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Abstract

In this paper, a set of important objective priors are examined for the
Bayesian estimation of the parameters present in the Poisson-Exponential
distribution PE. We derived the multivariate Je�reys prior and the Maxi-
mal Data Information Prior. Reference prior and others priors proposed in
the literature are also analyzed. We show that the posterior densities re-
sulting from these approaches are proper although the respective priors are
improper. Monte Carlo simulations are used to compare the e�ciencies and
to assess the sensitivity of the choice of the priors, mainly for small sam-
ple sizes. This simulation study shows that the mean square error, mean
bias and coverage probability of credible intervals under Gamma, Je�reys'
rule and Box & Tiao priors presented equal results, whereas Je�reys and
Reference priors showed the best results. The MDIP prior had a worse per-
formance in all analyzed situations showing not to be indicated for Bayesian
analysis of the PE distribution. A real data set is analyzed for illustrative
purpose of the Bayesian approaches.
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Resumen

En este artículo, se examina un conjunto de importantes priori objetivas
para la estimación bayesiana de los parámetros de la distribución Poisson-
Exponencial (PE). Derivamos la priori Je�reys multivariada y la Maximal

Data Information Prior. También se analizan la priori de Referencia y otras
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prioris propuestas en la literatura. Mostramos que las distribuciones pos-
terioris resultantes de estos enfoques son adecuadas, aunque las respectivas
prioris son impropias. Las simulaciones de Monte Carlo se utilizan para
comparar las e�ciencias, para evaluar la sensibilidad de la elección de las
prioris, principalmente para tamaños de muestra pequeños. Este estudio de
simulación muestra que los errores cuadráticos medios, el sesgo medio y la
probabilidad de cobertura de los intervalos creíbles bajo la Gamma, regla de
Je�reys y Box & Tiao mostraron resultados iguales, mientras que los prioris
de Je�reys y Reference mostraron los mejores resultados. El priori MDIP
tuvo un peor desempeño en todas las situaciones analizadas mostrando no
estar indicado para el análisis bayesiano de la distribución PE. Se analiza
un conjunto de datos reales con �nes ilustrativos de los enfoques bayesianos.

Palabras clave: Bayesiano; Je�reys; MDIP; Objetiva; Poisson-Exponencial;
Priori.

1. Introduction

The Poisson-Exponential (PE) is a lifetime distribution with increasing failure
rate introduced by Cancho et al. (2011). This model is derived in a complementary
risks scenario where the lifetime associated with a particular risk is not observa-
ble, rather we observe only the maximum lifetime value among all risks. This
distribution can be used to engineering problems where after increasing the failure
rate the function may become stabilized.

As is well known, the choice of a prior distribution is the fundamental part
of any Bayesian analysis. Objective priors, generally also called noninformative
priors, refer to the case where relatively little information is available a priori, that
is, information about model parameters is not considered substantial compared to
information from a data set or in situations where a researcher is not able to
express his/her prior opinion into a prior distribution.

Because there is not a precise de�nition about the concept of noninformative
prior, there are in the Bayesian literature several forms of formulating noninforma-
tive priors, for instance, Je�reys (1967), MDIP (Zellner, 1977, 1984), Tibshirani
(1987), reference (Bernardo, 1979) and many others. Therefore, a study to derive
the priors for a distribution �tted for the experimental data and check if these
proposed priors lead to the same posterior inference results is of great practical
interest. Furthermore, it is desirable to compare the di�erent priors to check if
any of them are preferable, especially for small samples.

Rodrigues et al. (2018) studied di�erent non-Bayesian methods of estimation
for the parameters of PE distribution and Louzada-Neto et al. (2011) provide a
Bayesian inference by using a Je�reys's rule prior representing weak information for
the parameters of PE distribution. Tomazella et al. (2013) also present a Bayesian
analysis for the parameters of PE distribution but using the Reference prior dis-
tribution proposed by Bernardo (1979). Singh et al. (2014) proposed the Bayesian
approach under symmetric and asymmetric loss functions comparing them with the
maximum likelihood procedure to estimate the parameters of Poisson-Exponential
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distribution for complete sample. Belaghi et al. (2019) obtain the estimates un-
der the maximum likelihood approach, and Bayesian estimates using di�erent loss
functions for estimation and prediction problems when the lifetime data following
the Poisson-Exponential distribution are observed under type-II censoring.

In this paper a more complete set of important objective priors representing
a situation of absense or weak information of the parameters of the Poisson-
Exponential distribution are examined. We derived the multivariate Je�reys prior
proposed by Je�reys (1967) and the Maximal Data Information Prior (MDIP) pro-
posed by Zellner (1977). Others types of objective priors proposed in the literature
are also analyzed. We are also interested in selecting an objective prior that best
represents a state of little knowledge a priori about the parameters.

In Bayesian analysis with objective priors, it should be justi�ed that the poste-
rior densities are proper. In this paper, all the posterior densities of the parameters
of PE distribution will result proper posterior distributions although the priors are
improper. In addition, a simulation study is performed using di�erent sample sizes
and we examine the bias, mean square error and frequentist coverage probabilities
in order to compare the performance of the proposed priors.

One purpose of Bayesian inference is to obtain the marginal posterior densities
because they provide complete information about parameters of interest such as
Bayes estimator, mode and credible intervals. For this, we need to integrate the
joint posterior density with respect to each parameter. However, since the marginal
posterior densities cannot be obtained in a closed form through the integration, the
Markov Chain Monte Carlo (MCMC) techniques, in special Metropolis.Hastings
algorithm, to generate samples of values of θ and λ from the joint posterior distri-
butions is also carried out.

The outline of the remaining sections is organized as follows. In Section 2, the
Poisson-Exponential, its properties and the expected Fisher information matrix
derived by Cancho et al. (2011) was reviewed; in Sections 3 and 5, we derive
the Je�reys and MDIP priors, respectively. Section 4 reviews the Reference prior
developed by Tomazella et al. (2013) and Section 6 presents other proposed priors.
Section 7 illustrates and discusses the results from the simulation performance
and in Section 8 we introduce an applied example provided by Lawless (2003) to
illustrate the Bayesian approach proposed. Finally in section 9, we have presented
the conclusions.

2. The Poisson-Exponential Distribution

Let be T representing the lifetime of a component under the Poisson-Exponential
distribution, denoted by PE, then the density is given by

f(t) =
θλ exp{−λt− θe−λt}

1− e−θ
, (1)

for all t > 0 and depending on the shape and scale parameters θ > 0 and λ > 0,
respectively.
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The survival and hazard functions associated to (1) are given, respectively, by,

S(t) =
1− exp{−θe−λt}

1− e−θ
, t > 0

and

h(t) =
θλ exp{−λt− θe−λt}
1− exp{−θe−λt}

, t > 0.

The pth quantile of the PE is given by

tp =
1

λ
log θ − log

[
− log

(
p− e−θ(p− 1)

)]
, 0 < p < 1.

According to Cancho et al. (2011), the raw moments of T are given by,

µk = E(T k) =
θΓ(k + 1)

λk(1− e−θ)
Fk+1,k+1([1, . . . , 1], [2, . . . , 2],−θ), (2)

where the generalized hypergeometric function, denoted by Fpq(a, b, θ), is de�ned
as

Fpq(a, b, θ) =

∞∑
j=0

θj
∏p

i=1 Γ(ai + j)
(
Γ(ai)

−1)

Γ(j + 1)
∏p

i=1 Γ(bi + j)
(
Γ(bi)−1)

, (3)

with a = (a1, a2, . . . , ap) and b = (b1, b2, . . . , bq).

From (2), we have the mean and variance given, respectively, by

E(T ) =
θ

λ(1− e−θ)
F22([1, 1], [2, 2],−θ) (4)

and

var(T ) =
θ

λ2(1− e−θ)

[
F33([1, 1, 1], [2, 2, 2],−θ)− θ

1− e−θ
F22([1, 1].[2, 2],−θ)

]
.

Suppose we have independent identically distributed lifetimes t1, t2, . . . , tn from
PE. The likelihood function for the parameters θ and λ, based on the random
sample t = (t1, t2, . . . , tn), is given by

L(θ, λ| t) ∝
( θλ

1− e−θ

)n

exp

{
−λ

n∑
i=1

ti − θ

n∑
i=1

e−λti

}
.

Cancho et al. (2011) provide the conditions which are needed in order to obtain
the existence and uniqueness of the MLE when the other parameter is known. They
also provide the Fisher information matrix given by

I(θ, λ) =

[
I11 I12
I12 I22

]
, (5)
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with

I11 = −E

(
∂2

∂θ2
ln L

)
=

n

θ2
− neθ

(eθ − 1)2
,

I12 = −E(
∂2

∂θ∂λ
ln L) = − nθ

4λ(1− e−θ)
F22([2, 2], [3, 3],−θ)

and

I22 = −E(
∂2

∂λ2
ln L) =

n

λ2

(
1 +

θ2

4(1− e−θ)
F33([2, 2, 2], [3, 3, 3],−θ)

)
. (6)

3. Je�reys Prior

A well known weak prior to represent a situation with little information avail-
able a priori about the parameters was proposed by Je�reys (1967). Since then
Je�reys prior has played an important role in Bayesian inference. His prior is
derived from Fisher Information matrix I(θ, λ) as

π(θ, λ) ∝
√
det I(θ, λ) . (7)

Box & Tiao (1973) give an explaining of the derivation of the noninformative
Je�reys priors in terms of �data translated� likelihood.

Je�reys prior is widely used due to its invariance property under one-to-one
transformations of parameters.

Theorem 1. Je�reys prior for (θ, λ) parameters of PE is given by:

π(θ, λ) ∝
1

λ

√( 1

θ2
−

eθ

(eθ − 1)2

)(
1 +

θ2

4(1 − e−θ)
F33([2, 2,2], [3, 3,3],−θ)

)
−

( θ

4(1 − e−θ)
F22([2, 2], [3, 3],−θ)

)2

(8)

Proof . Immediate from (5) and (7).

As this prior is an improper prior then it should be justi�ed that the posterior
density is proper.

Corollary 1. The joint posterior density p(θ,λ | t) for parameters (θ, λ) under
Je�reys prior (8) is proper.

Proof . Since e−λt ≤ 1 for all ti > 0, i = 1, . . . , n, and λ > 0, it follows that

∫ ∞

0

∫ ∞

0

p(θ, λ | t)dθdλ ≤
∫ ∞

0

∫ ∞

0

( θλ

1− e−θ

)n

exp
{
−λ

n∑
i=1

ti

}
e−nθπ(θ, λ)dθdλ =

∫ ∞

0

[∫ ∞

0

λ n−1e−λ
∑n

i=1 tidλ
]( θe−θ

1− e−θ

)n

φ(θ)dθ

Revista Colombiana de Estadística - Applied Statistics 46 (2023) 93�110



98 Fernando A. Moala & Gustavo Moraes

where

φ(θ) =

√( 1

θ2
−

eθ

(eθ − 1)2

)(
1 +

θ2

4(1 − e−θ)
F33([2, 2,2], [3, 3,3],−θ)

)
−

( θ

4(1 − e−θ)
F22([2, 2], [3, 3],−θ)

)2
.

(9)

Taking the integration with respect to λ, we have
∫∞
0

λ n−1e−λ
∑n

i=1 tidλ =
Γ(n)(∑n
i=1 ti

)n and hence,

∫ ∞

0

∫ ∞

0

p(θ, λ | t)dθdλ ≤ Γ(n)(∑n
i=1 ti

)n

∫ ∞

0

( θe−θ

1− e−θ

)n

φ(θ)dθ.

Now, since θe−θ

1−e−θ ≤ 1, then
(

θe−θ

1−e−θ

)n

≤ θe−θ

1−e−θ and

∫ ∞

0

( θe−θ

1− e−θ

)n

φ(θ)dθ ≤
∫ ∞

0

θe−θ

1− e−θ
φ(θ)dθ = 0.311677. (10)

The last integral in (10) is evaluated numerically by using Mathematica.
Therefore ∫ ∞

0

∫ ∞

0

p(θ, λ | t)dθdλ ≤ Γ(n)(∑n
i=1 ti

)n < ∞.

4. Reference Prior

Another well-known class of noninformative priors is the reference prior pro-
posed by Bernardo (1979) and further improved by Berger & Bernardo (1992).

The idea is to derive a prior π(ϕ) that maximizes the expected posterior infor-
mation about the parameters provided by independent replications of an experi-
ment relative to the information in the prior. A natural measure of the expected
information about ϕ provided by data x is given by

I(ϕ) = Ex[K(p(ϕ | x), π(ϕ))]

where

K(p(ϕ | x), π(ϕ)) =
∫
Φ

p(ϕ | x) log p(ϕ | x)
π(ϕ)

dϕ (11)

is the Kullback-Leibler distance. Thus, the reference prior is de�ned as the prior
π(ϕ) that maximizes the expected Kullback-Leibler distance between the posterior
density p(ϕ|x) and the prior density π(ϕ), taken over the experimental data.
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The prior density π(ϕ) which maximizes the functional (11) is found through
calculus of variation and, the solution is not explicit. However, when the posterior
p(ϕ | x) is asymptotically normal, this approach leads to Je�reys prior for a single
parameter situation. If on the other hand, we are interested in one of the para-
meters, being the remaining parameters nuisances, the situation is quite di�erent,
and the appropriated reference prior is not a multivariate Je�reys prior. Bernardo
argues that when nuisance parameters are present, the reference prior should de-
pend on which parameters are considered to be of primary interest. The reference
prior in this case is derived as follows. We will present here the two-parameters
case in details. For the multiparameter case, Berger & Bernardo (1992).

Let θ = (θ1, θ2) be the whole parameter, θ1 being the parameter of interest
and θ2 the nuisance parameter. The algorithm is given as follows:

Step 1: Determine π2(θ2| θ1), the conditional reference prior for θ2 assuming that
θ1 is given,

π2(θ2| θ1) =
√
I22(θ1, θ2),

where I22(θ1, θ2) is the (2,2)-entry of the Fisher Information Matrix.

Step 2: Normalize π2(θ2| θ1).
Case π2(θ2| θ1) is improper, choose a sequence of subsets Ω1 ⊆ Ω2 ⊆ · · · → Ω

on which π2(θ2| θ1) is proper. De�ne

cm(θ1) =
1∫

Ωm
π2(θ2| θ1)dθ2

and
pm(θ2| θ1) = cm(θ1)π2(θ2| θ1)1Ωm

(θ2).

Step 3: Find the marginal reference prior for θ1, i.e., the reference prior for the
experiment formed by marginalizing out with respect to pm(θ2| θ1). We obtain

πm(θ1) ∝ exp
{ 1

2

∫
Ωm

pm(θ2| θ1)log
∥∥∥∥det I(θ1, θ2)I22(θ1, θ2)

∥∥∥∥ dθ2}.
Step 4: Compute the reference prior for (θ1, θ2) when θ2 is a nuisance parameter:

π(θ1, θ2) = lim
m→∞

(
cm(θ1)πm(θ1)

cm(θ∗1) πm(θ∗1)

)
π(θ2 | θ1),

where θ∗1 is any �xed point with positive density for all πm.

Tomazella et al. (2013) derive reference prior and prove that the corresponding
posteriori density is proper.

Theorem 2. Reference prior for (θ, λ) parameters of PE is given by:

π(θ, λ) ∝ 1

λ

(
1 +

θ2

4(1− e−θ)
F33([2, 2, 2], [3, 3, 3],−θ)

)
φ(θ), (12)
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where φ(θ) is given by (9).

Proof . See Tomazella et al. (2013).

Note that Reference prior is the product of Je�reys prior and the term
(
1 +

θ2

4(1−e−θ)
F33([2, 2,2], [3, 3,3],−θ)

)
.

Corollary 2. The joint posterior density p(θ,λ | t) for parameters (θ, λ) under
Reference prior given in (12) is proper.

Proof . See Tomazella et al. (2013).

5. Maximal Data Information Prior (MDIP)

It is of interesting that the data gives more information about the parameter
than the information on the prior density, otherwise, there would not be justi�ca-
tion for the realization of the experiment. Thus, we wish a prior density π(ϕ) that
provides the gain in the information supplied by the data the largest as possible
relative to the prior information of the parameter, that is, maximizes the infor-
mation on the data. With this idea, Zellner (1977), Zellner (1984) and Zellner &
Min (1992) derived a prior which maximize the average information in the data
density f(x |ϕ) relative to that one in the prior. Let

H(ϕ) =

∫ b

a

f(x |ϕ) ln f(x |ϕ)dx

be the negative entropy, the measure of the information in f(x |ϕ). Thus, the
following functional criterion is employed in the MDIP approach:

G[π(ϕ)] =

∫ b

a

H(ϕ)π(ϕ)dϕ−
∫ b

a

π(ϕ) ln π(ϕ)dϕ,

which is the prior average information in the data density minus the informa-
tion in the prior density. G[π(ϕ)] is maximized by selection of π(ϕ) subject to∫ b
a
π(ϕ)dϕ = 1.

The solution is then a proper prior density given by

π(ϕ) = k exp
{
H(ϕ)

}
, a ≤ ϕ ≤ b, (13)

where k−1 =
∫ b
a
exp

{
H(ϕ)

}
dϕ is the normalizing constant.

Therefore, the MDIP is a prior that leads to an emphasis on the information
in the data density or likelihood function, that is, its information is weak in com-
parison with data information. More details of the construction of this prior can
be found in Zellner (1984).
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Zellner (1990) and Zellner (1996) show several interesting properties of MDIP
and additional conditions that can also be imposed to the approach re�eting given
initial information. However, the MDIP has restrictive invariance properties.

We suppose that we do not have much prior information available about θ and
λ. Therefore, under this condition, the prior distribution MDIP for the parameters
(θ, λ) of PE density (1) is also appropriated for our inference problems.

Theorem 3. MDIP prior for (θ, λ) parameters of PE is given by

πZ(θ, λ) ∝
λθ

1− e−θ
exp

{
− θ

(1− e−θ)

(
F22([1, 1], [2, 2],−θ)− e−θ

)}
. (14)

Proof . Firstly, we have to evaluate the negative entropy of the distribution
f(t | θ, λ),

H(θ, λ) =

∫ ∞

0

ln
(θλ exp{−λt− θe−λt}

1− e−θ

)
f(t)dt,

and after some algebras,

H(θ, λ) = ln
( θλ

1− e−θ

)
− λE(T )− θE(e−λT ).

From mean of the PE in (4) we have

H(θ, λ) = ln
( θλ

1− e−θ

)
− θ

(1− e−θ)
F22([1, 1], [2, 2],−θ)− θE(e−λT ),

with F22([1, 1], [2, 2],−θ) de�ned in (3).

Now, to evaluate the expectance E(e−λT ) =
∫∞
0

e−λt θλ exp{−λt−θe−λt}
1−e−θ dt con-

sider the transformation u = e−λt then E(e−λT ) = 1
θ + 1

1−e−θ .

Hence, the entropy of PE is obtained as

H(θ, λ) = ln
( θλ

1− e−θ

)
− θ

(1− e−θ)
F22([1, 1], [2, 2],−θ) +

θe−θ

1− e−θ
− 1. (15)

From (13) and (15), the MDIP prior for parameters of PE is obtained.

Corollary 3. The joint posterior density for parameters (θ, λ) under MDIP prior
(14) is proper.

Proof . The joint posterior density for parameters (θ, λ) is given by

p(θ, λ | t) ∝
( θλ

1− e−θ

)n+1

exp
{
−λ

n∑
i=1

ti − θ

n∑
i=1

e−λti
}
exp

{
− θ

(1− e−θ)

(
F22 − e−θ

)}
,

where F22 = F22([1, 1], [2, 2],−θ).

Since e−λt ≤ 1 for all ti > 0, i = 1, . . . , n, and λ > 0, it follows that
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∫ ∞

0

∫ ∞

0
p(θ, λ | t)dθdλ ≤∫ ∞

0

[∫ ∞

0
λ n+1e−λ

∑n
i=1 tidλ

]( θ

1− e−θ

)n+1
e−nθ exp

{
−

θ

(1− e−θ)

(
F22 − e−θ

)}
dθ.

From
∫∞
0

λ n+1e−λ
∑n

i=1 tidλ = Γ(n+2)(∑n
i=1 ti

)n+2 we have

∫ ∞

0

∫ ∞

0

p(θ, λ | t)dθdλ ≤
Γ(n+2)(∑n
i=1 ti

)n+2

∫ ∞

0

( θe−θ

1− e−θ

)n+1

exp
{
−

θ

(1− e−θ)

(
F22 − e−θ

)}
dθ.

Due to θe−θ

1−e−θ ≤ 1 then

∫ ∞

0

∫ ∞

0
p(θ, λ | t)dθdλ ≤

Γ(n+2)(∑n
i=1 ti

)n+2

∫ ∞

0

( θe−θ

1− e−θ

)
exp

{
−

θ

(1− e−θ)

(
F22 − e−θ

)}
dθ.

From numerical integration we have∫ ∞

0

( θe−θ

1− e−θ

)
exp

{
− θ

(1− e−θ)

(
F22 − e−θ

)}
dθ = 0.835182,

and therefore ∫ ∞

0

∫ ∞

0

p(θ, λ | t)dθdλ ≤ Γ(n+2)(∑n
i=1 ti

)n+2 < ∞.

6. Other proposed priors

A possible simpli�cation of Je�reys prior is to consider a noninformative prior
from π(θ, λ)= π(λ| θ)π(θ). Using the Je�reys' rule, we have

π(θ, λ) ∝
√

E
( ∂2

∂λ2
ln L

)
π(θ), (16)

where E
(

∂2

∂λ2 ln L
)
is given by (6) and π(θ) is a noniformative proper prior.

Louzada-Neto et al. (2011) consider π(θ) given by the Gamma distribution
with parameters �a� and �b�.

Theorem 4. The Je�reys' rule prior is given by

π(θ, λ) ∝ 1

λ
θa−1e−bθ. (17)
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Proof . In fact, from element I22 given in (6) and prior (16) with π(θ) given by
a gamma distribution with hyperparameters �a� and �b� the considered prior is
obtained.

Let us denote the prior (17) as Je�reys' rule.

Corollary 4. The joint posterior density p(θ, λ | t) for parameters (θ, λ) under
Je�reys' rule prior given in (17) is proper.

Proof . See Louzada-Neto et al. (2011).

Theorem 5. Another noninformative prior distribution is assumed considering
independence between θ and λ, given by

π(θ, λ) ∝ 1

θλ
. (18)

Let us denote the prior (18) as Box & Tiao prior.

Corollary 5. The joint posterior density p(θ,λ | t) for parameters (θ, λ) under
Box & Tiao prior given in (18) is proper.

Proof . The proof is similar to that considered by Louzada-Neto et al. (2011).

Other prior speci�cations also could be used, as independent informative Gamma
distributions, that is,

πθ(θ) ∼ Gamma(aα, bα) (19)

and

πλ(λ) ∼ Gamma(aλ, bλ), (20)

where aθ, bθ, aλ and bλ are known hyperparameters and Gamma(a, b) denotes a
gamma distribution with mean a/b and variance a/b2.

Since shape θ and scale λ parameters of PE assumes values greater than zero
then we can pre-establish as usual a Gamma prior distribution with shape and
scale hyperparameters a > 0 and b > 0, respectively. Values of a → 0 and
b → 0 suggest a vague (absence of information) prior distribution. Thus, the
hyperparameters in (19) and (20) could be choosen such as 0.01 or 0.001 to provide
no prior information.

Table 1 displays the joint prior distributions obtained for the di�erent ap-
proaches shown in this paper.

7. Simulated Data

This section presents a simulation in order to compare and choose a prior
distribution proposed in this paper which better represent a situation of weak
information about the parameters.
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Table 1: Joint prior distributions

Prior π(θ, λ)

Je�reys 1
λ

φ(θ)

Reference 1
λ

φ(θ)
(
1 + θ2

4(1−e−θ)
F33([2, 2,2], [3, 3,3],−θ)

)
MDIP λθ

1−e−θ exp
{
− θ

(1−e−θ)

(
F22([1, 1], [2, 2],−θ)− e−θ

)}
Gamma λa−1e−bλθc−1e−dθ

Je�reys' rule 1
λ

θa−1e−bθ

Box & Tiao 1
λθ

The simulated data are generate from PE distribution with parameter values
θ = 5 and λ = 2 for di�erent sample sizes, as n = 10 (small), 30, 50 (moderate),
100 and 200 (large).

We report the average estimators, the mean square error (MSE) and the mean
bias, over 1000 generated samples for each sample size. The e�ciency for the
estimators was compared according to these measures. The results are reported
in Tables 2 and 3.

We also need to appeal to numerical procedures to extract characteristics of
marginal posterior distributions such as Bayesian estimators and credible intervals.
We can use the MCMC algorithm to obtain a sample of θ and λ from the joint
posterior. The chain is run for 105 000 iterations with a burn-in period of 5000
and jumping 100.

Table 2: Simulation results for di�erent sample sizes and parameters θ = 5.

n Estimate Gamma Je�reys'rule Je�reys Reference MDIP Box&Tiao

Bias 4.7966 4.8092 3.5161 3.0793 20.4176 6.6193

10 MSE 82.9010 84.8641 27.8572 21.3021 738.9883 440.7152

Estimator 7.0448 7.0711 7.5547 6.8291 24.9537 8.9153

Bias 1.6384 1.6420 1.5211 1.4486 2.3645 1.6602

30 MSE 5.1780 5.1551 4.7750 4.2047 21.0929 5.3872

Estimator 5.2461 5.2460 5.7086 5.4990 6.7998 5.2830

Bias 1.1173 1.1218 1.0748 1.0493 1.2731 1.1279

50 MSE 2.1494 2.1604 2.1012 1.9480 3.1424 2.2008

Estimator 5.1577 5.1594 5.3817 5.2644 5.7675 5.1773

Bias 0.7402 0.7412 0.7428 0.7266 0.8212 0.7418

100 MSE 0.9019 0.9023 0.9198 0.8755 1.1420 0.9042

Estimator 5.1775 5.1800 5.2746 5.2168 5.4502 5.1855

Bias 0.4984 0.4996 0.4979 0.4944 0.5221 0.4896

200 MSE 0.4066 0.4091 0.4108 0.4012 0.4605 0.3866

Estimator 5.0781 5.0772 5.1240 5.0976 5.2050 5.0734

Some of the points are quite clear from the results. As expected, when the
sample size increases, it is observed that the performances of all estimators become
better and closer, the MSE and biases decrease, although slowly.
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Table 3: Simulation results for di�erent sample sizes and parameters λ = 2.

n Estimate Gamma Je�reys'rule Je�reys Reference MDIP Box & Tiao

Bias 0.5627 0.5616 0.4813 0.4490 1.3930 0.5900

10 MSE 0.5161 0.5198 0.4129 0.3538 3.1809 0.6065

Estimator 1.9667 1.9708 2.2300 2.1430 3.3163 2.0055

Bias 0.2877 0.2876 0.2643 0.2589 0.3414 0.2893

30 MSE 0.1417 0.1421 0.1225 0.1168 0.2234 0.1438

Estimator 1.9848 1.9855 2.0687 2.0383 2.2195 1.9899

Bias 0.2120 0.2111 0.2020 0.1999 0.2251 0.2119

50 MSE 0.0729 0.0724 0.0679 0.0658 0.0874 0.0732

Estimator 1.9987 1.9992 2.0369 2.0196 2.1164 2.0013

Bias 0.1460 0.1459 0.1455 0.1437 0.1567 0.1460

100 MSE 0.0337 0.0339 0.0340 0.0330 0.0399 0.0338

Estimator 2.0226 2.0232 2.0383 2.0298 2.0771 2.0241

Bias 0.0973 0.0979 0.0973 0.0967 0.1007 0.0963

200 MSE 0.0150 0.0151 0.0150 0.0148 0.0161 0.0146

Estimator 2.0049 2.0044 2.0120 2.0080 2.0307 2.0042

The results from Tables 2 and 3 show that the PE distribution is not indicated
for samples with size n < 30 due to the poor estimates obtained whatever prior
used. In addition, the Reference prior shown better performance than the others.

The results of the estimation of parameter λ given in Table 3 show practically
insigni�cant di�erences even for sample sizes n < 30 and the values of Bias and
MSE decrease very slowly when n increases.

Therefore, the conclusion of this analysis is that the shape parameter θ must
be considered for the choice of the best prior to be used.

Other criterion for comparison of the prior densities consists on checking the
frequentist coverage probabilities of the posterior intervals. Tables 4 and 5 illus-
trate the coverage probabilities.

Table 4: Frequentist coverage probability of the 95% intervals for θ = 5.

n Gammas Je�reys'rule Je�reys Reference MDIP Box&Tiao

10 0.90 0.89 0.94 0.95 0.65 0.88

30 0.93 0.93 0.96 0.95 0.91 0.93

50 0.94 0.94 0.95 0.96 0.93 0.95

100 0.94 0.94 0.94 0.95 0.93 0.94

200 0.95 0.95 0.94 0.94 0.93 0.95

In terms of coverage probability, the simulation study indicates that the Re-
ference prior performs better than the other priors, mainly for the parameters θ.
Tables 4 and 5 illustrate that the coverage probabilities are often smaller than
the nominal level for sample size n < 30, although the Reference prior performs
slightly better than the others for this case. We can also see that the MDIP prior
performs most poorly.
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Table 5: Frequentist coverage probability of the 95% intervals for λ = 2.

n Gammas Je�reys'rule Je�reys Reference MDIP Box&Tiao

10 0.93 0.94 0.94 0.97 0.64 0.93

30 0.93 0.93 0.94 0.95 0.91 0.93

50 0.95 0.96 0.95 0.95 0.91 0.94

100 0.96 0.95 0.94 0.95 0.92 0.95

200 0.95 0.96 0.94 0.96 0.94 0.96

Some of the points are quite clear from the numerical results.

As expected, a moderate large (n ≥ 50) sample size is needed to achieve the
desirable accuracy, and in this case the choice of the priors become irrelevant.

The same result cannot be completely achieved when n is a small value (n <
30). In this case, we conclude that Je�reys and Reference priors provide better
estimation than any other priors presented in the study and, consequently, both
can represent a situation of weak information a priori. Furthermore, a comparison
between Je�reys and Reference priors shows that Reference prior slightly domi-
nates Je�reys when n is very small. Note that MDIP prior does not provide good
estimates among all the considered class of priors.

Therefore, based on this simulated study we recommend the Bayesian approach
with Reference prior as the best inference to estimate the parameters and these
results are of great interest in applications of the Poisson-Exponential distribution.

8. An Example With Literature Data

The data set below was obtained from Lawless (2003). The data given arose
in tests on endurance of deep groove ball bearings. The data are the number of
million revolutions before failure for each of the 23 ball bearings in the life test
and they are 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12,
55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04,
173.40.

In Figure 1, we have the plots of the histogram with �tted density, and empirical
with �tted cumulative functions modeled by PE. From Figure 1, we observe a
good �t of the PE distribution for the data (Lawless data). Thus, based on the
plots, we can assume that PE distribution is appropriated to analyze this dataset.

Table 6 presents the posterior mean, standard deviation and credible interval
considering each prior distribution for the parameters θ and λ. From this Table
we see that the Reference prior is more appropriate for both θ and λ although
the di�erences with the other priors are not so signi�cant as observed also in the
results obtained by the simulation given in Tables 3, 4 and 5. The exception again
is the MDIP prior, whose results are also far from.

The graphical representations of the marginal posterior densities for the param-
eters θ and λ are shown in Figure 2. Comparing the marginal posterior densities we
can see the posteriors for both parameter are quite similar. The plots of posteriors
p(θ | t) are so close such that one choice is almost impossible.
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Figure 1: Plots of histogram and empirical cumulative function with respective �tted
functions.
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Figure 2: Marginal posterior densities of parameters θ and λ for the data (Lawless
data).
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Table 6: Estimators and 95% condence intervals of θ and λ for di�erent prior.

θ λ

Prior Estimator sd CI Estimator sd CI

Gamma 6.9254 2.6523 (2.6606, 13.3033) 0.0344 0.0064 (0.0226, 0.0474)

Je�reys' rule 7.0384 2.6962 (2.7252, 12.9593) 0.0346 0.0063 (0.0221, 0.0481)

Je�reys 7.5568 2.8554 (3.2070, 14.3470) 0.0357 0.0065 (0.0242, 0.0501)

Reference 7.0820 2.6152 (2.9928, 13.3740) 0.0348 0.0060 (0.0226, 0.0465)

MDIP 13.7054 13.2475 (3.9285, 50.5502) 0.0428 0.0120 (0.0269, 0.0746)

Box&Tiao 7.0629 2.6331 (2.8454, 12.9287) 0.0346 0.0063 (0.0222, 0.0463)

9. Conclusions

In this paper, the objective priors are derived for the parameters of PE dis-
tribution. A study to check if these priors lead to the same posterior inference
for small and moderate sample sizes is of great practical interest. This way, a si-
mulation study was performed and it indicated that the Reference prior performs
better than the other priors for both parameters θ and λ.

In all the evaluation criteria of the considered priors, Gamma, Je�reys' rule and
Box&Tiao presented equal results whereas Je�reys and Reference priors showed
close and better results. The MDIP prior had a worse performance in all analyzed
situations showing not to be indicated for Bayesian analysis of the PE distribution.

The results from Tables 2 and 3 show that the Poisson-Exponential distribution
should not be indicated for dataset with size n < 30 due to the poor estimates
obtained whatever prior used.

In addition to the results obtained from the simulation study of objective priors
treated in this paper for the speci�c case of the Poisson-Exponential distribution,
it is also worth highlighting the advantages and disadvantages of using these priors
in the general case, as we will see below.

Je�reys prior is quite universal and invariant in the sense of yielding proper-
ly tranformed priors under reparametrization, however, Je�reys himself noticed
di�culties with the method when the parameter is multi-dimensional.

Reference prior provides one of the most successful general methods to de-
rive noninformative prior distributions. In practice, however, reference priors are
typically di�cult to use. Undesirable properties include lack of invariance to repa-
rameterization and nonuniqueness of prior due to the choice of the parameter of
interest.

The MDIP prior provides a fresh view and operational results for the problem
of selecting �di�use� prior. Side conditions re�ecting initial information that may
be available can readily be used to derive it. Therefore, MDIP prior can be quite
useful for problems where moments are known. As for the invariance, the MDIP
prior is invariant for a class of transformations much smaller than the Je�reys
prior. A serious problem with the MDIP prior is that it can lead to an improper
posterior density more often than other objective priors for reliability distributions,
for instance with Gamma and Generalized Exponential distributions.
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