Effect of Electromagnetic Fields on Microbial Activity of a Bio-Fertilizer

Orlando Zúñiga E. Cristian O. Jiménez A. Jhony A. Benavides B.
Universidad del Valle Universidad del Valle Universidad del Valle

Celina Torres González
Universidad del Valle

Received: December 7, 2015 Accepted: June 27, 2016

Abstract
The level of microbial activity was evaluated in an organic substrate and over soil samples from the “El Limonar” county (Dagua, Valle del Cauca) to which it was applied the commercial bio-fertilizer Multibiol® electromagnetically stimulated. Phase I of the experiment was conducted to determine the best times of exposure and electromagnetic induction on the bio-fertilizer applied to samples of an organic substrate (chicken manure). In phase II the best treatments for electromagnetic induction and the exposure times obtained in Phase I were applied to soil samples. For electromagnetic stimulation of bio-fertilizer a solenoid installed in a recirculation circuit was used. The results of phase I indicated that a 25 mT electromagnetic induction resulted in a statistically significant microbial activity in the organic substrate, however, the exposure times did not have statistically significant difference in this phase, therefore was used a constant electromagnetic induction of 25 mT and the three exposure times (7½, 15 and 30 minutes) to be evaluated on the soil under greenhouse conditions in phase II, finding a statistically significant difference in the shortest exposure time, that is at 7 ½ minutes. These results offer new possibilities for the application of bio-fertilizer electromagnetically stimulated in order to be applied to agricultural soils, thus enabling a gradual improvement in the beneficial soil microbial population and consequently on plant production.

Keywords: Bio-electromagnetics, agro-environmental technology, microbial activity, soil.

Efecto de campos electromagnéticos sobre la actividad microbiana de un bio-fertilizante

Resumen
Se evaluó el nivel de actividad microbiana en un sustrato orgánico y en muestras de suelo provenientes de la vereda El Limonar (Dagua, Valle del Cauca) a las cuales se les aplicó el bio-fertilizante comercial Multibiol® estimulado electromagnéticamente. La fase I del experimento consistió en la determinación de los mejores tiempos de exposición e inducción electromagnética sobre el bio-fertilizante aplicado a las muestras de un sustrato orgánico (gallinaza). En la fase II se utilizaron los mejores tratamientos para la inducción electromagnética y los tiempos de exposición obtenidos en la fase I para ser aplicadas sobre muestras de suelo. Para la estimulación electromagnética del bio-fertilizante se utilizó un solenoide instalado en un circuito de recirculación. Los resultados de la fase I indicaron que a una inducción electromagnética de 25 mT se generó
un incremento estadísticamente significativo en la actividad microbiana del sustrato orgánico, sin embargo, los tiempos de exposición no presentaron diferencia estadísticamente significativa en esta fase, por lo tanto se utilizó una inducción electromagnética constante de 25 mT y los tres tiempos de exposición (7 ½, 15 y 30 minutos) para ser evaluados sobre el suelo bajo condiciones de invernadero en la fase II, encontrándose una diferencia estadísticamente significativa en el menor tiempo de exposición, es decir, a los 7 ½ minutos. Estos resultados ofrecen nuevas posibilidades para la aplicación del bio-fertilizante estimulado electromagnéticamente con el objeto de ser aplicado en suelos agrícolas, posibilitando así, una mejora gradual en la población microbiana benéfica del suelo y en consecuencia en la producción vegetal.

Palabras clave: Bio-electromagnetismo, tecnología agroambiental, actividad microbiana, suelo.

Introducción

La dependencia de fertilizantes de síntesis química para la producción agrícola competitiva es una de las mayores dificultades que enfrenta la agricultura convencional. Según [1], se acepta que los fertilizantes son un componente importante en los costos de producción de la actividad agropecuaria, afectando directamente el precio de comercialización de los productos y el margen de ganancia del agricultor. El precio que debe pagar un agricultor por fertilizantes minerales en una zona remota es mucho más alto que el precio del mercado mundial a causa del transporte, distribución y otros costos de transacción asociados [2], lo que en muchas ocasiones no se traduce en un mayor valor de compra para el agricultor [3]. En este sentido, se hace necesario impulsar el desarrollo de técnicas innovadoras que propicien la disminución del uso de fertilizantes minerales a la vez que mejoren las condiciones del suelo para los cultivos.

El gran desafío de producir más alimentos en menos área cultivable, demanda la generación y transferencia de nuevas tecnologías agrícolas, que optimicen el rendimiento y sean ambientalmente sostenible. Al respecto, el tratamiento electromagnético podría ser una de las vías más prometedoras en el futuro para mejorar la producción agrícola de una manera ecológica [4]. La tecnología del electromagnetismo utiliza campos magnéticos para acelerar la acción dinámica de los microorganismos benéficos sobre el suelo, realizando un proceso de rehabilitación químico-biológico sobre los suelos afectados por la salinidad, reduciendo el tiempo y aumentando la eficiencia del mejoramiento a través de la actividad biológica [5].

Según [6], la técnica electromagnética aplicada en microorganismos adicionados sobre cachaza fresca, aceleró el proceso natural de descomposición orgánica en un 49,1 %; es decir, que redujo en casi la mitad el tiempo de descomposición orgánica de la cachaza fresca, demostrando así la efectividad de la técnica analizada. Los campos electromagnéticos afectan la dirección de la migración y alteran el crecimiento y la reproducción de los microorganismos, causan cambios en la síntesis de ADN, en la orientación de bio-moléculas y bio-membranas y alteran el flujo de iones a través de la membrana plasmática, generando como resultado neto una modificación en la velocidad de reproducción celular [7]. El efecto que generan los campos electromagnéticos sobre el crecimiento celular se puede clasificar en inhibitorio, estimulador o no observable. Los efectos de estimulación o inhibición de los campos magnéticos se han atribuido a cambios en la orientación de las bio-moléculas (proteínas), cambios en las bio-membranas...
(lipídicas y plasmáticas), alteraciones del flujo de iones a través de la membrana plasmática y/o cambios en la estructura de las bio-moléculas [8].

Se han propuesto varias teorías para explicar el efecto de los campos electromagnéticos débiles sobre los organismos y una gran mayoría hacen mención a un fenómeno denominado “la resonancia del ciclotrón”, como uno de los responsables de dichos efectos [8, 9]. Los campos electromagnéticos pueden activar las partículas coloidales del medio de cultivo, haciendo que estas remuevan parte del calcio unido a los fosfolípidos de las membranas plasmáticas, incrementando su permeabilidad y de esta forma, afectando el crecimiento de los microorganismos [9]. El distinto efecto de diferentes campos electromagnéticos puede ser explicado también con las propiedades de los iones. Los iones en la célula tienen la habilidad de absorber energía magnética correspondiente a parámetros específicos relacionados a su vibración y a la rotación de energía en sus subniveles. Este fenómeno representa un tipo de absorción de resonancia y podría explicar el fuerte efecto que tiene la aplicación de valores definidos de campos electromagnéticos [10].

Existen resultados interesantes obtenidos con la técnica electromagnética aplicada a otros campos de la agricultura, en especial, con respecto a la estimulación de agua de riego y semillas. La tecnología del agua tratada magnéticamente (ATM) genera efectos incrementales sobre el crecimiento y desarrollo de las plantas. Esto es debido a que los cambios en las propiedades físicas y químicas del ATM alteran directa o indirectamente el crecimiento y desarrollo de las plantas. Varios autores, han encontrado que la exposición previa del agua de riego a un campo electromagnético conduce a un aumento de la productividad vegetal y a ciertos cambios en su fisiología [11, 12, 13, 14, 15]; un campo magnético (CM) aplicado al agua de riego mejora las características de crecimiento de las plantas [13], la funcionalidad de las raíces [16], además, tiene una marcada influencia en la composición química de las plantas [17], afecta la disponibilidad de nutrientes en el suelo [13] y activa las enzimas de las plantas [18, 19] influyendo, por tanto, en su temprana producción y mejora de rendimiento. Consecuentemente, la aplicación de CM puede ser usada como una alternativa a los métodos químicos de tratamiento de plantas para mejorar la eficiencia en la producción.

De otro lado, la experimentación en campos electromagnéticos aplicados a semillas es abundante y variada. Se han evaluado desde densidades de flujo magnético muy débiles, en el orden de los nT [17], hasta 560 mT [20], con exposiciones desde segundos [21] a días [22]. Cabe resaltar que en muchos casos se han empleado campos no estáticos, i.e. no generados por imanes ferromagnéticos permanentes sino por electroimanes, lo que genera una nueva variable a tener en cuenta, que es la frecuencia. En general, la técnica ha consistido en someter semillas sexuales al tratamiento magnético previo a la imbibición. Posteriormente, se evalúan los parámetros germinativos y de crecimiento de las plántulas. Se ha visto que las respuestas incrementales se suscitan incluso en etapas muy posteriores al tratamiento de las semillas, como la cosecha en plantas adultas [23].

El tratamiento electromagnético de bio-fertilizantes podría ser una de las vías más prometedoras en el futuro para mejorar la producción agrícola de una manera sostenible. En este artículo se evaluó el nivel de actividad microbiana en un sustrato orgánico (gallinaza) y en muestras de suelo provenientes de la vereda El Limonar (Dagua, Valle
del Cauca) a las cuales se les aplicó el bio-fertilizante comercial Multibiòl® estimulado electromagnéticamente.

2 Materiales y métodos

La fase I de la investigación se realizó en el Laboratorio de Física Ambiental adscrito a la Facultad de Ciencias Naturales y Exactas de la Universidad del Valle, campus Meléndez, Cali (Valle del Cauca). La fase II se llevó a cabo en el invernadero ILAMA ubicado en la granja experimental coordinada por la Escuela de Ingeniería de Recursos Naturales y del Ambiente EIDENAR de la Universidad del Valle, en las coordenadas 3º 22’ 33,55” N y 76º 31’ 58,43” O a una altitud de 995 m.s.n.m. La granja experimental cuenta con una temperatura promedio anual de 23 ºC, una humedad relativa del 73 %, una precipitación promedio anual de 908 mm y 162 horas en promedio de brillo solar. El suelo provino de la vereda El Limonar, municipio de Dagua (Valle del Cauca), en el lote localizado en las coordenadas: 3º 57’ 31,85” N 76º 25’ 19,75” O a una altura de 944 m.s.n.m.

2.1 Sistema de recirculación

El sistema de recirculación de bio-fertilizante cuenta con un solenoide capaz de generar un campo electromagnético de 100 mT fabricado en el Laboratorio de Mecánica Fina, Óptica e Instrumentación adscrito a la Facultad de Ciencias Naturales y Exactas de la Universidad del Valle. El diámetro interno de la bobina es de 2,54 cm, su longitud es de 5 cm, la bobina cuenta con 30 capas y 29 espiras de alambre de cobre calibre 14 por capa. El marco fue fabricado de PVC con cara cuadrada de 19,3 cm de longitud y 1,5 cm de grosor con un orificio central de 2,54 cm de diámetro para permitir la conexión con el circuito de recirculación de fluidos (Figura 1).

Figura 1. Solenoide adaptado al circuito de recirculación.
La intensidad del campo se reguló con un variador voltaje MCP Lab. Electronics M10-522-30 y un multímetro UNI-T UT61C RS232C (USB) (Figura 2).

![Figura 2. Ajuste del voltaje del solenoide con el variador y el multímetro.](image)

El circuito de recirculación contó con una bomba eléctrica Titán QB60 con caudal máximo de 36 litros por minuto. Para el almacenamiento del agua se utilizó un recipiente plástico de 100 litros y un sistema de tubería de PVC de 2,54 cm de diámetro con 2 válvulas de control de flujo (Figura 3).

![Figura 3. Circuito de recirculación de bio-fertilizante.](image)

2.2 Fase I

En la fase I se evaluó el mejor tiempo de exposición y la mejor inducción electromagnética sobre el bio-fertilizante comercial Multibiol® de la casa Agricultura Biológica localizada en el municipio de Buga (Valle del Cauca) disuelto en agua y recirculado. Se tuvo como variable de respuesta la prueba de actividad microbiana presente.
en muestras de gallinaza a las cuales se les adicionó el bio-fertilizante disuelto en agua con el objeto de identificar un intervalo de campos y tiempos de estimulación óptimos para el desarrollo de los microrganismos.

2.2.1 Diseño experimental fase I

El ensayo para la fase I se ajustó a un diseño bi-factorial de múltiples niveles dispuestos completamente al azar cuyos factores fueron: tiempo de recirculación (7 ½, 15 y 30 minutos) e inducción electromagnética (25, 50, 75 y 100 mT). Se contó con un testigo (T) que no fue recirculado y permaneció estático durante 7 ½, 15 y 30 minutos (Tabla 1).

Tabla 1. Tratamientos implementados para la fase I.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Inducción electromagnética (mT)</th>
<th>Tiempo de exposición (minutos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>25</td>
<td>7 ½</td>
</tr>
<tr>
<td>T2</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>T3</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>T4</td>
<td>50</td>
<td>7 ½</td>
</tr>
<tr>
<td>T5</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>T6</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>T7</td>
<td>75</td>
<td>7 ½</td>
</tr>
<tr>
<td>T8</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>T9</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>T10</td>
<td>100</td>
<td>7 ½</td>
</tr>
<tr>
<td>T11</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>T12</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>T</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Las unidades experimentales consistieron en 50 gramos de un sustrato de gallinaza que pasó por un tratamiento térmico en el horno Quincy Lab Inc. 40GC a 170 °C durante 2 horas; las muestras se dejaron enfriar durante 1 hora y posteriormente se les adicionó 50 ml de bio-fertilizante líquido disuelto en agua; la proporción usada para preparar la solución fue 1: 10 bio-fertilizante: agua potable siguiendo las recomendaciones del fabricante. La variable de respuesta consistió en los resultados obtenidos en la prueba de actividad microbiana sobre las unidades experimentales. Se dispusieron tres réplicas para todos los tratamientos incluido el T, obteniendo un total de 39 unidades experimentales.

2.3 Fase II

Se evaluaron las tres mejores interacciones de tiempo de exposición e inducción electromagnética, determinados en la fase I, sobre muestras de suelo de la vereda El Limonar bajo condiciones de invernadero.
2.3.1 Diseño experimental fase II

Para las tres mejores interacciones de tiempo e inducción electromagnética obtenidas de la fase I para el bio-fertilizante, se propuso un diseño completamente al azar unifactorial cuyo factor fue la interacción entre tratamientos de la fase I para bio-fertilizante líquido disuelto en agua. La variable de respuesta fue evaluada con la prueba de actividad microbiana sobre las unidades experimentales sobre 50 g de suelo del Limonar.

Se realizaron cinco tratamientos y tres repeticiones para cada uno: las tres mejores interacciones de tiempo de exposición e inducción electromagnética para bio-fertilizante líquido disuelto en agua, más un tratamiento testigo (T: bio-fertilizante líquido disuelto en agua sin recircular -estático- durante 30 minutos) y un tratamiento testigo absoluto (Ta: agua potable proveniente del sistema alterno de riego) (Tabla 2).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Interacción (intensidad CEM [mT]-tiempo exposición [minutos])</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Interacción 1</td>
</tr>
<tr>
<td>T2</td>
<td>Interacción 2</td>
</tr>
<tr>
<td>T3</td>
<td>Interacción 3</td>
</tr>
<tr>
<td>T</td>
<td>Testigo</td>
</tr>
<tr>
<td>Ta</td>
<td>Testigo absoluto</td>
</tr>
</tbody>
</table>

2.4 Actividad microbiana en muestra de sustrato y en muestra de suelo

Para determinar la actividad microbiana del suelo luego de la cosecha, se siguió el método indicado por [12]: se incubaron 50 g de la muestra de suelo durante 8 días (las muestras de gallinaza se incubaron durante 1 día) a 24 °C en un recipiente de cierre hermético; a la muestra de suelo se le adicionaron 10 ml de hidróxido de sodio (NaOH) 1 N el cual atrapa el dióxido de carbono (CO₂) desprendido por la muestra, formando así, carbonato de sodio. Además se preparó una muestra testigo incubada sin presencia de suelo. Después de 5 días de incubación del suelo (1 día de incubación para las muestras de gallinaza) se adicionaron 2 ml de cloruro de bario (BaCl₂) al 10 % para precipitar el CO₂ en forma de carbonato de bario (BaCO₃). Luego se adicionaron dos gotas de fenolftaleína 1 % (solución alcohólica indicadora) y se tituló con ácido clorhídrico (HCl) 0,5 N lentamente para cuantificar el volumen de NaOH que no reaccionó con el CO₂. El blanqueamiento de la solución titulada indicó la neutralización de todo el hidróxido. Análogamente la muestra testigo se tituló con HCl 0,5 N.

La determinación de la actividad microbiana para las muestras de sustrato y suelo, se realizó calculando el contenido de CO₂ de acuerdo a la siguiente ecuación:

\[
AMS = \left[\frac{(B - T) * NHCl * 0.006}{p} \right] * 10^6 = \left[\frac{\mu g C - CO_2}{g SS} \right]
\]
Donde,

AMS: Actividad microbiana del sustrato (y del suelo)
B: Titulación en blanco
T: Titulación muestra de suelo
N HCl: Normalidad del ácido
P: Masa seca de la muestra
0,006: Factor de dilución

2.5 Análisis estadístico

Se realizó un análisis de varianza a los datos obtenidos con un nivel de confianza del 95% y una vez verificada, se siguió con la comparación entre medias con el test de Tukey ($\alpha = 0,05$) con el paquete estadístico Minitab versión 16.

3 Resultados y Discusión

3.1 Fase I

3.1.1 Actividad microbiana en muestras de sustrato

Se realizaron tres ensayos separados en un lapso temporal de tres meses para constatar la tendencia en los resultados obtenidos en el tiempo. Los valores de inducción electromagnética y tiempo de exposición versus la prueba de actividad microbiana para los tres ensayos desarrollados se exponen en las figuras 4, 5 y 6.

![Figura 4. Resultados prueba de actividad microbiana ensayo I (T: Testigo sin recircular).](image-url)
En los tres ensayos, figuras 4, 5 y 6, se observó que el T contó con un mayor nivel de actividad microbiana durante todos los tiempos de exposición para todos los ensayos, esto podría explicarse debido a la intensa inyección de aire provocada por la bomba electromagnética, imposibilitando, de tal manera, el desarrollo de un porcentaje significativo de los microorganismos anaerobios; por otro lado, en la medida en que la inducción electromagnética aumentó, la actividad microbiana presentó una tendencia suave a la disminución. Los campos electromagnéticos han sido reportados por su influencia tanto en la activación de iones como con la polarización de los dipolos en la célula viva [24].
Los campos electromagnéticos pueden alterar la estructura y función de la membrana plasmática de los microorganismos de manera negativa.

En los tratamientos con estimulación electromagnética, se observó que la menor inducción electromagnética presentó los resultados de mayor actividad microbiana, verificado con la prueba de Tukey ($\alpha = 0.05$); la variable 25 mT mostró mayor significancia estadística en cualquiera de los 3 tiempos de exposición al campo electromagnético. Los tiempos evaluados no presentaron diferencia estadísticamente significativa en la actividad microbiana sobre el sustrato orgánico.

Dado que no hubo diferencia estadísticamente significativa con respecto al tiempo de exposición se escogieron los tres tiempos ($7 \frac{1}{2}, 15$ y 30 minutos) para hacerlos interactuar a una intensidad de 25 mT para la fase II.

Se pueden resumir los resultados de las tres interacciones óptimas halladas en la fase I en la Tabla 3.

Tabla 3. Disposición final de tratamientos para la fase II según resultados obtenidos en la fase I.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Interacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>25 mT - 7 $\frac{1}{2}$ minutos</td>
</tr>
<tr>
<td>T2</td>
<td>25 mT - 15 minutos</td>
</tr>
<tr>
<td>T3</td>
<td>25 mT - 30 minutos</td>
</tr>
<tr>
<td>T</td>
<td>Testigo sin recircular -estático- durante 30 minutos</td>
</tr>
<tr>
<td>Ta</td>
<td>Testigo absoluto (agua potable)</td>
</tr>
</tbody>
</table>

3.2 Fase II

3.2.1 Actividad microbiana en muestras de suelo

Se tomaron muestras de suelo a profundidades de tres a cinco cm en cada uno de los tratamientos, a éstas se les realizó la prueba de actividad microbiana con un tiempo de incubación de 6 días (Tabla 4).

Tabla 4. Actividad microbiana en muestras de suelo por tratamiento.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Actividad Microbiana Promedio [µgCO2/gSS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mT - 7 1/2 minutos</td>
<td>184</td>
</tr>
<tr>
<td>25 mT - 15 minutos</td>
<td>138</td>
</tr>
<tr>
<td>25 mT - 30 minutos</td>
<td>122</td>
</tr>
<tr>
<td>T</td>
<td>126</td>
</tr>
<tr>
<td>Ta</td>
<td>124</td>
</tr>
</tbody>
</table>
Los datos encontrados superaron los resultados de varias investigaciones que establecieron rangos de respiración obtenidos en laboratorio, para suelos agrícolas (15-32 μgC-CO2/gSS) y suelos enmendados (53-86 μgC-CO2/gSS) [25] donde los mayores valores llegaron hasta 85.1 μgC-CO2/gSS mientras que para este trabajo de investigación el mayor valor registrado fue 184 μgC-CO2/gSS que estuvo asociado al tratamiento 25 mT - 7 ½ minutos que dio los mejores resultados en comparación con los demás tratamientos. Es importante anotar que para las condiciones propias del suelo estudiado, si existió una influencia estadísticamente significativa con respecto a los tiempos de exposición a la inducción electromagnética del bio-fertilizante, lo cual difirió con los resultados obtenidos para el tiempo de exposición en la fase I, donde no se presentó diferencia significativa en los ensayos desarrollados.

La estimulación electromagnética del bio-fertilizante Multibiol® a una inducción electromagnética de 25 mT y un tiempo de recirculación de 7 ½ minutos tuvo un mayor valor promedio de actividad microbiana en el suelo del Limonar (Dagua, Valle del Cauca) con respecto a los otros tiempos de recirculación evaluados, hecho que se verificó con la prueba de Tukey ($\alpha = 0.05$); el menor tiempo de estimulación mostró mayor significancia estadística a la acción estimulatoria de la inducción electromagnética. Los anteriores resultados indican que el tratamiento electromagnético influyó en la dinámica de los microorganismos presentes en el suelo, los cuales resultaron afectados negativamente al ser expuestos durante más de 7 ½ minutos con una inducción de 25 mT. Esto a su vez, abre una puerta para su uso extendido en agricultura, en particular para el mejoramiento de la calidad del suelo para cultivos.

4 Conclusiones

El tratamiento electromagnético de bio-fertilizantes es una alternativa aplicable en Colombia, donde se presentan condiciones de sobreuso de fertilizantes de síntesis química en el suelo con toda su problemática asociada. Adicionalmente, ésta tecnología podría optimizar el uso de microorganismos benéficos sobre el suelo, aumentando sus poblaciones y mejorando las condiciones para el desarrollo de los cultivos. No obstante, se recomiendan futuras investigaciones para evaluar el impacto de la respuesta agronómica de un cultivo a una inducción de 25 mT y a lapsos de tiempo menores que los considerados en esta investigación, para delimitar con mayor precisión tal interacción.

Agradecimientos

La presente investigación fue desarrollada con recursos provenientes del Sistema General de Regalías en el marco del proyecto “Desarrollo de un Sistema Agroindustrial Rural Competitivo en una Bioregión del Valle del Cauca” a cargo del Grupo de Investigación en Ciencias Ambientales y de la Tierra ILAMA, adscrito a la Facultad de Ciencias Naturales y Exactas de la Universidad del Valle, sede Meléndez, Cali Colombia.
Referencias bibliográficas

Dirección de los autores

Orlando Zúñiga E.
Grupo de Investigación en Ciencias Ambientales y de la Tierra ILAMA
Departamento de Física. Universidad del Valle, Cali - Colombia
orlando.zuniga@correounivalle.edu.co

Cristian O. Jiménez A.
Grupo de Investigación en Ciencias Ambientales y de la Tierra ILAMA
Departamento de Física. Universidad del Valle, Cali - Colombia
mauricio.gutierrez@correounivalle.edu.co

Jhony A. Benavides B.
Grupo de Investigación en Ciencias Ambientales y de la Tierra ILAMA
Departamento de Física. Universidad del Valle, Cali - Colombia
jhony.benavides@correounivalle.edu.co

Celina Torres González
Grupo de Investigación en Biología de Plantas y Microorganismos
Departamento de Biología. Universidad del Valle, Cali - Colombia
celina.torres@correounivalle.edu.co