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Abstract

This paper presents improved population mean estimators using auxiliary
variables in Stratified Ranked Set Sampling. We have derived the expres-
sions for bias and mean square errors up to the first order of approximation
and shown that the proposed estimators under optimum conditions are more
efficient than other estimators taken in this paper. In an attempt to verify
the efficiencies of proposed estimators, theoretical results are supported by
numerical illustrations and simulation study for which we have considered
two populations.
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Resumen

Este articulo presenta estimadores mejorados de la media de la poblacién
utilizando variables auxiliares en el muestreo de conjuntos ordenados estrati-
ficados. Hemos derivado las expresiones para el sesgo y los errores cuadrati-
cos medios hasta el primer orden de aproximacién y hemos demostrado que
los estimadores propuestos en condiciones éptimas son més eficientes que
otros estimadores tomados en este articulo. En un intento por verificar las
eficiencias de los estimadores propuestos, los resultados teéricos estan respal-
dados por ilustraciones numéricas y estudios de simulaciéon para los cuales
hemos considerado dos poblaciones.
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1. Introduction

In theory of sampling it is evident that suitable use of auxiliary information im-
proves the efficiency of the estimator. These auxiliary information may be used ei-
ther at the design phase or the estimation phase or at both phases. Cochran (1977)
was the first to introduce a ratio estimator of Population Mean using auxiliary in-
formation. Shabbir & Gupta (2007), Koyuncu & Kadilar (2009) and Chaudhary
et al. (2009) have considered the problem of estimating population mean taking
into consideration information on auxiliary variable.

When population is heterogenous stratified random sampling (SSRS) is used
for better accuracy. Several authors like Kadilar & Cingi (2003), Shabbir & Gupta
(2006) and Haq & Shabbir (2013) have proposed estimators in stratified random
sampling using information on a single auxiliary variable. Singh & Kumar (2012)
have proposed improved estimators of population mean using two auxiliary vari-
ables in stratified random sampling. Recently, Muneer et al. (2017) have proposed
family of chain exponential estimators in SSRS.

Ranked set sampling (RSS) is an improved sampling method over Simple Ran-
dom Set Sampling (SRS). McIntyre (1952) was the first to explain RSS for esti-
mating the population means. Takahasi & Wakimoto (1968) gave the necessary
mathematical theory of RSS. Samawi & Muttlak (1996) suggested ratio estimators
of population mean in RSS and showed that the RSS estimators gave improved
results over their SRS counterparts. Ganeslingam & Ganesh (2006) compared RSS
with SRS for estimation of the unknown mean of study variable and the ratio of
study variable to auxiliary variable. He concluded that RSS gives a better estimate
for both the mean and the ratio. Singh et al. (2014) suggested a general procedure
for estimating the population mean using RSS. Al-Omari & Bouza (2014) and
Bouza et al. (2018) provided a review of RSS, its modification, and its application.
Stratified ranked set sampling (SRSS) was first introduced by Samawi & Muttlak
(1996) for estimation of population mean. Samawi & Siam (2003) have proposed
the combined and the separate ratio estimators in SRSS.

Following is how the rest of the article is organized. The SRSS sampling ap-
proach is presented in section 2. Section 3 examines a review of existing works. In
section 4 and 5, the proposed estimators and their characteristics are discussed.
Numerical illustrations are provided in section 6. In section 7, using a simulated
populations, the effectiveness of proposed estimators is compared to that of exist-
ing estimators. Section 8 draws the conclusion.

2. Sampling Methodology

In ranked set sampling (RSS), we rank randomly selected units from the pop-
ulation merely by observation or prior experience after which only a few of these
sampled units are measured. In RSS, k independent random sets each of size k are
selected from the population and each unit in the set is being selected with equal
probability (SRS). The members of each random set are ranked with respect to the
characteristic of the auxiliary variable. Then the smallest unit is selected from the
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first ordered set and the second smallest unit is selected from the second ordered
set. By this way, this procedure is continued until the largest rank is chosen from
the k' set. This cycle may be repeeated r times, so 7(k = n) units have been
measured during this process.

SRSS takes the following steps.

o Step 1: Select k7 bivariate sample units randomly from the ht" stratum of
the population.

e Step 2: Arrange these selected units randomly into kj sets, each of size kj,.

o Step 3: The procedure of ranked set sampling (RSS) is then applied, on each
of the sets to obtain the kj ranked set sample unit. Here ranking is done
with respect to the auxiliary variable Xj,.

o Step 4: Repeat the above steps r times for each stratum to get the desired
sample of size ny = kpr.

Consider a finite population U = (Uy, Us, ...,Uy) based on N identifiable units
with a study variable Y and auxiliary variables X associated with each unit Uj,
1 =1,2,..., N of the population. Let the population be divided into L disjoint
strata with stratum h based on N, h = 1,2,..., L units.

Let (Yh[l]j7 Xh(l)j)7 (Yh[Q]j, Xh(z)j), ey (Yh[kh]j7 Xh(kh)j) be the stratified ranked
set sample for j** j=1,2,...,r cycle in ht" stratum.

_ L _ _ L -
Let Yspss = 2 on=1 Whlnrss) a0d Tsrss = 3_y—1 WaTn(rss)
respectively be the stratified ranked set sample means corresponding to the

population means Y = 25:1 Wi,Y ) and X = Zﬁ:l W, X, of variables Y and X,
where W, = % is the weight in stratum h.
— kn Yl — kn Xnlils .
Let Gpjrss) = Doimg 2o jmy Jok and Tp(pas) = Doimg 25—y ot be the stratified

ranked set sample means corresponding to the population means Y, = ZNh Yupis

Jj=1 Np
- Ni Xneiy : :
and Xp = >3, =5 of variables Y and X in stratum h.

Let 52, = 20 Y0y (Vi = Tnprse)) s 520 = 5t Sohet (K@) — Fngras))’
and Syyn = ﬁ Zﬁ:l (Yai) = Unjrss) (Xn(i) — Th(rss)), respectively be the sam-
ple variances and covariances corresponding to the population variances and co-
variances Sgh = ﬁ 25:1 (Yarg —?h)Q, S, = ﬁ Zi:l (Xnhe) —Yh)2 and
Sth = ﬁ Ei:l (Yh[z] — ?h)(Xh(z) — Yh) in the stratum h.

Let Cyy, and Cyy, respectively be the population coefficient of variation of vari-
ables Y and X.

3. Existing Estimators
The conventional combined estimator of the population mean ¥ under SRSS
is given by

t° =Vsrss (1)
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The variance of the estimator ¢¢ is given by
VCLT(tC) = ?2V20 (2)
The classical combined ratio estimator of the population mean Y given by
Samawi & Siam (2003) under SRSS is defined as
X

TSRSS
The Mean Squared Error (MSE) of the estimator ¢¢ is given by

3)

.
l. = Usgrss

MSE(t8) = ?2[‘/20 + Vo2 — 2V11] (4)

The classical combined regression estimator of the population mean Y under
SRSS is given as B
ti, = Usrss + B(X —Tsrss) (5)
The Mean Squared Error (MSE) of the estimator ¢{. is given by
MSE(t;) = ?2‘/20 + BQYQVM —2B8Y XV (6)

where [ is the regression coefficient of Y on X.

4. Proposed Estimators

Motivated by Bhushan et al. (2020), we suggest some estimators of the popu-
lation mean Y using SRSS as

c _ TSRSS
lp1 = Ysrss €XP (041 (X - 1)) (7)

_ TSRSS
tho = Ysrss €XP (042 log < ) (8)
where «; and s are constants such that MSE of the estimators is minimum.

Proposition 1. The Bias, MSE and min MSE of the proposed estimators are

2
Bias(t;,) =Y <0;1V02 + a1V11)

2
MSE(t5)) =Y (Vao + aiVoz + 201 Vi1)
MSE(tS) =Y (Vao + a2Vis + 20a5V41)

p

2 _
) =Y <(a2a2)V02 + 042V11)
2

2
MinMSE(tS,) =Y <V20 - Vll)
Vo2

2
MinMSE(t5,) = Y (VQO - V“)
Vo2

Proof. Outline of the derivations are given in Appendix. O
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5. Some Other Proposed Estimators

We propose modified estimators of population mean by Y under SRSS as

. _ - _ X
v3 = [(1+w1)Yspss + w2 (X — Tsrss)] = (9)
TSRSS
c — ~ - X — Tsnrss
pa = (L +w3)Yspss + wa(X —Tsrss)|exp | =———— (10)
X +Tsrss
. _ X-z T
tps = W5Ysrss + We €XP (SRSS) <1 + logSRSS> (11)
+ ZTsrss X
- X X — CCSRSS)
log =w +wsg | = exp [ =222 12
»6 = Wr¥sss T8 ($SRSS> P (X + Tsrss (12)

Proposition 2. The Bias, MSE and min MSE of the proposed estimators are
bias(tss) = Ywy +Y (Voo + w1 Vo + w26Voa — Vir — w1 Vin)

_ — /3 3 1 1 1
bias(tpy) = Yws +Y <8V02 + §w3V02 + §w45V02 - §V11 - 2w3V11>

— 5
Bias(t,s) = (ws — 1)Y + we (1 - 8V02>

— 15
Bias(tyg) = (w7 — 1)Y + ws (1 + 8V02)
MSE(t;?)) = ?2(141 + wal + U)%Cl + 2U)1D1 - 211)2E1 - 2w1w2F1)

MSE(t;A) = ?2(142 + wng + wng + 2wz Dy — 2wy FEo — 2w3w4F2)
ClD% + BlE% — 2D1E1F1)

minMSE(t5;) =Y <A1 +

F2 — B1Cy
. c 2 CQD% + BQE% - 2D2E2F2
minMSE(t,,) =Y <A2 + 72— BaC
Proof. Outline of the derivations are given in Appendix. O

Case 1: Sum of Weights is Unity (w5 +wg =1 & wy + ws = 1).

Proposition 3. The MSE and min MSE of the proposed estimators are The MSE
of the estimator t75 is given by

—2
MSE(tys) =Y (Voo + wg Voa — 2we V1)
—2
MSE(tys) =Y (Vao + wg Voa — 2wsVi1)

MinMSE(t) =Y ( Vao — Vi
p5) = 20 Voo
2
MinMSE(tg) =Y (V20 - V”)
Vo2
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Proof. Outline of the derivations are given in Appendix. O

Case 2: Sum of Weights is Flexible (w5 + wg # 1 & w7 + wg # 1)

Proposition 4. The MSE and min MSE of the proposed estimators are
MSE(t55) = Cs + w2 Az + wiBs — 2wsCs — 2we D3 + 2wsweFs

MSE(t5s) = Cy + w3 Ay + wiBy — 2wrCy — 2ws Dy + 2wrwsEy
B3C3 + A3D3 — 2C3D3E3

minMSE(t,s) = C3 +

E2 — A3Bs
. B4C42 + A4Di — 2C4D4E4
minMSE(tyg) = Cy + B2 — AsBs
Proof. Outline of the derivations are given in Appendix. O

6. Numerical Illustrations

In this section, we compare the performance of the proposed estimators with
the other estimators considered in this paper. For comparison, we have taken a
real data of area under tobaco production and production of tobaco of specified
countries during 1998 given by Singh (2003) (Appendix) given in Table 1, where y
is production (study variable) in metric tons and z is area (auxiliary variable) in
hectares. For the above population, the parameters are given as below: For total,
N =67, Y = 172247.6, X = 26438.

TABLE 1: Data

Stratum 1 Stratum 2 Stratum 3

N; =20 N2 =30 N3 =17

ny =12 ng = 18 ny =9

W1 = 0.29851 Wo = 0.44776 W3 = 0.25373
X1 =6801.25 X211025.3 X3 = 82464.1
Y1 =17511.7 Yo = 18937.4 Y3 = 377960.5

S2, = 175539558 S2, = 595679198.4  S2, = 20255478994
52, = 1366895911  S2, = 2421559069 525 = 687956456787
Sy1z1 = 489224338 Syoz0 = 1174423304  Sysz3 = 46735680920
Cp1 = 1.94804 Ca2 = 2.21368 Crs = 1.72586

Ry = 2.57477 Ry = 1.71763 Rz = 4.58333

Case 1 (when initial sample is taken by SRS): From this population we took
ranked set samples of sizes k; = 4, ks = 6 and k3 = 3 from the stratum 1°¢,
274 and 3" respectively. Further each ranked set sample from each stratum were
repeated with number of cycles r = 3.

Case 2 (when initial sample is taken by PPS): From this population k indepen-
dent random sets (initial sample) each of size k are selected from the population
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TABLE 2: The MSE and PRE of the estimators

Estimators MSE PRE

t© 566408434 100

ts 201822821 280.64
iy, 201169647 281.55
t;l 201169647 281.55
t§2 201169647 281.55
t;’;3 193114626 293.30
tzc)4 155280723 364.76
tl‘;5 55059116.5 1028.72
t;G 41886045.6  1352.26

by using probability proportion to size (pps) sampling. We took ranked set sam-
ples of size k = 3 from each stratum. Further each ranked set sample from each
stratum were repeated with number of cycles 71 = 3, 7o = 2 and r3 = 2 from the
stratum 15, 2"% and 37, respectively.

TABLE 3: The MSE and PRE of the estimators under PPS sampling

Estimators MSE PRE
t¢ 98340720.29 100
t< 14809479.67  664.03
iy 14474608.66 679.40
2} 14474608.66 679.40
220 14474608.66 679.40
tgg 14192040.24 692.92
4 6775003.38 1451.52
t1c)5 3539691.30 2778.22
tgﬁ 2914206.65 3374.52

The formula for Percent Relative Efficiency (PRE) is PRE(estimators) =

MSE(t)
M SE (estimator) x 100.

From Table 2, it is observed that

o The estimators ¢, and ¢, are almost equally efficient estimators as combined
linear regression estimators under SRSS as these estimators show the MSE
almost equal to the MSE of the combined linear regression estimator (¢{.).
These two estimators ¢7, and ¢}, are more efficient estimators than that the
other competitive estimators.

o o3ty tps and o are more efficient than other estimators used in this paper.
It is observed that ¢33, ¢34, {75 and ¢4 are more efficient than convention,
ratio estimator and linear regression estimator under SRSS.

e From Table 2, we can conclude that the proposed estimators perform better
than existing estimators as our proposed estimators have greater PRE.

e From Table 3, we can conclude that the proposed estimators when initial
sample is taken by PPS show same trend as usual proposed estimators. The
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estimators ¢;, and ¢, are almost equally efficient estimators as combined lin-
ear regression estimators under SRSS. t73, t7,, {75 and t; are more efficient
than other estimators used in this paper. From Table 3, we can conclude
that the proposed estimators perform better than existing estimators as our

proposed estimators have greater PRE.

7. Simulation Study

To generalize the results of the numerical study, we have conducted simula-
tion study over two hypothetically generated normal populations. The simulation
procedure is explained in the following points:

e We generated bivariate random observations of size N = 600 units from
a bivariate normal distribution with parameters u, = 20, o, = 15, and
iz = 15, 0, = 10 and passably chosen values of p = 0.3,0.5,0.6,0.7,0.8,0.9.

o Similarly, generate the population-2 with the parameters p, = 120, o, = 25,
and p, = 100, o, = 20.

o The population generated above is divided into 3 equal strata and a stratified
ranked set sample of size 12 units with number of cycles 4 and set size 3 is
drawn from each stratum.

e Compute the required statistics.

o Iterate the above steps 10000 times to calculate the MSE and PRE of various
combined estimators using the following expression.

1 10000
_ V)2
MSE(T) = 150 ; (T; - Y) (13)
_ Var(t)
PRE MSE(T) x 100 (14)

The MSE and PRE of the combined estimators are calculated using (13) and
(14) and the results are reported for various values of correlation coefficients in
Table 4.

Table 4: The MSE and PRE of the estimators

rye | Estimators Population 1 Population 2
MSE PRE MSE PRE
0.9 t¢ 0.009399 100 0.009977 100
ts. 0.008983 | 104.632314 | 0.007649 | 130.441398
iy, 0.008140 | 115.470738 | 0.007368 | 135.409878
21 0.008165 | 115.112126 | 0.007377 | 135.246341
0o 0.008143 | 115.426215 | 0.007323 | 136.245249

Continued on next page
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Table 4. Continued from previous page

rye | Estimators Population 1 Population 2
tos 0.005397 | 174.155787 | 0.004591 | 217.296845
toy 0.004126 | 227.787861 | 0.003749 | 266.095249
tos 0.001845 | 509.395864 | 0.003496 | 285.359492
o6 0.001612 | 582.794752 | 0.002739 | 364.269207
0.8 t¢ 0.008071 100 0.007391 100
te 0.008009 | 100.781241 | 0.006988 | 105.760711
iy 0.003936 | 205.057579 | 0.006895 | 107.191263
o1 0.003954 | 204.104535 | 0.006832 | 108.179959
oo 0.003923 | 205.726039 | 0.006898 | 107.139678
tos 0.002592 | 311.383468 | 0.005186 | 142.501132
toy 0.001537 | 524.918546 | 0.003622 | 204.034130
o5 0.001390 | 580.591840 | 0.002845 | 259.729142
o6 0.001186 | 680.007413 | 0.002617 | 282.358244
0.7 te 0.007355 100 0.009191 100
s 0.005736 | 128.219695 | 0.008556 | 107.426159
iy 0.004616 | 159.320334 | 0.004802 | 191.378071
t;l 0.004687 | 156.904577 | 0.004823 190.561527
oo 0.004643 | 158.398764 | 0.004855 | 189.293929
t‘;3 0.003559 | 206.628985 | 0.002697 | 340.760512
o4 0.003389 | 217.030976 | 0.002335 | 393.501322
t;5 0.002699 | 272.486505 | 0.001865 | 492.606328
o6 0.001856 | 396.239252 | 0.001135 | 809.643520
0.6 te 0.009910 100 0.018945 100
s 0.008116 | 122.109429 | 0.014026 | 135.069295
iy 0.008083 | 122.603248 | 0.012800 | 148.004437
tor 0.008044 | 123.195799 | 0.012770 | 148.354436
oo 0.008078 | 122.674271 | 0.012438 | 152.320271
tos 0.005600 | 176.957222 | 0.010820 | 175.097502
o4 0.005533 | 179.089460 | 0.005823 | 325.314051
t;s 0.004191 236.468491 0.005641 335.814228
o6 0.004054 | 244.411288 | 0.003085 | 614.006261
0.5 t¢ 0.011061 100 0.032002 100
[2% 0.014576 75.886529 0.032978 97.039310
iy 0.009580 | 115.454465 | 0.025516 | 125.420912
tor 0.009572 | 115.560486 | 0.025929 | 125.848529
oo 0.009578 | 115.488096 | 0.025836 | 123.864115
tos 0.008217 | 134.614214 | 0.020097 | 159.234941
o4 0.008118 | 136.249085 | 0.010095 | 292.123303
tos 0.005430 | 203.696951 | 0.010087 | 317.254054
o6 0.004944 | 223.693975 | 0.008502 | 376.398745
0.3 t¢ 0.019186 100 0.036245 100
(5 0.030482 | 62.941238 | 0.055141 65.731736
iy 0.018669 | 102.764342 | 0.035146 | 103.126333
tor 0.018532 | 103.524003 | 0.035112 | 103.227368
|2} 0.018933 | 101.335755 | 0.035409 | 102.361822
tos 0.018019 | 106.471769 | 0.033719 | 107.489961
toa 0.017812 | 107.712086 | 0.032991 | 109.863842
tos 0.015881 | 120.810271 | 0.029482 | 122.937858
o6 0.014371 | 133.496614 | 0.027864 | 130.076404
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Table 4 also shows that our proposed estimators perform better than the ex-
isting estimators. The MSE of the estimators decreases when the correlation and
sample size increases for the population 1 and 2.

8. Conclusions

In this article we have proposed estimators for the population mean in stratified
Ranked set sampling using the information of auxiliary variables. The expressions
for Bias and MSE of the suggested estimators have been derived up to the first
order of approximation. Numerical illustrations and simulation study for com-
paring the efficiency of the proposed estimators with other estimators have been
used. The results have been shown in the Tables 2, 3 and 4. The Tables 2 and 3
show that the proposed estimators turn out to be more efficient as compared to
the other estimators for both cases when initial samples are taken by using SRS
and PPS respectively.

The proposed estimators are found to be rather improved in terms of lesser
MSE and greater PRE as compared to the existing estimators in both real and
simulated data sets. It is also observed from the simulation that the MSE of the
proposed estimators decreases as the values of the correlation coefficient increase
whereas the PRE of the suggested estimators increases as the values of the cor-
relation coefficients increase. Based on our numerical illustrations and simulation
study, we can conclude that our proposed estimators can be preferred over the
other estimators taken in this paper in several real situations.

[Received: September 2022 — Accepted: May 2023}
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Appendix

This section consider the proof of the Theorems of Section 4 and 5. To de-
rive the MSE of the proposed estimators, the following notations will be used
throughout the paper.

?S’I‘SS = Y(l + 60)

Tsrss = y(]- + 61)

L = V" (7 Y\s
_ r—+s E[(ysrss - Y) (mSTSS B X) ]
- W ueu
Y X
such that E(ep) = E(e1) =0

Wi (mCip, — D) = Vao

L
h=1
L
E(G%) = Z Wi%(nhcgh - Dih[i]) = Voo
h=1
L

E(eoer) = ¥ WiEnhCoyn — Daynp) = Vi1
h=1
where Nh = ﬁ, th = S%’L, Cyh = %7 Dih[z] = ﬁxfﬁl (Yh(l) —Yh)Q,
kn o\ -
Dl = me Yoty (Vhgg — Yn)? and Doy = W ity Y = Yu) (Xnay — Xn)

where Yhm and X h(i) are the means of the ith is ranked set and are given by

Yy = ZYh[l]J’X h(i th( )i
] 1

Now, consider the estimator

_ TSRSS
to1 = Usrss €XP (041 <X - 1>)

Using the above notations we have

= T o (o (K05 1))

The bias of the estimator tj; is given by
Bias(tzl) =Y <21‘/02 + Q1V11>
The MSE of the estimator ¢y, is given by

=2
MSE(t5,) =Y (Vao + afVos + 201 Vi1) (A1)
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To find out the minimum MSE for t7;, we partially differentiate equation (A1)

w.r.t. a1 and equating to zero we get

Vi
Vo

*_
=

Putting the optimum value of a; in the equation (Al), we get a minimum MSE
of tp; as

. c 32 V121

MinMSE(t,;) =Y (V2 — —

Voo

Similarly, we can obtain the optimum values of constants and minimum MSEs of
other proposed estimators which are given as

— X(1
p2 = Y (1+¢€o)exp <a2 log (;61))

The bias of the estimator ¢y, is given by

(a5 — ay)

9 Vo2 + 042V11>

Bias(tg,) =Y <
The MSE of the estimator ¢, is given by

MSE(t,,) = v’ (Voo + a3 Vo + 202V11) (A2)

To find out the minimum MSE for t7,, we partially differentiate equation (A2)

w.r.t. as and equating to zero we get

SRS
Vo2

*
Qy =

Putting the optimum value of as in the equation (A2), we get a minimum MSE
of t¢, as
p2

) . —2 VE
MinMSE(t,) = V" (Vag — At
Vo2

o5 = [(1+w1)Y (1 +e0) + waer](1 — €1 + )

c3—Y =Y[(eo+ Wi +eqwi — €1 — 1wy — o1 — €€ wy + e wred) —wad(eg —€3)]

The bias of the estimator ¢ is given by
Bias( ;3) =Yw; +?(V02 + w1 Voo + wa0Vpe — Vi1 — wiVi1)

The MSE of the estimator t; is given by

MSE(t55) = Y (Vao + Voo — 2Vi1 + w?(1+ Vag + 3Vos — 4Vi1) + w36 Vs
+ 2w1 (Vg + 2Vho — 3Vi1) — 2w26(Vir — Voa) — 2w w20 (Vi — 2Vo2))
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MSE( ;3) = ?2(141 + w%B1 + ’U}%Cl + 2w1 D1 — 2we By — 2’LU1U)2F1) (A?))

where
Ay = Voo + Voo — 2V

B1 == 1+‘/20+3V()2 —4V11

[

C, = 52V02,5 =

Dy = Voo +2Vo2 —3V11
By =0(Voz — Vi1)
Fy = 0(Vo2 — 2V11)
To find out the minimum MSE for #73, we partially differentiate equation (A3)
w.r.t. wp and we and equating to zero we get
«_ CiDi—EF
W) = ————
' F2-BC,
« D1y —BiCy
wy = —5————
27 F2 - B0y
Putting the optimum values of w; and ws in the equation (A3), we get a minimum

MSE of lh3 as

. 2 C1D% + B1E12 - 2D1E1F1
MinMSE(t,) =Y (A
indtsE(t) =7 (4 + SO QAL ZE

= 3 15
1674 =[(1 4+ w3)Y (1 + €) + waeq] <1 - 561 + 85%)

1 1 1 3

_ 1
;4 -Y = Y[(GO + W3 + eqws — 561 — 5617113 — 56061 - 5606111)3 + g

S
+§’LU 2y § _ 2
gwser) — wad(er — )]
The bias of the estimator ¢y, is given by
bias(t,) = Yws +Y Vs 2wsVos + wadVos — SVis — SwsV;
as(lpy) = ¥ W3 g /02 8w3 02 2w4 02~ 5 V1 2w3 11
The MSE of the estimator ¢, is given by
, —2 1
MSE(ty,) =Y (V20+1V02—V11 + w3 (14 Vao + Voz — 2Vi1) + w3 6% Voz + 2w3 (Vag

5 1
+ ZVoz — frac32Vi1)2ws6(Vig — §V02) — 2wswad(Vi1 — Vp2))
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MSE( ;4) = ?2(142 + wng + ’U)iCQ + 2’(1}3D2 — 2’11)4E2 — 2w3w4F2)
where

1
A2=V20+1V02—V11
By =14 Voo + Voo — 2V

Co = 6*Vp,d =

||

5 3
Dy = Voo + ZVO2 - §V11

1
Ey=9¢ (VOQ - 2Vn)

Fy =6(Voe — V1)

To find out the minimum MSE for t¢,, we partially differentiate equation w.r.t.

p4d>
(A4) ws and wy and equating to zero we get

W — C2Ds — Exls
37 F? — By(y
Wt — Do Fy — BaCo
YT F2 - ByCy

Putting the optimum values of ws and wy in the equation (A4), we get a minimum

MSE of &3, as

— D2 4 ByE2 — 2Dy Es F
minMSE(t§4):Y2 <A2—|—C2 3+ B2Es 2L 2>

F2 — ByC,

tes = wsY (1 + €) + we exp <2_ ! ) (I+1log(1+€1))

€1
¢V = (ws — )Y +wsY¥ 142 B
5~ —(w5— ) + w5Y € + wg +§_§61

— 5
Bias(t,s) = (ws — 1)Y + we (1 - 8V02>

tICJG = 11)7?(]_ + 60) + ws exp <2+€161) (1 + 61)*1

_ — — 3 15
;6 -Y = (w7 — I)Y + wrY ey + wsg (1 — 561 — 86%)

— 15
Bias(tyg) = (w7 —1)Y +ws (1 + 8V02)
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Case 1: Sum of Weights is Unity (ws +ws = 1 & w7 + ws = 1). The MSE
of the estimator (p5°) is given by

MSE(tys) = Y (Voo + wiVoz — 2weVi1) (A5)

To find out the minimum MSE for t7;, we partially differentiate equation (A5)

w.r.t. wg, and equating to zero we get

w*—vﬂ
=1
Vo2

Putting the optimum value of wg in the equation (A5), we get a minimum MSE
of t%5 as
PS5

) . —2 V32
MinMSE(t85) = V" (Vo — LA
Vo2

The MSE of the estimator ¢4 is given by

2
MSE( 16)6) =Y (VQO + w§V02 - 2w8V11) (A6)

To find out the minimum MSE for t55, we partially differentiate equation (A6)

w.r.t. ws, and equating to zero we get

w*_Vn
=t
Vo2

Putting the optimum value of wg in the equation (A6), we get a minimum MSE
of t7g as
2
— V
MinMSE(t5) =Y (Vgo - 11)
Voo

Case 2: Sum of Weights is Flexible (w5 + wg # 1 & w7 + wg # 1)

_ — — € 5
t;5 -Y = (W5 - 1)Y+w5Yeo+w6 (1+ 51 - 86%)

Squaring on both sides we get

o2 o N —(. 5
(tes = V) =V +V wl(1+ ) + wd(l — &) — 2usY" — 2wsY (1 - 8e§>

5 1
+ 2wswg (1 — ge% + 26061>

Taking expectations on both sides we get

MSE(t55) = V" + Y wi(1 + Vao) + wi(1 — Viz) — 2wsY
1_5

— 5
—2wgY <1 — 8V02> + 2wswg ( g

1
Voo + 2V11)
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MSE(t;E)) = 03 + 'lUgAg + ’wng — 2'[0503 — 2w6D3 + 2w5w6E3 (A7)
where .
A3 =Y (14 Vo)
B3z =1—Vp2

Cs=Y"

Ds—7V (1 _ va)

— 5 1
Es=Y(1-=-V %
3 ( 802+211)

To find out the minimum MSE for the estimator ¢75, we partially differentiate

equation (21) w.r.t. ws and we and equating to zero we get

wE — B3C3 — D3 Ej
7 A3B3; - E3

W — A3D3 — C3F3
67 A3B3; - E3

Putting the optimum values of ws and wg in the equation (21), we get a minimum
MSE of 175 as

B3C2 4 A3D? — 2C3 D3 E:
MinMSE(tS5) = Cs + 3035 + A3 D3 — 2C3D3E;

E2 — A3Bs
_ — — 3 15
;6 -Y = (W7— 1)Y+w7Yeo+wg 1-— 561 + §€1
Squaring on both sides we get
_ o — — 15
(s =Y =V + YV w2(1+€2) + wi(1 4 663) — 2w,Y " — 2wsY (1 - 8e§)

15 3
—+ 2’(1)7'[1)8 (1 —+ §6% — 26061)
Taking expectations on both sides we get
c =2 =2 9 9 =2 = 15
MSE(tys) =Y +Y w7 (14 Vao) +wg(146Vo2) —2w7Y ™ —2wgY {1+ §V02
15 3
+ 2wrwsg (1 + §V02 - 2V11>

MSE(t;G) =Cy4+ w$A4 + w§B4 — 2wy Cy — 2w Dy + 2wrwg By (A8)

where .
Ay =Y (1 + Vy)
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By=1+ 6V
C,=Y

— 15
D,=Y (1 + 8V02>

8

To find out the minimum MSE for the estimator ¢4, we partially differentiate

equation (22) w.r.t. w; and wg and equating to zero we get

— 15 3
Ey=Y (1 + —Voo — 2V11>

wr = BaCa— DuEy
T A4By - E?
W — AyDy — CyEy
87 A4By - E3

Putting the optimum values of w; and ws in the equation (22), we get a minimum
MSE of t74 as

B4CZ + A4Di — 2C4D4E4
E2 — A4B,

minMSE(tg) = Cy +
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