conventional statistical methods as Generalized linear models and
Generalized additive models Young & Carr (2015), Luan et al. (2018), Pollock
et al. (2014).

Nowadays there is a dynamic on the development of non-parametric methods
for spatial prediction and classi�cation. The �rst results in this direction are
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those of Biau and Cadre Biau & Cadre (2004), on kernel prediction of a strictly
stationary random �eld indexed in (N∗)N . Later, Dabo-Niang & Yao (2007) have
contributed to Biau and Cadre's Biau & Cadre (2004) investigation since they
were interested in kernel regression estimation and prediction for continuously
indexed strictly stationary random �elds. In Dabo-Niang et al. (2016), non-
parametric prediction for spatial multivariate setting is considered. The latter
deals with �xed design and controls the geographic proximity of the spatial
sites. In Menezes et al. (2010), non-parametric kernel prediction is considered
for spatial stochastic processes when a stochastic sampling design is assumed for
the sample locations. In Rachdi et al. (2021) two main aspects of the statistical
analysis, namely the parametric and nonparametric approaches are considered to
construct and compare four estimators of the regression quantile. Precisely, using
a parametric approach, they construct two estimators that are based respectively
on the B-spline smoothing and the PCA regression. The other two estimators are
constructed using a non-parametric approach, namely the local constants method
and the local linear method. Then, they establish the asymptotic properties of
the four constructed estimators. Ternynck (2014) considered a functional spatial
regression model estimated for strict stationary processes using a kernel method
accounting the spatial proximity of locations.

Discrimination kernel rule has been investigated extensively in the literature
particularly for independent or time-series data Paredes & Vidal (2006), Devroye
et al. (1994), Devroye & Wagner (1982), Hastie & Tibshirani (1996) among
others, see the monograph of Biau & Devroye (2015) for more details. Recently,
Younso (2017) has addressed a discrimination kernel rule for multivariate strictly
stationary spatial processes (Xi ∈ Rd)i∈NN and binary spatial classes (Yi ∈
{0, 1})i∈NN . Ahmed et al. (2019) proposed a spatial k-nearest neighbors
classi�cation rule for multivariate data.

In the functional context, Ferraty & Vieu (2006) investigated a non-parametric
prediction and a discrimination kernel rule for independent data and dependent
non-spatial data. In Cuevas et al. (2007) and Cuesta-Albertos et al. (2017) a
DDG-classi�cation and a Depth classi�cation rules are proposed. In Xiaoying
et al. (2021), a classi�cation of functional data is discussed. Firstly, it preprocesses
the abnormal curve based on the centrality and externality of the functional data
depth; then combines the functional data non-parametric classi�cation method
to calculate the posterior probability value of the given curve belonging to each
category, and classify the unknown curve according to the principle of maximum
posterior probability, see Xiaoying et al. (2021).

In this work1, we extend the regression estimate of Ternynck (2014) to a non-
strictly stationary sequences and establish the uniform convergence, in addition
we investigate a kernel classi�cation rule. Namely, our aim is to propose both
kernel method spatial prediction and, in particular, a supervised classi�cation
approach in a spatio-functional setting. The propoed model is based on the
fact that the response variable of interest is real-valued while the covariate is
functional nature. The sample used comes from to a spatial sequence locally and

1this come from chapter 4 of this thesis Ndiaye et al. (2020)

Revista Colombiana de Estadística - Theorical Statistics 45 (2022) 391�428



Nonparametric Prediction for Spatial Dependent Functional Data... 395

identically distributed, contrary to that used in the work of Ternynck (2014). The
originality of the suggested method takes advantages of that previously considered
by Ternynck (2014), Dabo-Niang et al. (2014), in a more general context. In fact,
the present contribution goes along the direction of spatial proximity structure
into a kernel predictor and takes advantages of these previous works Francisco-
Fernandez & Opsomer (2005), Francisco-Fernández et al. (2012), Dabo-Niang et al.
(2014), Ternynck (2014).

2. Regression Model and Predictor

Denote the integer lattice points in the N -dimensional Euclidean space by ZN ,
N ≥ 1. We consider a spatial process {Zi = (Xi, Yi), i ∈ ZN} de�ned over some
probability space (Ω,F ,P).

A point in bold i = (i1, . . . , iN ) ∈ ZN will be referred as a site. Suppose
Xi takes values in a separable semi-metric space (E , d(·, ·)) (of eventually in�nite
dimension) (i.e. Xi is a functional random variable and d(., .) a semi-metric) and
Yi takes values in R. In the following, ∥·∥ will denote any norm in Rd or RN (there
will be no ambiguity since the vectors of RN are in bold), C and C ′ will indicate
some arbitrary positive constants that may vary from line to line, for each real u,
⌊u⌋ will indicate the integer part of u. Moreover, we write un = O(vn) means that
∃C such that |un/vn| ≤ C as vn → ∞ and un = o(vn) means that |un/vn| → 0 as
vn → ∞, where n ∈ RN .

As it is classically assumed in the literature, the process under study {Zi} is ob-
servable over the rectangular domain In = {i = (i1, . . . , iN ), 1 ≤ ik ≤ nk, k = 1, . . . , N},
where a point i ∈ ZN refers to a site. Let n = (n1, . . . , nN ) and pose
n̂ = n1 × · · · × nN , the sample size. From now on, we assume, for seek of
simplicity, that n1 = n2 = . . . = nN = n El Machkouri (2007), El Machkouri
& Stoica (2010), El Machkouri (2011), but the following results can be extended
to a more general framework. We write n → ∞ if n → ∞. For each site i0, let
kn = kn,i0 =

∑
1[∥i−i0≤dn∥]

denote the number of neighbors i for which the distance

between i0 is less than or equal to distance dn > 0 such that dn → ∞ as n → ∞.
This last assumes the proximity between locations (eventually) increases as the
sample size increases.

We do not suppose strict stationarity. We will assume that the variables
(Xi, Yi)i∈In are locally identically distributed (see for instance Klemelä (2008) who
considered density estimation for locally identically time-series data): a su�cient
number of (Xi, Yi) has a distribution close to that of a couple (X,Y ).

The main goal is to predict the spatial process {Yi, i ∈ ZN} in some unobserved
locations, particularly at an unobserved site i0 ∈ In under the information that
can be drawn on Xi0 and observations (Xi, Yi)i∈On , where On is the observed
spatial set of �nite cardinality tending to ∞ as n → +∞ and contained in In,
with i0 /∈ On. Let (Xi0 , Yi0) be of same distribution as (X,Y )).
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One may imagine that when i is close to some i0, and if there is enough sites
i closed to i0 /∈ In, then sequence (Xi, Yi)i∈On may be used to predict Yi0 , under
the condition Xi0 = xi0 , denoted x in the following with abuse of notation.

We suppose that the spatial process satis�es the following non-parametric
regression model:

Yi := r(Xi) + εi (1)

where r(.) = E(Yi|Xi = .), is assumed to be independent of i, the noise εi is
centered, α-mixing and independent of Xi. Let E|Yi| <∞.
Let the following regression estimator where we assume that the observed region
On is the rectangular domain In:

rn(x) =


gn(x)

fn(x)
, if fn(x) ̸= 0,

1

n̂

∑
i∈On

Yi otherwise,

(2)

where the functions fn and gn are de�ned, respectively, by

fn(x) =
1

an

∑
i∈On

K1

(
d(x,Xi)

bn

)
K2,ρn (∥i0 − i∥) ,

and

gn(x) =
1

an

∑
i∈On

YiK1

(
d(x,Xi)

bn

)
K2,ρn (∥i0 − i∥) ,

with an =
∑
i∈On

K2,ρn (∥i0 − i∥)E
[
K1

(
d(x,Xi)

bn

)]
,

where K2,ρn (∥i0 − i∥) = K2

(
∥(i0−i)/n∥

ρn

)
= K2

(
∥i0−i∥
nρn

) (
i
n = ( i1n ,

i2
n , ...

iN
n )
)
, bn

and ρn are bandwidths tending to zero; K1 and K2 are kernels, de�ned in
hypothesis H1.

Hereinafter, we assume that kn = CNd
N
n + O(dβn) as dn → +∞, 0 < β < N

and CN is a constant that depends on N .

Taking the Euclidean distance and if N = 2 (square grid), we have kn ≤
4d2n − 4dn + 4 which leads to kn = O(d2n) = O(n̂ρ2n).

Recall that the main application of the above regression estimate is the
prediction of the unobserved value Yi0 at a location i0 using a su�cient number of
observations (Xi, Yi) available at neighbor locations. For that, let the sample set
of sites be On = In \ {i0}, with optimal bandwidths b♯n and ρ♯n (detailed in the
prediction procedure of Section 5). The predictor is de�ned as:

Ŷ ♯i0 =

∑
i∈On

YiK1

(
d(x,Xi)

b♯n

)
K2,ρ♯n

(∥i0 − i∥)∑
i∈On

K1

(
d(x,Xi)

b♯n

)
K2,ρ♯n

(∥i0 − i∥)
, (3)
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if the denominator is not null otherwise the predictor is equal to the empirical
mean. The accuracy of (3) will be compared with the following one that does not
take into account the spatial structure:

Ŷ ⋆i0 =

∑
i∈On

YiK1

(
d(x,Xi)
b⋆n

)
∑

i∈On
K1

(
d(x,Xi)
b⋆n

) , (4)

with b⋆n an optimal bandwidth detailed in Section 5.1.
Remark that equation (4) is based on the classical non-parametric regression
estimator Dabo-Niang et al. (2011) without the second kernel on the locations.

rcln (x) =

∑
i∈On

YiK1

(
d(x,Xi)
bn

)
∑

i∈On
K1

(
d(x,Xi)
bn

) . (5)

3. Large Sample Properties and Assumptions

We �rst introduce some mixing assumptions. In fact, to take into account the
spatial dependency, we assume that the process {Zi = (Xi, Yi), i ∈ ZN} satis�es a
mixing condition de�ned in Carbon et al. (1997) as follows: there exists a function
χ(t) ↘ 0 as t→ ∞, such that

α(σ(S), σ(S′)) = sup{|P(A ∩B)− P(A)P(B)|, A ∈ σ(S), B ∈ σ(S′)},
≤ ψ(Card(S),Card(S′))χ(dist(S, S′)),

where dist(S, S′) is the Euclidean distance between the two �nite sets of sites S
and S′, Card(S) denotes the cardinality of the set S, σ(S) (resp. σ(S′)) denotes
the σ-�elds generated by {Zi, i ∈ S} (resp. {Zi, i ∈ S′}) and ψ(·) is a positive
symmetric function nondecreasing in each variable. We recall that the process is
said to be strongly mixing if ψ ≡ 1. As usual, we will assume that one of both
following conditions on χ(i) is veri�ed. These conditions are de�ned by

χ(i) ≤ Ci−θ, for some θ > 0, (6)

i.e. that χ(i) tends to zero at a polynomial rate, or

χ(i) ≤ C exp(−si), for some s > 0, (7)

i.e. that χ(i) tends to zero at an exponential rate. Concerning the function χ(·),
for the sake of simplicity, we will only study the case where χ(·) tends to zero
at a polynomial rate. However, similar asymptotic results may be obtained with
χ(·) tending to zero at an exponential rate (which implies the polynomial case).
Throughout the paper, it will be assumed that ψ satis�es either

∀n,m ∈ N, ψ(n,m) ≤ Cmin(n,m), (8)

or

ψ(n,m) ≤ C(n+m+ 1)κ (9)
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for some C > 0, and some κ ≥ 1. Such functions ψ(n,m) can be found, for
instance, in Tran (1990), Carbon et al. (1997), Hallin et al. (2004), Biau & Cadre
(2004), Dabo-Niang & Yao (2013).

Let un =
∏N
i=1(log ni)(log log ni)

1+ε for ε > 0, then
∑

n∈N 1/n̂un <∞.

We will denote by pi the probability distribution of Xi and by pi,j the joint
probability distribution of (Xi, Xj), for all i and j. The small ball probabilities
are denoted by φi,x(bn) = P[Xi ∈ B(x, bn)], with φi,x(bn) tending to zero when bn
goes to zero (see e.g. Ferraty & Vieu (2006) for more details).

For any real-valued random variable Z and integer p ∈ N∗, let ∥Z∥p =

(E [|Z|p])1/p.
The mean square consistency result of rn is obtained under the following
assumptions on r, the kernel, the bandwidth and local dependence condition.

H1: � K1 is de�ned from R+ to R+, and we assume that there exist two
constants C11 and C12 with 0 < C11 < C12 <∞, such that

C11I[0,1](t) ≤ K1(t) ≤ C12I[0,1](t).

� K2 is a bounded nonnegative function de�ned from R+ to R+, and we
assume that there exist constants C21, C22 and ρ such that

C21I{∥s∥≤ρ} ≤ K2(∥ s ∥) ≤ C22I{∥s∥≤ρ}, ∀ s ∈ RN ,
0 < C21 ≤ C22 <∞, ρ > 0. (10)

H2: r is a Lipschitz function, that is r ∈ LipE where

LipE = {f : E → R,∃C3 ∈ R+
∗ ,∀ (x, x′) ∈ E2, |f(x)− f(x′)| < C3d(x, x

′)}.

H3: (i) Local dependence condition: For all i ̸= j ∈ NN , i, j ∈ Vi0 the joint
probability distribution pi,j of Xi and Xj satis�es

∃ ε ∈ (0, 1], pi,j(B(x, bn)×B(x, bn)) ≤ C4(φi,x(bn)φj,x(bn))
1+ε
2 ,

for some constant C4 > 0, where Vi0 = {i ∈ On, ∥ i−i0
n ∥ < ρn}.

(ii) Small ball probabilities: For all i and x, there exist a function
φx(h) > 0 tending to zero as h goes to zero such that

sup
i∈Vi0

|φi,x(h)− φx(h)| = o(1).

Remark 1. These assumptions are standard in the context of spatial non-
parametric modeling. Indeed, Assumptions H1 and H2 allow to control the
bias of the estimator. Assumption H1 is satis�ed, for instance, by several
kernels with compact support such as triangular (Bartlett), biweight, triweight,
Epanechnikov, Parzen kernels. The Lipschitz conditionH2 allows to obtain rate of
convergence whereas a continuity-type model would give only convergence results.
Local dependence condition H3(i) is a classical condition in kernel estimation of
dependent sequences non-necessarily strictly stationary (Bosq, 1998; Carbon et al.,
1997; Masry, 2005).
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In order to control the constraints on the bandwidth sequence due to the mixing
coe�cients with polynomial decreasing rate (6), we de�ne

γ1 =
2N − θ

4N − θ
and γ∗1 =

N − θ

N(3 + 2κ)− θ
.

The following result gives a bound of the mean squared error of rn

Theorem 1. Assume that assumptions H1-H3 hold with |Yi| ≤M .

1. If (8) is satis�ed and

n̂ρNn φx(bn)
γ1ρNγ1n (log n̂)

−γ1 → ∞ with θ > 4N,

or

2. if (9) is satis�ed and

n̂ρNn φx(bn)
γ∗
1 ρ
Nγ∗

1
n (log n̂)

−γ∗
1 → ∞ with θ > (3 + 2κ)N,

then

∥rn(x)− r(x)∥2 = O

(
bn +

√
1

n̂ρNn φx(bn)

)
.

Precisely, we have

∥rn(x)− r(x)∥2 =

C3 × bn +
(
2C(2MC22 + 2M

√
C4 + C0) + 4M

)
×
√

1
n̂ρNn φx(bn)

,

where C depends on N whereas C0 is a constant depending on the constant
appearing in Lemma 1.

Remark 2. The conditions on the bandwidth in Theorem 1 are technical
assumptions, which appear (in the proofs when studying the asymptotic behavior
of the estimator) in the particular case where the mixing coe�cient is such that χ
tends to zero at a polynomial rate, for some examples, see Neaderhouser (1980),
Rosenblatt (1985). Each of these conditions is related to a speci�c case of mixing in
the spatial context and are used respectively in Neaderhouser (1980) and Takahata
(1983).

3.1. Uniform Almost Complete Convergence

We consider a set D such that D ⊂
⋃vn
k=1Bk where Bk = B(xk, ℓn) (note that

such set can always be built), vn > 0 is some integer, xk ∈ E , k = 1, . . . , vn, and
ℓn > 0. We assume that:

H4 there exist Γi(bn) = supx∈D φi,x(bn), Γ(bn) = supx∈D φx(bn) non increasing
positive functions such that:
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(i) limn→∞ Γi(bn) = limn→∞ Γ(bn) = 0, and

sup
i∈Vi0

|Γi(bn)− Γ(bn)| = o(1),

(ii) limn→∞
n̂ρNn Γ(bn)

log n̂ → ∞,

(iii) vn = n̂β for some β > 0.

H5 Local dependence condition: For and i ̸= j ∈ NN , i, j ∈ Vi0 , the joint
probability distribution pi,j of Xi and Xj satis�es

∃ ε ∈ (0, 1], pi,j(B(x, bn)×B(x, bn)) ≤ C ′′
3 (Γ(bn))

1+ε, for all x ∈ D.

H6 There exists s > 2 and C > 0 such that for i, j ∈ Vi0 ,

(i) supi E (|Yi|s | Xi) < C,

(ii) supi,j E (|YiYj| |Xi, Xj) < C for some constant C > 0.

Let us introduce the following functions of the mixing coe�cient which is related
to the conditions on the bandwidth and the moment of the functional covariate:

θ1 =
2s(N − θ)

2Ns(β + 2) + θ(2− s)
, θ2 =

(θ − 2N)s

2Ns(β + 2) + θ(2− s)
,

θ3 =
2(Ns+ θ)

2Ns(β + 2) + θ(2− s)
θ∗1 =

s(−N − θ)

N(2sβ + 2sκ+ s+ 2) + θ(2− s)
,

θ∗2 =
s(θ −N)

N(2sβ + 2sκ+ s+ 2) + θ(2− s)
θ∗3 =

2(N + θ)

N(2sβ + 2sκ+ s+ 2) + θ(2− s)
.

The following theorem gives an uniform almost sure convergence of the
regression estimate.

Theorem 2. Assume that assumptions H1�H6 hold.

(i) If (8) is satis�ed and

n̂Γ(bn)
θ1ρNθ1n (log n̂)

θ2 uθ3n → ∞ with θ > 2Ns(β + 2)/ (s− 2) , (11)

(ii) or if (9) is satis�ed and

n̂Γ(bn)
θ∗1ρ

Nθ∗1
n (log n̂)

θ∗2 u
θ∗3
n → ∞ with θ > N(2sβ + 2sκ+ s+ 2)/ (s− 2) , (12)

then

sup
x∈D

|rn(x)− r(x)| = O

(
bn +

√
log n̂

n̂ ρNn Γ(bn)

)
a.s.
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Recall that Dabo-Niang et al. (2011) gave an uniform almost sure bound

of their regression estimate on a speci�c set C that is O
(
b⋆n +

√
log n̂

Γ(b⋆n)n̂

)
with

Γ(b⋆n) = sup
x∈C

φx(b
⋆
n) when the considered process is strictly stationary.

Corollary 1. Under the conditions of Theorem 2, one can derive an almost sure
consistency of the predictor,∣∣∣Ŷi0 − Yi0

∣∣∣ −→
n→∞

0 almost surely, (13)

where

Ŷi0 =

∑
i∈On

YiK1

(
d(x,Xi)
bn

)
K2,ρn (∥i0 − i∥)∑

i∈On
K1

(
d(x,Xi)
bn

)
K2,ρn (∥i0 − i∥)

, (14)

is the predictor of Yi0 at a location i0.

4. Application to Supervised Classi�cation Issue

The goal of supervised classi�cation or discrimination is to predict a feature
Y lying in a discrete �nite set {1, . . . ,M}, with the help of a variable of interest
X. When M = 2, the problem becomes a binary classi�cation. That may occur
when one want to model absence or presence of some phenomena, abundance or
not, specie over�shing or not. When M > 2, we have categorical classi�cation
problem. In a context of supervised classi�cation, we aim to predict at a given
location, an unknown discrete variable Y given a functional observed variable X.
The unknown nature Y is called a class, the functional variable X belongs to
(E , d(·, ·)).
Let i0 ∈ In be the location where we want to predict the class using a sample
of spatial dependent observations (Xi, Yi)i∈On , On ⊂ In\i0. In the following,
we describe a non-parametric spatial functional classi�cation rule. This is done
through a kernel estimator derived from the regression estimate (2).

General classi�cation rule (Bayes rule): Given a function x at some station
i0 ∈ In, namely x = Xi0 the purpose is to estimate the |M | posterior probabilities,

pj(x) = P(Y = j/X = x), j = 1, . . . ,M.

Once that the |M | probabilities are estimated (p̂1(x), . . . , p̂M (x)), the classi�cation
rule consists of assigning an incoming functional observation x to the class with
highest estimated posterior probability:

ŷ(x) = arg max
j∈{1,...,M}

p̂j(x). (15)

Remark that

pj(x) = E(1[Y=j]|X = x), (16)
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with 1[Y=j] equals to 1, if Y = j and 0 elsewhere. Then, estimations of the
posterior probabilities can be expressed as:

p̂n,j(x) = p̂bn,ρn,j(x) =
∑
i∈On

W ♯
n,i0

(x)1[Yi=j], (17)

where

W ♯
n,i0

(x) =
K1

(
d(x,Xi)
bn

)
K2,ρn (∥i0 − i∥)∑

i∈On
K1

(
d(x,Xi)
bn

)
K2,ρn (∥i0 − i∥)

. (18)

As explained in Ferraty & Vieu (2006), the discrimination problem can
be viewed as a prediction one since it is related to estimation of conditional
expectation of indicator variable (class). So, the asymptotic results stated in the
prediction setting remain valid in the discrimination context. Then we state the
following theorems; the �rst gives the point-wise almost complete convergence of
the estimator of posterior probabilities whereas the second one gives the uniform
almost complete convergence.

Theorem 3. Under conditions of Theorem 1 and assumption on the continuity
on the model (i.e pj ∈ LipE : see Ferraty & Vieu (2006) for this assumption), we
have, for j = 1, . . . ,M ,

∥p̂n,j(x)− pj(x)∥2 = O

(
bn +

√
1

n̂ρNn φx(bn)

)
. (19)

Theorem 4. Under assumptions of Theorem 2 and pj ∈ LipE , see Ferraty &
Vieu (2006) for this assumption, we have, for j = 1, . . . ,M ,

sup
x∈D

|p̂n,j(x)− pj(x)| = O

(
bn +

√
log n̂

n̂ ρNn Γ(bn)

)
, almost surely.

5. Finite Sample Properties With Simulated Data

In this section, we study the performance of the proposed predictor towards
some numerical experiment which highlight its importance. The proposed
predictor is compared with the classical kernel method which does not take into
account the spatial dependency (proximity between locations) proposed in the
strict stationary case Biau & Cadre (2004), Dabo-Niang & Yao (2007). Let us
�rst describe the prediction procedure. It allows to compute optimal bandwidths
using leave one cross-validation approach based on the regression model ( 1 ).

5.1. Procedure of Prediction

The choice of bandwidth (even in �nite or in�nite dimensional setting) is a
crucial question in non-parametric estimation. We propose to choose the optimal
bandwidths using leave one cross-validation approach.
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Step 1

Specify sets bandwidths S1 and S2 for respectively K1 and K2.

Step 2

For each bn ∈ S1, ρn ∈ S2 and i0 ∈ In, compute equation (2).

Step 3

Compute optimal bandwidths b♯n and ρ♯n by applying a cross-validation procedure
over S1 and S2. More precisely, consider the following minimization problem i.e
determine bn and ρn that minimizing the mean squared error over the n̂ sites

min
bn∈S1,ρn∈S2

1

n̂

∑
i0∈In

(Ŷi0 − Yi0)
2 (20)

and denote them b♯n and ρ♯n.

The same procedure is applied to equation (5) for computing b⋆n by replacing
rn(.) by r

cl
n (.) in equation (20) minimizing with respect to S1.

Step 4

For each site i0, predict Yi0 by:

� computing the proposed predictor Ŷ ♯i0 using b♯n and ρ♯n, see equation (3)

� computing Ŷ ⋆i0 , the one that does not takes into account the spatial proximity,
using b⋆n, see equation (4)

� comparing Ŷ ♯i0 and Ŷ ⋆i0 , through their prediction errors respectively, using
equation (25).

5.2. Simulations Studies

In the following, we let N = 2, to illustrate our results, we have done some of
simulations based on observations (X(i,j), Y(i,j)), 0 ≤ i, j ≤ 25 such that ∀ i, j,

Y(i,j) = r(X(i,j)) + ε(i,j) (21)

= 4A2
(i,j) + ε(i,j), (22)

and for t ∈ [0, 1], X(i,j)(t) is de�ned according to the following model:

Xi,j(t) = A2
i,j ∗ (t− 0.5)2. (23)

Where A = (Ai,j) and ε = (εi,j) are random variables which will be speci�ed
later on. Several curves examples of X(i,j)(t), are drawn on Figure 1(left down
panel). An example of the function r(.) could be r(X) = 2X ′′ (where f ′′ denotes
the second derivatives of a function f).

The model (21) is simulated with spatial dependency structure. Thereafter,
we denote by GRF (m,σ2, s) a stationary Gaussian random �eld with mean m

and covariance function de�ned by C(h) = σ2 exp(−(∥h∥s )), h ∈ R2 and s > 0.
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Figure 1: Some of simulation when a = 5; right panel: �eld Y ; left panel: simulated
curves for model 23.

We simulate the model 21 based on A = (Ai,j). Then, we de�ne the following
version for A. Ai,j = Di,j(sin(2Gi,j)+2 exp(−16G2

i,j)); εi,j = GRF (0, .1, 5), Gi,j =

GRF (0, 5, 3) and Di =
1
n̂

∑
j exp

(
−∥i−j∥

a

)
.

(D(i,j) = 1
25×25

∑
1≤m,t≤25 exp

(
−∥(i,j)−(m,t)∥

a

)
). The function D is here to

ensure and control the spatial mixing condition (even if using the Gaussian
Random Fields also brings some spatial dependency). Indeed, our model can
be seen verifying a mixing condition with α(h) → 0 at exponential rate. Then,
the greater is a, the weaker is the spatial dependency. Furthermore, if a → ∞,
Di → 1. Simulations have done with di�erent values of a which are a = 5, 10, 20
and grid size(n̂ = 35× 30 = 1050).

Along this part, the spatial prediction is computed based several kernels K1(for
observations) and K2(for sites) respectively. The choice of the semi-metric d(., .)
is important and depends on the information one gets on the data. We consider
a semi-metric between curves(observations) based on their �rst q = 2 derivatives.
This latter is presented in Ferraty & Vieu (2006).

The construction of the proposed predictor Ŷi0 is based on the regression
estimator rn(.). We study its performance and compare it with the one that
does not directly take into account the distance between locations noted by rcln (.);
each studied model is replicated 50 times. Remind that Y ♯(.) and Y ⋆(.) are de�ned
by:

Y
♯
j (Xj) =

∑
i∈In
i ̸=j

YiK1

(
d(Xj,Xi)

b
n♯

)
K

2,ρ
♯
n(∥j−i∥)∑

i∈In
i ̸=j

K1

(
d(Xj,Xi)

b
♯
n

)
K

2,ρ
♯
n(∥j−i∥)

and Y ⋆
n (Xj) =

∑
i∈In
i̸=j

YiK1

(
d(Xj,Xi)

b⋆n

)
∑

i∈In
i ̸=j

K1

(
d(Xj,Xi)

b⋆n

) . (24)

At each replication k, we compute the mean squared error over the n̂ sites.
The bandwidths used at each replication are those obtained using the previous
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procedure 5.1. For the kth replication, we de�ne the mean squared error of

predictions (MSE
(+)
(k) ) by:

MSE
(+)
(k) =

1

n̂

∑
j∈In

(Y +
n,opt(Xj)− Yj)

2 with Y +
n,opt = Y ♯n or Y

⋆
n . (25)

The obtained results are summarized in following Tables 1, 2, 3 which give the
average mean squared errors (AMSE), standard deviation, the average coe�cients
of determination (AR⋆). The last column gives the p-value of a paired t-test
performing in order to determine if MSE♯ is signi�cantly less than MSE⋆ (the
alternative hypothesis is then H1: MSE♯ < MSE⋆). The quality of estimation is
measured by coe�cient of determination. We recall that a value of R2 close to 1
means that the quality of estimation is reliable.

In regardless of any considered cases of the spatial dependency, measured
by parameter a, for all kernels, the estimator r♯n(.) leads to better results since
the AMSE♯ is signi�cantly lower than AMSE⋆. In the other hand we note
that the standard deviation of AMSE♯ is smaller than AMSE⋆'s one, for all
considered cases. In addition, even if the spatial dependency becomes low,
AMSE⋆ stills higher and relatively constant, while AMSE♯ varies constantly.
That highlight, that r♯n(.) method is more adapted to a local data structure and
local stationarity(local dependency). Finally we note AR2♯, is higher than AR2⋆

for all considered cases, but the di�erence between them decreases as the value of
a increases(less spatial dependency).

6. Conclusion

In this work, we propose a new non-parametric spatial predictor for a local
strictly stationary spatial process in a functional setting. The proposed predictor
becomes a new method of supervised classi�cation when response variable Y belong
to a discret set. The originality of the proposed method is to take into account
both the distance between sites and that between functional observations. In the
setting of prediction, we give an extension of the recent work of Dabo-Niang et al.
(2016) on spatial kernel predictor of a local stationary multivariate process. In the
context of Supervised Classi�cation, we contribute �rst to the kernel discrimination
rule of Younso (2017) for multivariate strictly stationary spatial processes and
on the other hand the kernel discrimination rule of Ferraty & Vieu (2006) for
functional observations. We provide asymptotic results on the predictor. The
numerical results show that proposed predictor method outperforms the classical
kernel predictor.
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Table 1: Simulation results according several kernels, with a = 5, nxy = 1050

Kernel1 Kernel2 AMSE♯ Var(AMSE♯) AMSE⋆ Var(AMSE⋆) AR2♯ AR2⋆ P-value

Trianglaire

Triangular 0,00018 1, 1 10−09 0,0080 2, 2 10−06 0, 9998 0, 9905 ****

Biweight 0,00017 1, 3 10−09 0,0081 2, 9 10−06 0, 9998 0, 9902 ****

Triweight 0,00011 3, 7 10−10 0,0079 2, 5 10−06 0, 9999 0, 9903 ****

Parzen 0,00006 1, 0 10−10 0,0081 3, 2 10−06 0, 9999 0, 9906 ****

Epanechnikov 0,00032 2, 9 10−09 0,0077 1, 8 10−06 0, 9996 0, 9907 ****

Gauss 0,00195 9, 8 10−09 0,0079 2, 2 10−06 0, 9976 0, 9904 ****

Biweight

Triangular 0,00037 4 10−09 0,0080 2, 4 10−06 0, 9996 0, 9907 ****

Biweight 0,00020 1, 2 10−09 0,0083 2, 3 10−06 0, 9998 0, 9902 ****

Triweight 0,00019 9, 1 10−10 0,0078 1, 8 10−06 0, 9998 0, 9910 ****

Parzen 0,00012 4, 8 10−10 0,0081 2, 4 10−06 0, 9999 0, 9903 ****

Epanechnikov 0,00218 1, 6 10−07 0,0083 2, 6 10−06 0, 9975 0, 9904 ****

Gauss 0,00007 2, 0 10−10 0,0084 3, 5 10−06 0, 9999 0,9898 ****

Triweight

Triangular 0,00032 3, 6 10−09 0,0081 2, 4 10−06 0, 9996 0, 9903 ****

Biweight 0,00018 9, 8 10−10 0,0077 2 10−06 0, 9998 0, 9911 ****

Triweight 0,00017 9, 7 10−10 0,0080 2, 9 10−06 0, 9998 0, 9908 ****

Parzen 0,00010 4 10−10 0,0082 2, 2 10−06 0, 9999 0, 9903 ****

Epanechnikov 0,00183 9, 6 10−09 0,0079 2, 1 10−06 0, 9979 0, 9910 ****

Gauss 0,00006 2, 1 10−10 0,0081 2 10−06 0, 9999 0, 9902 ****

Parzen

Triangular 0,00027 3, 3 10−09 0,0077 2 10−06 0, 9997 0, 9908 ****

Biweight 0,00015 1, 3 10−09 0,0080 5 10−06 0, 9998 0, 9908 ****

Triweight 0,00014 5, 5 10−10 0,0078 3 10−06 0, 9998 0, 9909 ****

Parzen 0,00009 3 10−10 0,0083 2 10−06 0, 9999 0, 9904 ****

Epanechnikov 0,00162 1, 1 10−07 0,0078 2 10−06 0, 9980 0, 9903 ****

Gauss 0,00005 1 10−10 0,0081 2, 9 10−06 0, 9999 0, 9905 ****

Epanechnikov

Triangular 0,00044 6, 3 10−09 0,0083 3, 2 10−06 0, 9995 0,9895 ****

Biweight 0,00025 2, 4 10−09 0,0086 3, 5 10−06 0, 9997 0, 9900 ****

Triweight 0,00024 1, 8 10−09 0,0084 2, 7 10−06 0, 9997 0, 9901 ****

Parzen 0,00015 6 10−10 0,0083 2 10−06 0, 9998 0, 9903 ****

Epanechnikov 0,00247 1 10−07 0,0083 1 10−06 0, 9971 0, 9903 ****

Gauss 0,00008 2, 8 10−10 0,0083 2 10−06 0, 999 0, 9905 ****

Gauss

Triangular 0,00067 6, 6 10−09 0,0091 2 10−06 0, 9992 0,9887 ****

Biweight 0,00041 3, 8 10−09 0,0086 3 10−06 0, 9995 0,9896 ****

Triweight 0,00040 3, 5 10−09 0,0090 3 10−06 0, 9995 0,9892 ****

Parzen 0,00026 1, 1 10−09 0,0089 3 10−06 0, 9997 0,9896 ****

Epanechnikov 0,00319 4 10−07 0,0085 3 10−06 0, 996 0, 990 ****

Gauss 0,00015 5, 9 10−10 0,0088 2, 8 10−06 0, 9998 0, 9895 ****
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Table 2: Simulation results according several kernels, with a = 10, nxy = 1050

Kernel1 Kernel2 AMSE♯ Var(AMSE♯) AMSE⋆ Var(AMSE⋆) AR2♯ AR2⋆ P-value

Triangular

Triangular 0,0005 6, 4 10−09 0,0085 2, 2 10−06 0, 990 0,840 ****

Biweight 0,0005 3, 8 10−09 0,0087 1, 5 10−06 0, 991 0,837 ****

Triweight 0,0003 2, 0 10−09 0,0085 1, 3 10−06 0, 994 0,845 ****

Epanechnikov 0,0009 1, 5 10−08 0,0085 1, 5 10−06 0,983 0,839 ****

Gaussian 0,0035 2, 6 10−07 0,0086 2, 2 10−06 0,936 0,842 ****

Parzen 0,0002 7, 0 10−10 0,0085 1, 5 10−06 0, 997 0,839 ****

Biweight

Triangular 0,0006 9, 0 10−09 0,0086 2, 9 10−06 0,989 0,841 ****

Parzen 0,0002 9, 9 10−10 0,0088 1, 9 10−06 0, 996 0,841 ****

Biweight 0,0006 6, 5 10−09 0,0089 1, 7 10−06 0,989 0,829 ****

Triweight 0,0004 2, 1 10−09 0,0088 1, 7 10−06 0, 993 0,836 ****

Epanechnikov 0,0010 1, 6 10−08 0,0086 1, 5 10−06 0,981 0,838 ****

Gaussian 0,0037 2, 3 10−07 0,0088 1, 8 10−06 0,932 0,838 ****

Triweight

Triangular 0,0005 7, 1 10−09 0,0085 2, 8 10−06 0, 990 0,842 ****

Parzen 0,0002 5, 0 10−10 0,0085 1, 5 10−06 0, 997 0,839 ****

Biweight 0,0005 5, 4 10−09 0,0088 1, 6 10−06 0, 991 0,831 ****

Parzen 0,0002 5, 0 10−10 0,0085 1, 5 10−06 0, 997 0,839 ****

Gaussian 0,0034 4, 4 10−07 0,0085 2, 8 10−06 0,937 0,842 ****

Triweight 0,0003 1, 6 10−09 0,0085 1, 5 10−06 0, 994 0,839 ****

Epanechnikov

Triangular 0,0007 1, 2 10−08 0,0087 2, 9 10−06 0,987 0,838 ****

Biweight 0,0007 8, 5 10−09 0,0091 1, 7 10−06 0,987 0,827 ****

Triweight 0,0004 3, 5 10−09 0,0089 1, 7 10−06 0, 992 0,833 ****

Parzen 0,0002 1, 4 10−09 0,0089 1, 9 10−06 0, 996 0,838 ****

Epanechnikov 0,0012 2, 2 10−08 0,0087 1, 6 10−06 0,978 0,835 ****

Gaussian 0,0040 2, 9 10−07 0,0089 1, 8 10−06 0,925 0,835 ****

Parzen

Triangular 0,0004 5, 1 10−09 0,0083 2, 7 10−06 0, 992 0,845 ****

Biweight 0,0004 4, 1 10−09 0,0087 1, 6 10−06 0, 992 0,834 ****

Triweight 0,0003 1, 1 10−09 0,0085 1, 6 10−06 0, 995 0,841 ****

Parzen 0,0001 5, 7 10−10 0,0085 1, 8 10−06 0, 997 0,845 ****

Epanechnikov 0,0008 1, 0 10−08 0,0083 1, 4 10−06 0,986 0,842 ****

Gaussian 0,0030 1, 6 10−07 0,0085 1, 7 10−06 0,944 0,842 ****

Gaussian

Triangular 0,0010 2, 4 10−08 0,0090 3, 1 10−06 0,981 0,833 ****

Biweight 0,0009 1, 4 10−08 0,0093 1, 8 10−06 0,982 0,822 ****

Triweight 0,0006 5, 7 10−09 0,0092 1, 8 10−06 0,988 0,829 ****

Parzen 0,0004 2, 6 10−09 0,0091 2, 0 10−06 0, 993 0,834 ****

Epanechnikov 0,0016 3, 9 10−08 0,0090 1, 7 10−06 0,970 0,831 ****

Gaussian 0,0048 3, 8 10−07 0,0091 1, 9 10−06 0,910 0,831 ****
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Table 3: Simulation results according several kernels, with a = 20, nxy = 1050

Kernel1 Kernel2 AMSE♯ Var(AMSE2♯) AMSE⋆ Var(AMSE⋆) AR2♯ AR2⋆ P-value

Epanechnikov

Triangular 0,0007 1, 39 10−08 0,0087 3, 00 10−06 0, 998 0,981 ****

Biweight 0,0007 8, 58 10−09 0,0091 1, 69 10−06 0, 999 0,980 ****

Triweight 0,0004 2, 71 10−09 0,0089 1, 80 10−06 0, 999 0,980 ****

Parzen 0,0002 1, 36 10−09 0,0089 2, 01 10−06 0, 997 0,981 ****

Epanechnikov 0,0012 2, 05 10−08 0,0087 1, 64 10−06 0, 991 0,981 ****

Gauss 0,0041 2, 98 10−07 0,0089 1, 94 10−06 0, 997 0,981 ****

Triangular

Triangular 0,0005 7, 90 10−09 0,0085 2, 86 10−06 0, 991 0,981 ****

Biweight 0,0005 5, 31 10−09 0,0089 1, 62 10−06 0, 998 0,980 ****

Triweight 0,0003 1, 54 10−09 0,0087 1, 72 10−06 0, 998 0,981 ****

Parzen 0,0002 7, 90 10−10 0,0085 2, 86 10−06 0, 999 0,981 ****

Gauss 0,0036 2, 26 10−07 0,0085 1, 55 10−06 0, 992 0,981 ****

Epanechnikov 0,0009 1, 27 10−08 0,0085 1, 55 10−06 0, 998 0,981 ****

Biweight

Triangular 0,0006 9, 71 10−09 0,0086 2, 90 10−06 0, 999 0,981 ****

Biweight 0,0006 6, 45 10−09 0,0089 1, 64 10−06 0, 999 0,981 ****

Triweight 0,0004 1, 90 10−09 0,0088 1, 74 10−06 0, 997 0,980 ****

Parzen 0,0002 9, 46 10−10 0,0088 1, 94 10−06 0, 992 0,981 ****

Epanechnikov 0,0010 1, 51 10−08 0,0086 1, 57 10−06 0, 998 0,981 ****

Gauss 0,0037 2, 48 10−07 0,0088 1, 89 10−06 0, 997 0,981 ****

Triweight

Triangular 0,0005 7, 94 10−09 0,0085 2, 24 10−06 0, 992 0,981 ****

Biweight 0,0005 3, 62 10−09 0,0088 1, 52 10−06 0, 998 0,981 ****

Triweight 0,0003 2, 02 10−09 0,0086 1, 39 10−06 0, 999 0,981 ****

Parzen 0,0002 6, 66 10−10 0,0082 1, 62 10−06 0, 999 0,982 ****

Epanechnikov 0,0009 1, 55 10−08 0,0085 1, 56 10−06 0, 998 0,982 ****

Gauss 0,0034 2, 54 10−07 0,0086 2, 29 10−06 0, 992 0,981 ****

Parzen

Triangular 0,0004 4, 24 10−09 0,0085 1, 81 10−06 0, 998 0,981 ****

Biweight 0,0004 4, 00 10−09 0,0084 1, 50 10−06 0, 999 0,982 ****

Triweight 0,0003 1, 95 10−09 0,0084 2, 17 10−06 0, 999 0,982 ****

Parzen 0,0001 4, 89 10−10 0,0084 1, 35 10−06 0, 999 0,982 ****

Epanechnikov 0,0008 9, 41 10−09 0,0084 1, 46 10−06 0, 998 0,981 ****

Gauss 0,0032 2, 21 10−07 0,0086 1, 48 10−06 0, 993 0,981 ****

Gauss

Triangular 0,0011 1, 50 10−08 0,0090 1, 69 10−06 0, 997 0,980 ****

Biweight 0,0010 1, 96 10−08 0,0090 3, 14 10−06 0, 997 0,980 ****

Triweight 0,0007 6, 94 10−09 0,0093 1, 79 10−06 0, 998 0,989 ****

Parzen 0,0004 1, 34 10−09 0,0092 2, 05 10−06 0, 999 0,980 ****

Epanechnikov 0,0016 3, 57 10−08 0,0090 1, 69 10−06 0, 996 0,980 ****

Gauss 0,0050 4, 67 10−07 0,0092 1, 86 10−06 0,989 0,980 ****
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Appendix A. Proofs of Theorems 1, 2, 3 and 4

Appendix A.1. Some Preliminary Results for the Proofs

Lemma 1. Carbon et al. (1997) Let the sets S1, S2, . . . , Sk containing each m
sites and such that, for all i ̸= j, and for 1 ≤ i, j ≤ k, dist(Si, Sj) ≥ δ0. Let
W1,W2, . . . ,Wk a sequence of random variables with real values and measurable
respectively with respect to B(S1), . . . ,B(Sk). Let be Wl with values in [a, b]. There
exists a sequence of independent random variables W ∗

1 ,W
∗
2 , . . . ,W

∗
k such that W ∗

l

has the same distribution as Wl and satis�es:

k∑
l=1

E|Wl −W ∗
l | ≤ 2k(b− a)ψ((k − 1)m,m)χ(δ0).

Lemma 2. Tran (1990) Denote by Lr(F) the class of F-measurable random
variables X which satisfy: ∥X∥r = (E|X|r)1/r <∞. Suppose that X ∈ Lr(B(E)),
Y ∈ Lr(B(E′)), 1 ≤ r, s, t <∞ and 1

r +
1
s +

1
t = 1. Then,

|EXY − EXEY | ≤ C∥X∥r∥Y ∥s{ψ(Card(E), Card(E′))χ(dist(E,E′))}1/t.

For bounded random variables with probability 1, we have:

|EXY − EXEY | ≤ C{ψ(Card(E), Card(E′))χ(dist(E,E′))}.
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In the following, we will often use the notation Ki(x) = K1iK2i and

Wni(x) =
Ki(x)∑

j∈In
Kj(x)

with K1i = K1

(
d(x,Xi)
bn

)
and K2i = K2,ρn (∥i0 − i∥). By

convention, we set 0/0 = 0, then
∑

i∈In
Wni(x) = 0 or 1. Thus, we have

rn(x) =

{ ∑
i∈In

Wni(x)Yi if
∑

i∈In
Wni(x) = 1;

1
n̂

∑
i∈In

Yi otherwise.

Let us use the following decomposition:

rn(x)− r(x) =
1

fn(x)
[(gn(x)− E(gn(x)))− (r(x)− E(gn(x)))] (26)

− r(x)

fn(x)
[fn(x)− 1]

Lemma 3. Under hypotheses H1-H3, we have

E1/2

∑
i∈Vi0

Wni(x)E(Yi|Xi)− r(x)

2

= O(bn).

Lemma 4. Under the conditions of Theorem 1, we have

E1/2

∑
i∈Vi0

Wni(x)(Yi − E(Yi|Xi))

2

= O

(
1

n̂ρNn φx(bn)

)1/2

.

Lemma 5. Under the conditions of Theorem 1, we have

E1/2

 1

n̂

∑
i∈Vi0

Yi − r(x)

2

= O

(
1

n̂ρNn φx(bn)

)1/2

.

De�ne

Λi(x) =
1

an
[Ki(x)− E(Ki(x))] ,

In(x) =
∑
i∈On

E
[
(Λi(x))

2
]
and Rn(x) =

∑
i,k∈On

∑
i̸=k

|E [Λi(x)Λk(x)]| .

Lemma 6. Under the conditions of Theorem 1, we have

In(x) +Rn(x) = O

(
1

n̂ρNn φx(bn)

)
.
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Appendix A.2. Proofs

Appendix A.2.1. Proof of Theorem 1

Because of the local stationarity de�ned in assumption (H3), the
decomposition of rn(x)− r(x) makes sense over Vi0 . Thus we have

rn(x)− r(x) =

∑
i∈Vi0

Wni(x)E(Yi|Xi)− r(x)

1{∑
i∈Vi0

Wni(x)=1

}

+

∑
i∈Vi0

Wni(x)(Yi − E(Yi|Xi))

1{∑
i∈Vi0

Wni(x)=1

}

+

 1

n̂

∑
i∈Vi0

Yi − r(x)

1{∑
i∈Vi0

Wni(x)=0

} := A+B+C.

Applying Minkowski's inequality, we get

∥rn(x)− r(x)∥2 ≤ E1/2[A]2 + E1/2[B]2 + E1/2[C]2. (27)

Therefore, Theorem 1 follows from (27) and Lemmas 3, 4 and 5. □

Appendix A.2.2. Proof of Lemma 3

By the Lipschitz condition on Assumption H2, there exists a constant C3 > 0
such that

E1/2[A]2 ≤ E1/2

 ∑
i∈Vi0

Wni(x)|r(Xi)− r(x)|

1{∑
i∈Vi0

Wni(x)=1

}
2

≤ E1/2

 ∑
i∈Vi0

Wni(x)(C3 × d(Xi, x))

1{∑
i∈Vi0

Wni(x)=1

}
2

≤ C3E1/2

× ∑
i∈Vi0

Wni(x)bn

2

.

Thus, the local stationarity assumption H3 implies

C3E1/2

× ∑
i∈Vi0

Wni(x)bn

2

= O(bn). □
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Appendix A.2.3. Proof of Lemma 4

De�ne

G(x) =

∑
i∈Vi0

Wni(x)[Yi − E(Yi|Xi)]

1{∑
i∈Vi0

Wni(x)=1

}

:=
en(x)

fn(x)
1{∑

i∈Vi0
Wni(x)=1

},
where

en(x) =
1

an

∑
i∈Vi0

Ki(x)[Yi − E(Yi|Xi)] and fn(x) =
1

an

∑
i∈Vi0

Ki(x).

Note that, since Yi is bounded, we have ∀i, 0 ≤ |Yi − E(Yi|Xi)| ≤ 2M . It follows
that |G(x)| ≤ 2M and

|G(x)| = |G(x)|1{∑
i∈Vi0

Ki(x)>c

} + |G(x)|1{∑
i∈Vi0

Ki(x)≤c
}

≤ |en(x)|
fn(x)

1{∑
i∈Vi0

Ki(x)>c

} + 2M × 1{∑
i∈Vi0

Ki(x)≤c
},

where c is a given constant. Let us take c = an
2 , if

∑
i∈Vi0

Ki(x) > c = an
2 then

fn(x) >
an
2an

>
1

2
. It follows that

∥G(x)∥2 ≤ 2∥en(x)∥2 + 2M

P

∑
i∈Vi0

Ki(x) ≤
an
2

1/2

,

and

∥en(x)∥2 =
1

an

E
∑

i∈Vi0

ξi

2

1/2

,

where

ξi = Ki(x) [Yi − E(Yi|Xi)] .

To prove Lemma 4, we have to show that

∥en(x)∥2 = O(n̂ρNn φx(bn))
−1/2, (28)

and

P

∑
i∈Vi0

Ki(x) ≤
an
2

 ≤ O
(
n̂ρNn φx(bn)

)−1/2
. (29)
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Observe that, by Assumptions H1 and H3, we have∑
i∈Vi0

E
[
ξ2i

]
≤

∑
i∈Vi0

E
[
K2

i (x) [Yi − E(Yi|Xi)]
2
]
= 4M2

∑
i∈Vi0

K2
2iE[K1i]

2 ≤ 4M2C2
22knφx(bn)

= O(n̂ρNn φx(bn)).

Now, let dn be a sequence of real numbers tending to ∞ as n → ∞ and set

S = {(i,k) ∈ V2
i0 , ∥i− k∥ ≤ dn} and Sc = {(i,k) ∈ V2

i0 , ∥i− k∥ > dn}.

First, see that E

∑
i∈Vi0

ξi

2

=
∑
i∈Vi0

E[ξ2i ] +
∑
i,k∈S

E [ξiξk] +
∑

i,k∈Sc

E [ξiξk]

Using Assumption H3, we have∑
i,k∈S

E [ξiξk] ≤ 4M2
∑

i,k∈S

E [Ki(x)Kk(x)]

≤ 4M2
∑

i,k∈S

K2iK2kP [(Xi, Xk) ∈ B(x, bn)×B(x, bn)]

≤ 4M2C4

∑
i,k∈S

1[0,1]

(
ρ−1
n

∥∥∥∥ i0 − i

n

∥∥∥∥)1[0,1]

(
ρ−1
n

∥∥∥∥ i0 − k

n

∥∥∥∥)φx(bn)
1+ε

≤ 4M2C4

∑
i,k∈Vi0

1[0,1]

(
ρ−1
n

∥∥∥∥ i0 − i

dn

∥∥∥∥)φx(bn)
1+ε

≤ 4M2C4

∑
i∈Vi0

∑
i−u∈Vi0

1{u;∥u∥≤dn}

(
ρ−1
n

∥∥∥∥ i0 − i

dn

∥∥∥∥)φx(bn)
1+ε

≤ 4M2C4knd
N
n φx(bn))

1+ε.

Since K1 and K2 are bounded, applying Lemma 2, we get∑
i,k∈Sc

E [ξiξk] ≤ C
∑

i,k∈Sc

{ψ(1, 1)χ(∥i − k∥)} ≤ C
∑

i,k∈Sc∩Vi0

χ(∥i − k∥) ≤ C2
N

∑
k∈Vi0

∑
k−u∈Vi0
∥u∥>dn

χ(∥i∥)

≤ Ckn
∑

∥i∥>dn

χ(∥i∥).

Since ∑
∥i∥>dn

χ(∥i∥) ≤ C
∑

∥i∥>dn

∥i∥−θ ≤ C
∑

∥i∥>dn

∥i∥−θ∥i∥−N∥i∥N ,

and ∥i∥ > dn, ∥i∥−N ≤ (dn)
−N , we have

C
∑

∥i∥>dn

∥i∥−θ∥i∥−N−ε∥i∥N+ε ≤ Cd−N−ε
n

∑
∥i∥>dn

∥i∥N+ε−θ.

Then, ∑
i,k∈Sc

E [ξiξk] ≤ Cknd
−N−ε
n

∑
∥i∥>dn

∥i∥N+ε−θ.
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Choosing dn = (φx(bn))
−ε
N +a with a > 0 such that Na ≤ ε− N

N+ε lead to

d−(N+ε)
n = φx(bn)(φx(bn))

−(N+ε)(Na−ε)−N
N = O (φx(bn)) ,

Since −(N+ε)(Na−ε)−N
N > 0, Moreover, this choice of dn implies that

∑
i,k∈S

E [ξiξk] ≤ 4M2C4knd
N
n (φx(bn))

1+ε

≤ 4M2C4kn(φx(bn))
1+Na = O(n̂ρNn φx(bn)).

Then, we deduce that

E

∑
i∈Vi0

ξi

2

=
∑
i∈Vi0

E
[
ξ2i
]
+
∑
i,k∈S

E [ξiξk] +
∑

i,k∈Sc

E [ξiξk] = O
(
n̂ρNn φx(bn)

)
.

Consequently, E
∑

i∈Vi0

ξi

2

1/2

= O(n̂ρNn φx(bn))
1/2

and ∥en(x)∥2 = O
(
n̂ρNn φx(bn)

)−1/2
since by Assumptions H1 and H3, an ≥

C2
11knφi,x(bn).

Next, for (29), de�ne

Sn(x) =
∑
i∈Vi0

Λi(x) =
1

an
[fn(x)− E(fn(x))] .

Then, we have

P

∑
i∈Vi0

Ki(x) ≤
an
2

 = P

∑
i∈Vi0

(Ki(x)− E(Ki(x))) ≤
−an
2


≤ P

 1

an

∣∣∣∣∣∣
∑
i∈Vi0

(Ki(x)− E(Ki(x)))

∣∣∣∣∣∣ ≥ 1

2


≤ P [|Sn(x)| ≥ ε] , for n large enough.

We will now introduce the spatial blocks decomposition introduced by Tran (1990)
which will be useful afterwards. Without loss of generality, we suppose that
nk = 2bqk, for 1 ≤ k ≤ N . The random variables Λi(x) can be grouped into
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2Nq1 . . . qN cubic blocks of side b. Let,

U(1,n, x, j) =

(2jk+1)b∑
ik=2jkb+1,
k=1,...,N.

Λi(x),

U(2,n, x, j) =

(2jk+1)b∑
ik=2jkb+1,
k=1,...,N−1.

2(jN+1)b∑
iN=(2jN+1)b+1

Λi(x),

U(3,n, x, j) =

(2jk+1)b∑
ik=2jkb+1,
k=1,...,N−2.

2(jN−1+1)b∑
iN−1=(2jN−1+1)b+1

(2jN+1)b∑
iN=2jNb+1

Λi(x),

U(4,n, x, j) =

(2jk+1)b∑
ik=2jkb+1,
k=1,...,N−2.

2(jN−1+1)b∑
iN−1=(2jN−1+1)b+1

(2jN+1)b∑
iN=(2jN+1)b+1

Λi(x)

and so on. Noting that

U(2N−1,n, x, j) =

2(jk+1)b∑
ik=(2jk+1)b+1,

k=1,...,N−1.

(2jN+1)b∑
iN=2jNb+1

Λi(x)

U(2N ,n, x, j) =

2(jk+1)b∑
ik=(2jk+1)b+1,

k=1,...,N.

Λi(x)

for each integer 1 ≤ l ≤ 2N , we de�ne T (n, x, l) =
∑qk−1

jk=0
k=1,...,N.

U(l,n, x, j). We

obtain Sn(x) =
∑2N

l=1 T (n, x, l). For ε > 0, P ≤ P
(∣∣∣∑2N

l=1 T (n, x, l)
∣∣∣ > ε

)
≤

2NP
(
|T (n, x, 1)| > ε

2N

)
. We enumerate in arbitrary manner the q̂ = q1 × · · · × qN

terms U(1,n, x, j) of the sum T (n, x, 1), and refer to them as W1, . . . ,Wq̂. Note
that U(1,n, x, j) is a measurable σ-algebra generated by Xi, with i such that
2jkb+ 1 ≤ ik ≤ (2jk + 1)b, k = 1, . . . , N . For all l = 1, . . . , q̂, the sets of the sites
in Wl are separated by a distance of at least equal to b. In addition, since K1 and

K2 write |Wl| ≤ C bN

an
with C = ∥K1∥∞∥K2∥∞ (where ∥ · ∥∞ is the sup norm).

Lemma 1 insures the existence of some random variables W ∗
1 ,W

∗
2 , . . . ,W

∗
q̂ such

that

q̂∑
l=1

E|Wl −W ∗
l | ≤ 2q̂C

bN

an
ψ((q̂ − 1)bN , bN )χ(b)

≤ 2C
n̂

2NbN
bN

an
ψ(n̂, bN )χ(b).

Markov inequality allows us to write

P

(
q̂∑
l=1

|Wl −W ∗
l | >

ε

2N+1

)
≤ 2C

n̂

2NbN
bN

an
ψ(n̂, bN )χ(b)2N+1ε−1,
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and by Bernstein inequality, we have

P

(
q̂∑
l=1

|W ∗
l | >

ε

2N+1

)
≤ 2 exp

{
−ε2/(2N+1)2

4
∑q̂
l=1 E(W ∗2

l ) + 2ε
2N+1

bN

an
C

}

which leads to

P [|Sn(x)| ≥ ε] ≤ 2N+1 exp

{
−ε2/(2N+1)2

4
∑q̂
l=1 E(W ∗2

l ) + 2−NCε b
N

an

}

+2N+1C
n̂

2NbN
bN

an
ψ(n̂, bN )χ(b)2N+1ε−1.

Let δ > 0, ε = εn = δ
(

log n̂
n̂ρNn φx(bn)

)1/2
and b =

(
n̂ρNn φx(bn)

log n̂

) 1
2N

.

Since the variables Wl and W ∗
l have the same distributions, we have∑q̂

l=1 EW ∗2
l =

∑q̂
l=1 var(W

∗
l ) =

∑q̂
l=1 var(Wl) ≤ In(x) + Rn(x), and according

to Lemma 6, we have
∑q̂
l=1 EW ∗2

l ≤ O
(
[n̂ρNn φx(bn)]

−1
)
. Then,

P [|Sn(x)| ≥ ε] ≤ 2N+1 exp

 −ε2

22N+2
(
4 C
n̂ρNn φx(bn)

+ C2−Nε b
N

an

)


+2N+2C
n̂

an
ψ(n̂, bN )b−θε−1.

Since C ′′
1 knφx(bn) ≤ an ≤ C ′′

2 knφx(bn), where C
′′
1 andC

′′
2 are positive constant and

kn = O(n̂ρNn ), we have

P [|Sn(x)| ≥ εn] ≤ 2N+1 exp

{
−δ2 log n̂

n̂ρNn φx(bn)

22N+4C
n̂ρNn φx(bn)

+ C2N+2δ
n̂ρNn φx(bn)

}

+2N+2C
n̂

an
ψ(n̂, bN )b−θδ−1

(
n̂ρNn φx(bn)

log n̂

)1/2

≤ C2N+1 exp
{
log n̂−a}

+2N+2Cδ−1 n̂

an
ψ(n̂, bN )

(
n̂ρNn φx(bn)

log n̂

)N−θ
2N

≤ Cn̂−a + 2N+2Cδ−1 n̂

an
ψ(n̂, bN )

(
n̂ρNn φx(bn)

log n̂

)N−θ
2N

:= Cn̂−a + C2N+2δ−1Dn,

with a =
δ2

22N+4C + C2N+2δ
> 0. Note that n̂1−an̂ρNn φx(bn) tends to 0 for

a > 1 and then Cn̂−a = o
(
[n̂ρNn φx(bn)]

−1
)
. Moreover a > 1 if and only if

δ > 2N+1C(1 +
√
4C) > 2N+1C (with δ > 0). Now, we treat the second term.
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When (8) is satis�ed, i.e. ψ(n,m) ≤ Cmin(n,m), ∀n,m ∈ N, we have

n̂ρNn φx(bn)2
N+2Cδ−1Dn ≤ n̂ρNn 2N+2Cδ−1 n̂

an

(
n̂ρNn φx(bn)

log n̂

) 2N−θ
2N

≤ n̂ρNn 2N+2Cδ−1 1

ρNn

(
n̂ρNn φx(bn)

log n̂

) 2N−θ
2N

≤ C

[
n̂
(
ρNn φx(bn)

) 2N−θ
4N−θ (log n̂)

θ−2N
4N−θ

] 4N−θ
2N

which tends to 0 as n → 0 since θ > 4N .

When (9) is satis�ed, i.e. ψ(n,m) ≤ C(n+m+1)κ, ∀n,m ∈ N, and note that
ψ(n̂, bN ) ≤ C(n̂+ bN + 1)κ ≤ Cn̂κ, we have

n̂ρ
N
n φx(bn)C2

N+2
δ
−1 n̂

an
n̂
κ

(
n̂ρNn φx(bn)

log n̂

) 2N−θ
2N

≤ n̂ρ
N
n 2

N+2
Cδ

−1 1

ρNn
n̂
κ

(
n̂ρNn φx(bn)

log n̂

) 2N−θ
2N

≤ C

[
n̂
(
ρ
N
n φx(bn)

) N−θ
N(3+2κ)−θ (log n̂)

θ−N
N(3+2κ)−θ

]N(3+2κ)−θ
2N

which tends to 0 as n → since θ > N(3 + 2κ). Therefore, (29) follows, which
conclude the proof of Lemma 4. □

Appendix A.2.4. Proof of Lemma 5

Since Yi and r are bounded, we have

E1/2[C] ≤ E1/2

∣∣∣∣∣∣ 1n̂
∑
i∈Vi0

Yi − r(x)

∣∣∣∣∣∣1{∑i∈Vi0
Wni(x)=0

}


≤ 2ME1/2

[
1{∑

i∈Vi0
Wni(x)=0

}
]
= 2M

P

∑
i∈Vi0

Ki(x) = 0

1/2

≤ 2M

P

∑
i∈Vi0

Ki(x) ≤
an
2

1/2

= O

(
1

n̂ρNn φx(bn)

)1/2

,

by Lemma 4. □
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Appendix A.2.5. Proof of Lemma 6

Firstly, we deal with In(x) =
∑

i∈Vi0
E
[(

1
an
Ki(x)

)2]
−
∑

i∈Vi0

(
1
an

E(Ki(x))
)2
.

∑
i∈Vi0

E

[(
1

an
Ki(x)

)2
]

≤ C
1

a2n

∑
i∈Vi0

K2
2iE

[
K2

1i(x)
]

≤ C
1

a2n

∑
i∈Vi0

knφx(bn)

≤ C

knφx(bn)
= O

(
[n̂ρNn φx(bn)]

−1
)
,

for n su�ciently large.
Then, we have In(x) = O

(
[n̂ρNn φx(bn)]

−1
)
. We now treat the term Rn(x). Since

the functions K1(.) and K2(.) are bounded, applying Lemma 1, we get

|E [Λi(x)Λk(x)] | ≤ C
K2iK2k

a2n
ψ(1, 1)γ(∥i− k∥).

Let En be a sequence of real numbers tending to ∞ as n̂ → ∞. Set T =
{i,k ∈ Vi0 , ∥i − k∥ ≤ En} and denote by T c the complementary of T . Let

R
(1)
n =

∑
i,k∈T |E [Λi(x)Λk(x)]| and R

(2)
n =

∑
i,k∈T c |E [Λi(x)Λk(x)]|. Hence,

Rn(x) ≤ R
(1)
n + R

(2)
n . Moreover, using the same arguments as in the proof of

Lemma 4, we have In(x) +Rn(x) = O
(
[n̂ρNn φx(bn)]

−1
)
. □

Appendix A.2.6. Proof of Theorem 2

Recall that Ki(x) = K1iK2i. Set Tn = (n̂un)
1/s

where

un =

N∏
i=1

(log ni)(log log ni)
1+ε,

and de�ne

gn(x) =
1

an

∑
i∈On

YiKi(x), fn(x) =
1

an

∑
i∈On

Ki(x),

g̃n(x) =
1

an

∑
i∈Vi0

Yi1{Yi≤Tn}Ki(x).

Then, we can write

rn(x)− r(x) = − r(x)

fn(x)
A1(x) +

1

fn(x)
[A2(x) +A3(x) +A4(x)] , (30)

Revista Colombiana de Estadística - Theorical Statistics 45 (2022) 391�428



424 Mamadou Ndiaye, Sophie Dabo-Niang & Papa Ngom

where

A1(x) = fn(x)− 1,

A2(x) = E (g̃n(x))− r(x),

A3(x) = g̃n(x)− E (g̃n(x)) ,

A4(x) = gn(x)− g̃n(x).

Therefore Theorem 2 follows from (30) and Lemmas 7, 8, 9, 12. □

Lemma 7. Under assumptions H1-H4 and H6,

sup
x∈D

|E (g̃n(x))− r(x)| = O

(
bn +

√
log n̂

n̂ρNn Γ(bn)

)
.

Proof of Lemma 7

Since

E (g̃n(x))− r(x)

=
1

anφx(bn)

∑
i∈Vi0

E
[(
Yi − Yi1{|Yi|>Tn}

)
Ki(x)

]
− r(x)

=
1

an

∑
i∈Vi0

E [E (Yi|Xi)Ki(x)]−
1

an

∑
i∈Vi0

E
[
Yi1{|Yi|>Tn}Ki(x)

]
− r(x)

=
1

an

∑
i∈Vi0

E [(r(Xi)− r(x))Ki(x)]−
1

an

∑
i∈Vi0

E
[
Yi1{|Yi|>Tn}Ki(x)

]
,

we have

|E (g̃n(x))− r(x)| ≤ 1

an

∑
i∈Vi0

E [|r(Xi)− r(x)|Ki(x)]

+
1

an

∑
i∈Vi0

E
[
|Yi|1{|Yi|>Tn}Ki(x)

]
:= I + II.

Using assumptions H1 and H2, we have

|r(Xi)− r(x)| ≤ sup
u∈B(x,bn)

|r(x)− r(u)| = O(bn), so that I = O (bn) .

For II, since s > 2, using Assumption H4 and H6, we can write

II ≤ T 1−s
n

an

∑
i∈Vi0

E [|Yi|sKi(x)] ≤
T 1−s
n

an

∑
i∈Vi0

E [E (|Yi|s |Xi)Ki(x)]

≤ CT 1−s
n = o

(
(n̂un)

−1/2
)
= o

(√
log n̂

n̂ρNn Γ(bn)

)
,

which conclude the proof of Lemma 7. □
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Lemma 8. If Assumption (H6) (i) holds, then

sup
x∈D

|gn(x)− g̃n(x)| = 0

for su�ciently large n.

Proof of Lemma 8

Recall that Tn = (n̂un)
1/s

and note that

gn(x)− g̃n(x) =
1

an

∑
i∈Vi0

Yi1{|Yi|>Tn}Ki(x).

By the Markov inequality, P (|Yi| > Tn) ≤ T−s
n E|Yi|s for any i ∈ ZN . Therefore∑

n∈ZN

P (|Yn| > Tn) ≤ C
∑

n∈ZN

1

n̂un
<∞.

The Borel-Cantelli lemma ensures that almost surely |Yi| ≤ Tn for su�ciently large
n. Since Tn → ∞ as n → ∞, we have almost surely |Yi| < Tn for all i ∈ Vi0 and
for n su�ciently large enough, and thus the conclusion follows. □

Lemma 9. Under the assumptions of Theorem 2,

sup
x∈D

|g̃n(x)− E (g̃n(x))| = O

((
log n̂

n̂ρNn Γ(bn)

)1/2
)

a.s

De�ne

Λ̃i(x) = Yi1{|Yi|≤Tn}Ki(x)− E
(
Yi1{|Yi|≤Tn}Ki(x)

)
,

Ĩn(x) =
1

a2n

∑
i∈Vi0

E
(
Λ̃i(x)

2
)

and R̃n(x) =
1

a2n

∑
i̸=j

∣∣∣E [Λ̃i(x)Λ̃j(x)
]∣∣∣ . (31)

Then, arguing as in the proof of Lemma 6 with φi,x(bn) replacing by Γ(bn), one
can prove under assumptions H1-H2, H4�H6 that,

Ĩn(x) + R̃n(x) = O

(
1

n̂ρNn Γ(bn)

)
for any x ∈ D. (32)

Let us de�ne

Ωn =

√
log n̂

n̂ρNn Γ(bn)
and choose ℓn ≤ CΩnφx(bn)ρ

N
n Γ(bn)T

−1
n for some constant C > 0.

We suppose that the compact set D is covered with vn cubes Bk having sides of
length ℓn and centered at xk. We have
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sup
x∈D

|g̃n(x)− E (g̃n(x))| ≤ Q1n +Q2n +Q3n, (33)

where

Q1n = max
1≤k≤vn

sup
x∈Bk

|g̃n(x)− g̃n(xk)| ,

Q2n = max
1≤k≤vn

sup
x∈Bk

|E (g̃n(xk))− E (g̃n(x))| ,

Q3n = max
1≤k≤vn

sup
x∈Bk

|g̃n(xk)− E (g̃n(xk))| .

Lemma 10. Under Assumptions H1, H2 and H4, Q1n = O (Ωn) and Q2n =
O (Ωn) a.s.

Proof of Lemma 10

By Assumptions H1, H2 and H4, for all x ∈ Bk,

|g̃n(x)− g̃n(xk)| ≤ a−1
n φx(bn)

−1ρ−Nn Γ(bn)
−1Tn∥x− xk∥

≤ Cφi,x(bn)
−1ρ−Nn Γ(bn)

−1Tnℓn = O (Ωn) a.s.

and Lemma 10 follows. □

Next, we have to show that

Q3n = O (Ωn) a.s. (34)

De�ne

S̃n(x) = a−2
n φx(bn)

−2
∑
i∈Vi0

Λ̃i(x) = g̃n(x)− E (g̃n(x)) .

De�ne also Ũ(i,n, x, j) and T̃ (n, x, i) to be the same as U(i,n, j, x) and T (n, i, x)

in the proof of Lemma 4 except with Λj replacing by Λ̃j. Arguing that S̃n is a

�nite sum of the T̃ (n, x, i), then showing (34) is equivalent to show that

max
1≤k≤vn

∣∣∣T̃ (n, xk, 1)∣∣∣ = O (Ωn) a.s. (35)

By same arguments as in Lemma 4, T̃ (n, 1, x) is the sum of q̂ = q1 × · · · × qN
of the Ũ(i,n, j, x)'s which are measurable with σ-�eld generated by Xi, where i
belong to the set of sites which are separated by a distance at least p. Enumerate
these random variables as Z1, . . . , Zq̂ and approximate them by the independent
random variables Z∗

1 , . . . , Z
∗
q̂ as was done in Lemma 1. De�ne

p ∼ Ω−1/N
n T−1/N

n ,

and

β̃n = Tnρ
−N
n Γ(bn)

−1ψ(n̂, pN )p−θΩ−1
n .
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Lemma 11. Under assumptions of Theorem 2, there exist two positive constants
A and C such that, for any λ > 0,

P
(

max
1≤k≤vn

∣∣∣T̃ (n, xk, i)∣∣∣ > λΩn

)
≤ Cn̂β

[
n̂−A + β̃n

]
.

Proof of Lemma 11

Since T̃ (n, x, i) =
∑q̂
i=1 Zi, we have, for any λ > 0,

P
(∣∣∣T̃ (n, x, i)∣∣∣ > λΩn

)
≤ P

(
q̂∑
i=1

|Zi − Z∗
i | > λΩn/2

)
+ P

(∣∣∣∣∣
q̂∑
i=1

Z∗
i

∣∣∣∣∣ > λΩn/2

)
.

By the boundedness of the functions K1 and K2 respectively, we have

|Zi| ≤ CpNTna
−1
n φx(bn)

−1 ≤ CTnp
N
(
n̂ρNn Γ(bn)

)−1
.

Note that n̂ = 2NpN q̂. Therefore Markov inequality gives: for any λ > 0,

P

(
q̂∑
i=1

|Zi − Z∗
i | > λΩn

)
≤ 2q̂pNTn

(
n̂ρNn Γ(bn)

)−1
ψ(n̂, pN )χ(p)λ−1Ω−1

n ≤ Cβ̃n.

By Lemma 32, we get, for any λ > 0, there exists a constant C > 0 such that

P

(∣∣∣∣∣
q̂∑
i=1

Z∗
i

∣∣∣∣∣ > λΩn

)
≤ Cn̂−A,

and the conclusion follows. □

Proof of Lemma 9 Note that by the Fubini's theorem, it can be seen that∑
n∈ZN 1/(n̂un) < ∞. By (33), Lemma 10 , and Lemma 11, proving Lemma 9 is

equivalent to show that

n̂unn̂
β−A → 0 and n̂unn̂

β β̃n → 0 as n → ∞. (36)

Note that, the �rst part of (36) holds by choosing A such that A > β + 2. For
its second part, when (8) is satis�ed, ψ(n̂, pN ) = pN for n large enough. Then

n̂β+1unβ̃n ≤ Cn̂β (n̂un)
1/s+1

ρ−Nn Γ(bn)
−1Ω(θ−2N)/N

n (n̂un)
(θ−N)/sN

= Cn̂β+1/s+1+(θ−N)/(sN)+(2N−θ)/(2N)ρ
− θ

2
n Γ(bn)

−θ
2N (log n̂)

θ−2N
2N u

sN+θ
sN

n

= C
[
n̂ρNθ1n Γ(bn)

θ1 (log n̂)
θ2 uθ3n

] 2sN(β+2)+θ(2−s)
2sN

,

which goes to zero when θ > (2Ns(β + 2)) / (s− 2).
Similarly, when (9) is satis�ed, we have ψ(n̂, pN ) ≤ Cn̂κ for n large enough. Then,

n̂β+1unβ̃n ≤ Cn̂β+κρ−Nn Γ(bn)
−1T 1+θ/N

n Ω
θ−N
N

n

= Cn̂β+κ+(N+θ)/(sN)+(N−θ)/(2N)
(
ρNn Γ(bn)

)−N−θ
2N (log n̂)

θ−N
2N u

N+θ
sN

n

= C
[
n̂
(
ρNn Γ(bn)

)θ∗1 (log n̂)θ∗2 uθ∗3n ]N(2sβ+2sκ+s+2)+θ(2−s)
2sN

,
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which goes to zero when θ > (N(2sβ + 2sκ+ s+ 2)) / (s− 2) and Lemma 9
follows. □

Lemma 12. Under Assumptions H1, H2, H4 and H5,

1. if (8) is satis�ed and

n̂
(
ρNn Γ(bn)

)θ4
(log n̂)

θ5 uθ6n → ∞ with θ > 2N(β + 2),

2. or if (9) is satis�ed and

n̂
(
ρNn Γ(bn)

)θ∗4 (log n̂)θ∗5 uθ∗6n → ∞ with θ > N(2β + 2κ+ 3),

then,

sup
x∈D

|fn(x)− 1| = O

((
log n̂

n̂ρNn Γ(bn)

)1/2
)

a.s,

where

θ4 =
θ

θ − 2N(β + 2)
θ5 =

θ − 2N

2N(β + 2)− θ
θ6 =

2N

2N(β + 2)− θ
,

θ∗4 =
−N − θ

N (2β + 2κ+ 3)− θ
θ∗5 =

θ −N

N (2β + 2κ+ 3)− θ
θ∗6 =

2N

N (2β + 2κ+ 3)− θ
.

Proof of Lemma 12

To prove Lemma 12, just adapt the arguments considered in the proof of
Lemma 9 to the case where Yi ≡ 1 and Tn = 1.

Appendix A.2.7. Proof of Theorem 3

This result is derived directly from the proof of Theorem 1 where the regression
r is replaced with pj and for the particular response variable 1[Y=j], we remark
that pj(x) = E(1[Y=j]|X = x) = P (Y = j|X = x).

Appendix A.2.8. Proof of Theorem 4

This result is derived directly from the proof of Theorem 2 when the regression
r is replaced with the posterior probability pj and for the particular response
variable 1[Y=j] allows us to get the result.
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