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       Abstract 
       We construct ��-sets contained in the integer interval ����� � ��� � � �� with	� � ��,                      
� a prime number and �	 � 	��, by using the �-adic expansion of integers. Such sets come                
from considering �-cycles of length �. We give some criteria in particular cases which                      
allow us to glue them to obtain good ��-sets. After that we construct algebraic curves                           
over the finite field �� with many rational points via minimal ���� ���-polynomials whose      
exponent set is an ��-set. 
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1        Introduction  
 

Let � be a prime number and �� be a finite field with � � �� elements and let                              
��q be an algebraic closure of �q. Given a polynomial  f  (x, y)	� ��	[x, y] which is       
irreducible over ��q, the set 

�� � 	 ���� �� 	� 	��� �	���	����	����	�	��� �� 	� 	���	
is an affine plane algebraic curve (over the finite field ��q) and the points P =                             
��� �� 	� 	��	such that ��� �� � ��	�	�� are called rational points over �q. 

       In 1940 A. Weil proved the Riemann hypothesis for curves over finite fields. As              
an immediate corollary he obtained an upper bound for the number of rational                    
points on a geometrically irreducible nonsingular curve �	 of genus ���� over a                   
finite field of cardinality	�, namely 

#����� 	� 	�	 � 	�	 � 	�����	��,     (∗) 
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where ����� denotes the set of rational points of the curve �. If the cardinality of                     
the finite field is not a square, the upper bound above was improved by Serre                              
(1) substituting ���� by its integer part	������. If the cardinality is a square, (say                
� � ��), then the � curve is called maximal over ��� if #�(��) attains the Weil’s               
upper bound; i.e., #	�	���� 	� 	 �� 	� 	�	 � ������. 
       The interest in curves over finite fields with many rational points with respect                    
to their genera (i.e., with #�� ���)) close to known upper bounds; e.g., see tables                         
in (2) and (3) was greatly renewed after algebraic geometry codes (AG codes) were     
introduced by Goppa in (4). Many constructions of curves over finite fields are often 
performed by using special polynomials ���� 	� 	�����. The essential properties of ���� are 
sometimes of the following form: 

       Property I. One has that ����� � ��, and for most elements � � ��, � is a                  
simple root of ���� � ����� 
       Property II. The set � � ��	 � 	���� 	���� � 	� has multiple roots in  ��q} has low 
cardinality, and one has a nice description of the multiplicities of the roots.	 
       Polynomials satisfying property ����� 	� 	�� are known as ���, ���-polynomials.                 
A particular case of ���, ���-polynomials, which are studied in detail in (5), are                        
the so-called minimal ���, ���-polynomials; i.e., (�q,�p)-polynomials whose degree                
is � � � � and whose exponent set is characterized as being the  �-cycles (also           
introduced in (5)) of the integer interval ��, � � ��. We point out that in many                          
cases the exponent set � of a minimal ���, ���-polynomial has a nice property                        
that has been extensively studied in number theory, namely the �� property. More          
precisely: A subset � of integers is an ��-set (or has the �� property) if all the                          
sums � � �� with	� � ��; a, a' �	� are distinct. 

       It is known that if � � ��,�� is an ��-set, then its cardinality must be                
asymptotically equal to√�, see (6). As we remarked above in many cases the                              
�-cycles of the integer interval ��, � � �� are ��-sets, unfortunately its cardinality which is 
a divisor of � is almost always small respect to �� � �. The goal in this                              
work is: firstly, provide some criteria to glue a set of �� �-cyles; i.e., �-cyles such                     
that the underlying set has the �� property, to obtain ��-sets whose cardinality is                    
close to �� � �; secondly, use some of these �� sets obtained to construct algebraic          
curves � over the finite field �� whose set of rational points �����  has cardinality               
close to know upper bounds. Again, we refer to (2) and (3). 

       The paper is organized as follows: In section 2 we give a brief exposition of some                  
properties of �-cycles. We show how these can be constructed from a generator              
element. Section 3 contains some results which allow us to decide when a number                    
� � ����� � ��, � � �� generates an �� �-cycle. We give some criteria to glue some of             
them and then, obtain sets with a good cardinality. Many examples are included.               
Section 4 is devoted to study a few particular cases to obtain good �� sets. Finally,                     
in section 5 we construct Kummer covers of the projective line over finite fields                          
with many rational points. The idea comes from (7) and that is the construction of                              
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       The paper is organized as follows: In section 2 we give a brief exposition of some                  
properties of �-cycles. We show how these can be constructed from a generator              
element. Section 3 contains some results which allow us to decide when a number                    
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r                                                                                                                                                                               
rational functions �(x) �	 �q (x) having the value 1 for many elements �	 � �q, such             
rational functions in our case are induced by (�p,�p)-polynomials whose exponent                   
sets are S2 sets constructed in section 4. 

2  �-Cycles       

       Let � be a prime number and let � � �� be a non-negative power of �. The �-adic
expansion of a positive integer a in the integer interval ����� � �1, � � 1� is given                     
by:

�	 � 	�� �	���	 �	���� 	�	��� 	�	��������,	
where the numerals �� satisfies � � �� � � for j = 0, ꞏꞏꞏ,n�1. 

       If each �	 � 	�� �	���	 �	���� 	�	��� 	�	�������� � ���� is represented by the              
�-tuple ���, ��, � � � , ����� 	� 	���, then we denote by �⊓, the integer number obtained            
after applying the cyclic numeral-permutation: 

�⊓ � 	���� 	� 	�	�� 	�	��	�	� �	��� 	�	����	����.
	

       By ⊓� we will understand the iteration k times the cyclic numeral-permutation.
The �-adic period of � is the small natural integer ���� such that �⊓���� � � and it                      
is clear that the period of an integer number � depends of p and n.  

       A �-cycle � is an ordered set � � ��, �⊓, �⊓�� � � , �⊓������	�, we will denote by                              
����, the length of � and is defined by ���� � ����, (see (5) for more details). 

Example 2.1 Let � � 2 and � � 4. The number 3 � 1 � 2� � 1 � 2� � � � 2� � � � 2� 
corresponds to the 4-tuple �1,1,�,��. Therefore 3⊓ � � � 2� � 1 � 2� � 1 � 2� � � � 2� � 6, 
6⊓ � 12, 12⊓ � �. Consequently �3,6,12,�� is a 2-cycle of length 4. The element                  
3 � �1�1�� has period 4. On the other hand, if � � �, then the ordered set 
�3,6,12,24,4�,�6,6�� is a 2-cycle of length 7 and the element 3 � �1�12�� has                     
period 7. 

      Since the process of determining �-cycles in ���� play an important role in this                      
work, we will study some properties in detail. 

       Let G = ��� be the cyclic group of order �. The group G acts on the set ����                            
as follows: 
                          ��	�	�	���� 		�	 ���� 
 
                          	���	, �	� 		�			 ��� 	 � 	��	���						�	 � 	�,1, � � � , � � 1	 
where ������ is a representative for the residual class of � modulus � � 1. 
	
Theorem 2.1  For each � � ����, the �-cycle ��, �⊓, �⊓�

	
� � � , �⊓������� is the orbit of �

with respect to the action � above. 
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       Proof: Observe  that if �	 � 	 �� � ���	 �	 ���� 	�	��	����		���� is the �-adic 
expansion of �, then 

�⊓ � 	 ���� 	� 	���	 �	 	��	�� 	�	�	�	 	����	����.	
Hence 

   ��	 �	 �⊓ � 	 	���		 �	 	��	�� 	�	�� �		������ 	�	����� 	� 	���	 �	 	��	�� 	�	�� �		������	����                              
                 		� 		 ������	 � 	��,  
	

consequently �⊓ � 	��	����	��	 � 	���. 

Corollary 2.1  If q � pn and � is a �-cycle, then ������. 
 

Proof:  We known that if G acts on a set �, then �� � �� � ���� � � � �� is a                 
subgroup of � and the cardinal number of the orbit � � �� � ���� � �� of �, is                   
��� ��� the index of �� in �. (8), II,4.3. 
 

Proposition 2.1  Every �-cycle has the form 

� = (i, pi, ..., pki, (pk+1 i)q-1,...,(pℓi)q-1)  

where ℓ + 1 is the length of � and � � � is the smallest integer satisfying                              
��� � � � � � �����.  
	

Proof:  Since 

����� � ��� � �� � ����������, 
 
then 

������� � �������� � ��� � ���� � �� � ���������������� 
 
 
       where 

����������� � ��� � �� � ����������������. 
 
       Hence, 

������������ � ����������������. 
 
 

Remark 2.1 In accordance with Proposition (2.1), one can see that a �-cycle                              
� = (i, pi, ...pki, (pk+1i)q-1, ..., (pℓi)q-1), is nothing but the cyclotomic coset of �                          
mod(� � �). Cyclotomic cosets mod(�) play an important role in the factorization                     
in �p[x] of the polynomial �� � � and consequently in coding theory. We refer to                       
(9) for details. 
	

Example 2.2 In the following Tables 1, 2 and 3 we exhibit the different �-cycles for � �
2.3 and � � �� for some values of �. 
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� �ℓ��
���

���
	

�	 � �� �ℓ��
���

���
�	�ℓ	

Table 1. 2-cycles of length 1, 2, 3 and 6. 

 
 
 
� � 2� � �� 

(63)  (21,42) 
������3�� �2�������� 
���2��������32� �3����2�2�����33� 
������2��������3�� ������2��������3�� 
����22����2�����3�� ��3�2���2�������3�� 
����3�����������3�� �23����2������3��3� 
�3���2�������������  

 
Table 2. 3-cycles of length 1 and 3. 

 
 

� � 3� � 2� 
��3� �2��   
���3��) �2������ ����2���� ��������� 
���2����� ���2��2�� �������22� ����2��23� 

 
 

Table 3. 3-cycles of length 1, 2 and 4. 
 

 
 
 
� � 3� � �� 

���� ����  
����3�� �2����� ������� 
���3���2�� �2��������� ����2�3��2�� 
������������ ���2���3�2�� ���2���2���� 
����33������� ��3�3��3��3�� �����2������� 
����������32� ��������3���� �22����3��3�� 
�23���������� �2��������3�� �2���������2� 
�����3������� �����2������� ��3���������� 

 

Observe for example, that for � � �� not all 2-cycle has length 6. The                              
following proposition says when these situations occur. Before that we introduce                         
a convenient notation. Although it is true that we can obtain a �-cycle from any                           
of its elements, we will say that an integer � generates the �-cycle � if 

� � ��� ��� � � � � ���� ������������ � � � � ��ℓ	�������	
and � � ���������� for � � �� � � � �ℓ	 � 	�. In this case we write	� � ���. 
	

Proposition 2.2  Let � � �� with � � � � �. If � � ���, then � � ���� � � if and

only if � is a multiple of          . 

Proof: By definition, ℓ = length(�) if and only if, �ℓ	� � 	 �� � ���ℓ � � if and only if,  

 
 

Proposition 2.3 The greatest integer � � ���� such that � generates a �-cycle of                  
length �, is � � �� � ����� � ��. The corresponding �-cycle is, 

��� � ����� � ��� �� � ��� � ��� �� � �� � ��� �� � ��� � ��� � � � � �� � ����� � ���� 
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Proof:	First	observe	that	
��	 � 	� � �	�� � �����	 � 1� 	� 	 �� � 1��� � 1� � 1	 � 	 �� � 2�	�mod		� � 1�.	
							Hence	��� � � � � � 1�mod	� � 1�,	so	in	general,	��� � � � ����� � 1��mod	� � 1�	
which	leads	to	the	desired	expression.	Secondly,	each	number	� � � � � � 1	can																						
be	rewritten	as	� � �� � 1� � ����� � � � 1�	with	0 � � � ���� � 2.	�ow,	the											
e�uation	�� � �� � 1�� � �	with	0 � � � � � 1	has	uni�ue	solution	in	����	which											
implies	that	�	is	the	remainder	modulus	� � 1	of	some	� � ����.	
	
Remark	2.2	Is	�now	that,	if	�	 � 	�� � 	�� � ��	���	and	�����	is	its	minimal							
polynomial,	then	
����� ����

�����
����,		

(Cf	(10),	Theorem	4.1).	Hence	one	can	determine	the	number	of	�‐cycles	of	length																		
���	in	����,	such	number	is:		

��	��� � 	 1�	��
����

��������� 	

(here	����	is	the	�oebius	function),	as	many	as	irreducible	polynomials	of	degree																							
�	in	�����.	
3					��‐	Sets	
							A	subset	�	of	integers	is	an	��‐set	if	all	the	sums	� � ��	with	� � ���	�, ���	��	are								
distinct.	From	now	on,	a	set	�	has	the	��	property	if	�	is	an	��‐set.	Similarly,	a																											�‐cycle	�	 � �i�, . . . , i��	is	an	��	�‐cycle	if	the	underlying	set	�i�, . . . , i��		has	the	��						property.	In	this	section	we	give	some	criteria	that	allows	us	to	decide	when	a																															
�‐cycle	� � ���	has	the	��	property.	Also,	we	give	conditions	on	the	generators	of																								a	set	of	��	�‐cycles	such	that	the	union	of	these	retain	this	property.	
Theorem	3.1		If	GCD	��, � � 1� 	� 	1,	then	� � ���	is	an	��	�‐cycle.	
Proof:		Assume	the		contrary,	so	there	exist	integers	0 � �, �, �, � � � � 1	such	that	
	���	����� � ���	����� � ���	����� � ���	�����						�	 � 	�, �	 � 	�.		 	 (1)	
If	r	=		min{r,	u�,	then	(1)	implies	����� 	�	����	 � ���� 	� 1� 	� 	0	�mod		� � 1�		which	
is	absurd.	
Remark	3.1	The	reciprocal	of	Theorem	5.1	is	false,	in	fact	if	� � �	and																																							
� � 5,	then	is	easily	proved	that	the	�‐cycle	generated	by	the	divisor	11	of	242,	
�11, ��, ��, 55, 1�5�	has	the	��	property.	
	

Corrollary	3.1		If	� � 1	is	a	prime	number,	then	any	�‐cycle	is	an	��‐set.	
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Example 3.1 The following Table shows all the 2-cycles of length 5 which, by 3.1                  
are ��-sets contained in the integer interval �1�31�. 

 
 Table 4. �� 2-cycles of length 5. 

 
�1, 2, 4, 8, 16� �3, 6, 12, 24, 17� �5, 1�, 2�, 9, 18� 

�7, 14, 28, 25, 19� �11, 22, 13, 26, 21� �15, 3�, 29, 27, 23� 
 

 
       The next corollary give us information about the components of a �-cycle ���               
when ��� � 1. More precisely. 

Corrollary 3.2  Let ��� � 1 and  Ξ	= 〈i 〉, then all its components are multiples of �. 

Proof: By Proposition (2.1), each component of Ξ has the form �������� � ��� � �� �
1���. 
 

Remark 3.2 Let us consider the �� 3-cycle of length 5, Ξ	 � 	 �11, 33, 99, 55, 165�           
generated by 11, divisor of 242 � 3� � 1 contained in the interval [1, 242]. It is clear          
that its cardinality 5 is very small respect to √242 � 15 even so in accordance                        
with the previous corollary, if we cancel the common factor 11 of each member                          
of the 3-cycle Ξ, we obtain the set � ={1, 3, 9, 5, 15} which is again an ��-set                       
although it is not the underlying set of a 3-cycle. The important fact here is that                          
the cardinality of � is 5 and now we have a nice ��-set in the interval �1, 15� whose 
cardinality is now very good respect to √15 � 4. We can obtain each member                             
of this set as follows. 

Corollary 3.3 Let � ∈ �1, � � 1�, �	 � 	�����, � � 1�	���	Ξ	 � 	 〈�	〉,The set obtained           
by canceling the common factor � to each component of Ξ has the for: 

           					�	 � 	 �
	
	
	
�
� , … , ���� , ������� �

���
�
	 , … , ������� �

���
�
		�			 

       Proof: It is clear from the uniqueness of the residue.  

Example 3.2 If � � 2, � � 8 and i = 27 ∈ [1,255], then the 2-cycle Ξ, generated                       
by 27, �27, 54, 1�8, 216, 177, 99, 198, 141� is an �� 2-cycle. Now since�27, 255� � 3,    
then the set �={9, 18, 36, 72, 59, 33, 66, 47} obtained canceling the common factor                          
3 of each component of Ξ, is an ��-set. Observe that � as a subset of the interval                  
�1, 72� has cardinality closed to √72 � 9. 

       On the other hand, since 255�3 � 85 and the first four terms 9,18,36,72 do                              
not exceed 85, but 2 � 72 � 144 � 85 � 1 � 59; 2 � 59 � 1�8 � 85 � 1 � 33 and         
2 � 66 � 112 � 85 � 1 � 47, then we can generate the new set from 9 taking the 
remainder mod 85. 

 

	

Proof:	First	observe	that	
��	 � 	� � �	�� � �����	 � 1� 	� 	 �� � 1��� � 1� � 1	 � 	 �� � 2�	�mod		� � 1�.	
							Hence	��� � � � � � 1�mod	� � 1�,	so	in	general,	��� � � � ����� � 1��mod	� � 1�	
which	leads	to	the	desired	expression.	Secondly,	each	number	� � � � � � 1	can																						
be	rewritten	as	� � �� � 1� � ����� � � � 1�	with	0 � � � ���� � 2.	�ow,	the											
e�uation	�� � �� � 1�� � �	with	0 � � � � � 1	has	uni�ue	solution	in	����	which											
implies	that	�	is	the	remainder	modulus	� � 1	of	some	� � ����.	
	
Remark	2.2	Is	�now	that,	if	�	 � 	�� � 	�� � ��	���	and	�����	is	its	minimal							
polynomial,	then	
����� ����

�����
����,		

(Cf	(10),	Theorem	4.1).	Hence	one	can	determine	the	number	of	�‐cycles	of	length																		
���	in	����,	such	number	is:		

��	��� � 	 1�	��
����

��������� 	

(here	����	is	the	�oebius	function),	as	many	as	irreducible	polynomials	of	degree																							
�	in	�����.	
3					��‐	Sets	
							A	subset	�	of	integers	is	an	��‐set	if	all	the	sums	� � ��	with	� � ���	�, ���	��	are								
distinct.	From	now	on,	a	set	�	has	the	��	property	if	�	is	an	��‐set.	Similarly,	a																											�‐cycle	�	 � �i�, . . . , i��	is	an	��	�‐cycle	if	the	underlying	set	�i�, . . . , i��		has	the	��						property.	In	this	section	we	give	some	criteria	that	allows	us	to	decide	when	a																															
�‐cycle	� � ���	has	the	��	property.	Also,	we	give	conditions	on	the	generators	of																								a	set	of	��	�‐cycles	such	that	the	union	of	these	retain	this	property.	
Theorem	3.1		If	GCD	��, � � 1� 	� 	1,	then	� � ���	is	an	��	�‐cycle.	
Proof:		Assume	the		contrary,	so	there	exist	integers	0 � �, �, �, � � � � 1	such	that	
	���	����� � ���	����� � ���	����� � ���	�����						�	 � 	�, �	 � 	�.		 	 (1)	
If	r	=		min{r,	u�,	then	(1)	implies	����� 	�	����	 � ���� 	� 1� 	� 	0	�mod		� � 1�		which	
is	absurd.	
Remark	3.1	The	reciprocal	of	Theorem	5.1	is	false,	in	fact	if	� � �	and																																							
� � 5,	then	is	easily	proved	that	the	�‐cycle	generated	by	the	divisor	11	of	242,	
�11, ��, ��, 55, 1�5�	has	the	��	property.	
	

Corrollary	3.1		If	� � 1	is	a	prime	number,	then	any	�‐cycle	is	an	��‐set.	
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^

       We emphasize that the set � = {9, 18, 36, 72, 59, 33, 66, 47} is not the                              
underlying set of the 2-cycle generated by 9, which is �9� ��� 3�� �2� ���� 33� ��� �32�.            
This, as ��-set is very poor respect to √255 � �5, but by                              
Corollary (3.2), induces a new ��-set contained in the interval ������ namely, 
�3� �� �2� 2�� ��� ��� 22� ���. Again this is not the underlying set of the 2-cycle                    
generated by 3, which is �3� �� �2� 2�� ��� 9�� �92� �29�. That is again an ��-                              
set of small cardinality respect to 255 but again induces a new ��-set 
���2��������32�����3� � ������. Clearly this is not the underlying set of the                              
2-canonical cycle ��� 2� �� �� ��� 32� ��� �2��. 
        As we can see, there are examples of �-cycles which have the �� property and                     
whose generator � is neither prime with � � � nor divisor of � � �. The following               
result provides a concrete example. 
 

Proposition 3.1 Let � be an integer number and � � ��, then the underlying set                          
of the �-cycle of length � � �� generated by 

i �� �� ��
��

���
� � �� � � � � � ���� � � ����� � ��ˆ � ������ � � ���� 

is an ��-set. (Here the hat means that the power �� was excluded.) 

Proof: First observe that 
 

�i� � �i� ��i� ���i� � � � � �����i� �����i����� �������i����� � � � � �������i����� 
where ���i���� denotes the remainder of ��i modulus � � �. 
							As always, we will suppose that such a set is not an ��-set, therefore several                              
cases may occur, namely: 
 
      1. Case 1. ��i� ��i � ��i� ��i with �� �� �� � � 2� � �. 

2. Case 2. ��i� ��i � ��i� �������i���� with �� �� �� � � 2� � �. 

3. Case 3. ��i� ��i � �������i� � �������i���� with �� �� � � 2� � �. 

4. Case 4. ��i� �������i���� � �������i���� � �������i���� with �� � � 2� � �. 

5. Case 5. �������i���� � �������i���� � �������i���� � �������i����. 

6. Case 6. ��i� �������i���� � ��i� �������i���� with �� � � 2� � �. 

      Our next goal is to determine the number ������i����. For this end, let us denote                        
by i��� and �� the following natural numbers: 

i��� : = 1 + p + ... +�� + .. +  �����  and  �� : = 1 + p + ... + ��.  
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       With above notation, the number ������i���� can be written as follows: 

      ������	i� ��� � � �� � �����	i���,�	 															��	� � � � � � �,
i����,��� � ������������				��	� � � � 2� � �.				    (2)               

 

       As an illustration we consider the case 6. Let us suppose that 

��i� �������i���� � ��i � �������i����. 
 

       For instance, if � � � � � � 2� � � � 2� ��� � 2� � �� with � � �� � � � � �
��, then with the above notation we have: 

	
���	i� ��� � ������i�� � �, � � ��	i� i�����,��	��	���������������. 

 

       Now, if � � � after cancel common terms, we get the following equality 

�������. . . ����� � �� � ��. . . ����� � ������i����,� � ��i� ��������������, 
which implies that ���.  
	

       On the other hand,  � � � implies 

	
��i� ������i����,� � ��i� �������. . . �	������ 		�. . . ����� � ��������������, 

       if �� � �� � � and 

       ��i� ����� � ������i����,� � ��i� �������. . . ����� � �������������� 

if �� � �� � �. 

       If �� � �� � �, then � � �� � � implies ���; � � �� � �, implies � � �� � �         
which is absurd and finally � � �� � � implies ������2�� � ��. . . �����. Similar 
arguments led us to contradictions when we consider the case �� � �� � �; we                     
omit details. 
 

Example 3.3 If � � 2 and � � �, then � � �, � � 2�, Proposition (2.2) says that                        
the 2-cycle �2�, ��, ���, 2��, ���, ��, ���, ���� is an ��-set contained in ��, 2���. 
 

Proposition 3.2  If � � �, then the �-cycle ��� is an �� �-cycle. 

 

^

       We emphasize that the set � = {9, 18, 36, 72, 59, 33, 66, 47} is not the                              
underlying set of the 2-cycle generated by 9, which is �9� ��� 3�� �2� ���� 33� ��� �32�.            
This, as ��-set is very poor respect to √255 � �5, but by                              
Corollary (3.2), induces a new ��-set contained in the interval ������ namely, 
�3� �� �2� 2�� ��� ��� 22� ���. Again this is not the underlying set of the 2-cycle                    
generated by 3, which is �3� �� �2� 2�� ��� 9�� �92� �29�. That is again an ��-                              
set of small cardinality respect to 255 but again induces a new ��-set 
���2��������32�����3� � ������. Clearly this is not the underlying set of the                              
2-canonical cycle ��� 2� �� �� ��� 32� ��� �2��. 
        As we can see, there are examples of �-cycles which have the �� property and                     
whose generator � is neither prime with � � � nor divisor of � � �. The following               
result provides a concrete example. 
 

Proposition 3.1 Let � be an integer number and � � ��, then the underlying set                          
of the �-cycle of length � � �� generated by 

i �� �� ��
��

���
� � �� � � � � � ���� � � ����� � ��ˆ � ������ � � ���� 

is an ��-set. (Here the hat means that the power �� was excluded.) 

Proof: First observe that 
 

�i� � �i� ��i� ���i� � � � � �����i� �����i����� �������i����� � � � � �������i����� 
where ���i���� denotes the remainder of ��i modulus � � �. 
							As always, we will suppose that such a set is not an ��-set, therefore several                              
cases may occur, namely: 
 
      1. Case 1. ��i� ��i � ��i� ��i with �� �� �� � � 2� � �. 

2. Case 2. ��i� ��i � ��i� �������i���� with �� �� �� � � 2� � �. 

3. Case 3. ��i� ��i � �������i� � �������i���� with �� �� � � 2� � �. 

4. Case 4. ��i� �������i���� � �������i���� � �������i���� with �� � � 2� � �. 

5. Case 5. �������i���� � �������i���� � �������i���� � �������i����. 

6. Case 6. ��i� �������i���� � ��i� �������i���� with �� � � 2� � �. 

      Our next goal is to determine the number ������i����. For this end, let us denote                        
by i��� and �� the following natural numbers: 

i��� : = 1 + p + ... +�� + .. +  �����  and  �� : = 1 + p + ... + ��.  
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Proof: If there are different elements �, �, �, � such that 

��� � ��� � ��� � ���, 
then we would have ���. 
	

Corollary 3.4  Let �, � � ����. Then if � � � and ��, � � �� � �, the �-cycle Ξ               
generated by �� is an �� �-cycle. 
 

Proof: If not, we should have  ���� � ����	 � 	 ��	�� � ��	��	����	� � �� for some integers 
�, �, �, �, but this congruence contradicts Proposition (3.2). 
 

Proposition 3.3  If � is odd, then the �-cycle generated by � � � is an �� �-cycle. 

Proof: Observe that such �-cycle is 
 

�� � �, �� � �, � � � , ���� � ����, ���� � ����, ���� � ��� 
       First, let us suppose that there exist different integers � � �, �, �, � � � � �                             
such that 
	

���� � ������ � ���� � ������ � ���� � ������ � ���� � ������, 
then if � �max��, �, �, �� we have ���. On the other hand, if there exist different               
integers � � �, �, � � � � � such that 
	

                       ���� � ������ � ���� � ������ � ���� � ������ � ���� � �,                (3)   
                        

       then since 
	

�� � ���� � �� � �� � ���� � �, 
(3) can be written as 
	

���� � ������ � ���� � ������ � ���� � ������ � �� � ���� � �� � ��, 
 

this implies that � � � divides � � � which is absurd. 

       Now we are interested in finding conditions to decide when the union of ��                          
�-cycles is an ��-set. A first approach is given in the following proposition: 

Proposition 3.4 If � � � � �, then the set 

� �� 	 ���� 	� 	 ����
	

is an ��-set. 
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Proof: If there are different elements �, �, �, � such that 

��� � ��� � ��� � ���, 
then we would have ���. 
	

Corollary 3.4  Let �, � � ����. Then if � � � and ��, � � �� � �, the �-cycle Ξ               
generated by �� is an �� �-cycle. 
 

Proof: If not, we should have  ���� � ����	 � 	 ��	�� � ��	��	����	� � �� for some integers 
�, �, �, �, but this congruence contradicts Proposition (3.2). 
 

Proposition 3.3  If � is odd, then the �-cycle generated by � � � is an �� �-cycle. 

Proof: Observe that such �-cycle is 
 

�� � �, �� � �, � � � , ���� � ����, ���� � ����, ���� � ��� 
       First, let us suppose that there exist different integers � � �, �, �, � � � � �                             
such that 
	

���� � ������ � ���� � ������ � ���� � ������ � ���� � ������, 
then if � �max��, �, �, �� we have ���. On the other hand, if there exist different               
integers � � �, �, � � � � � such that 
	

                       ���� � ������ � ���� � ������ � ���� � ������ � ���� � �,                (3)   
                        

       then since 
	

�� � ���� � �� � �� � ���� � �, 
(3) can be written as 
	

���� � ������ � ���� � ������ � ���� � ������ � �� � ���� � �� � ��, 
 

this implies that � � � divides � � � which is absurd. 

       Now we are interested in finding conditions to decide when the union of ��                          
�-cycles is an ��-set. A first approach is given in the following proposition: 

Proposition 3.4 If � � � � �, then the set 

� �� 	 ���� 	� 	 ����
	

is an ��-set. 

       Proof: Assume that � is not an ��-set. Then, there exist �, �, �, � � ��, �� and            
integer numbers � � �, �, �, � � � � � such that, 

       ��� � ��� � ��� � ���,                                                       (4)    

with � � � if � � � and � � � if � � �. The proof is somewhat technical and       therefore 
divided into several cases. To begin suppose that   � � 	�����, �, �, ��. 
       Case 1: If � � � and � � �, then after canceling �� in (4) we obtain ��� or ���                      
which is a contradiction. 

       Case 2: � � � and � � �. In this case, if � � � or �, then after canceling ��                           
in (4) we obtain ���; if � � � or �, then ��� or ���. The case � � � � � leads                              
to ����� � ����� � � � �, which is again a contradiction. On the other hand, if                     
� � � � � � � we obtain � � ����� � � � �, now after to consider the different 
possibilities for �, �, �, we conclude that ��� or ���. 
       Case 3: � � � and � � �. If �, �, �, � are distinct and �	 � 	�, �, �	��	�, then                     
���, �, � or � which is a contradiction. If two exponents are equal, for example,                        
� � � and � � � � �, then we have � � � � ����� � ����� which is absurd. Finally,              
if three exponents are equal, for example � � � � � and � � � � � � �, then                   
equation (4) is nothing else but ����� � � � � � �� Now again after considering all the 
possibilities for �, �, �, �, we obtain the same equations and conclusions as                              
in the Case 2. 
 

Example 3.4 If we take � � 3, then in this case � � 2. We show in the following 
Table some ��-sets � � ��,� � 3� � �� for different values of �.

Table 5. ��-sets as union of two 3-cycles. 

� � √� ��-sets 
    

2 8 2.82 1, 2, 3, 6 
3 26 5.09 1, 2, 3, 6, 9, 18 
4 80 8.9 1, 2, 3, 6, 9, 18, 27, 54 
5 242 15.55 1, 2, 3, 6, 9, 18, 27, 54, 81, 162 

 

       As we can see, the first two sets have a reasonable cardinality in respect                              
to √�, while the latter two do not. However, it should be noted that since any                        
subset of ��-set retains the �� property, the set obtained for � � �� is a nice                              
��-set, if it is considered as subset of the integer interval ��, 54�, likewise the  sets  
��, 2, 3, �, �, ��, 2�, 54, ��, � � ��, ��� and ��, 2, 3, �, �, ��, 2�� � ��, 2�� have also a                      
nice cardinality with respect to 9 and 5 respectively. 
 

Proposition 3.5  If � � � � � � � and � � � � � � �, then the set 

� �� 	 ���� 	� 	 ��� 	� 	 ����	
is an ��-set.	
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       Proof: Using the notation as in the proof of Proposition (3.4), let us assume                       
that there exist �, �, �, � � ��, �, �� and integer numbers � � �, �, �, � � � � � such                
that, 

      ��� � ��� � ��� � ���,                                                          (5)
                     

       with � � � if � � � and � � � if � � �. We distinguish three cases: 

       Case 1. If � � � and � � �, then after canceling �� in (5) we obtain ��� or ���             
which is a contradiction. 

       Case 2. � � � and � � �. In this case, if � � � or �, then after canceling ��                           
in (5) we obtain ���; if � � � or �, then ��� or ���. The case � � � � � leads                              
to ����� � ����� � � � �, which is again a contradiction. On the other hand, if                     
� � � � � � � we obtain � � ����� � � � �.  Now after to consider the different 
possibilities for �, �, �, we obtain the following equalities: 
 

���� � � � � � �,����� � ����� � � � �,������ � ����� � � � ��          (6) 
 

But � � � � � implies that none of the above equations are satisfied. 

       Case 3. � � � and � � �. If �, �, �, � are distinct and � � �, �, � or �, then                          
���, �, � or � which is a contradiction. If two exponents are equal, for example                          
� � � and � � � � �, then we have � � � � ����� � ����� which is absurd. Finally,             
if three exponents are equal, for example � � � � � and � � � � � � �, then                   
equation (5) is nothing else but ����� � � � � � �� Now again after consider all                      
the possibilities for �, �, �, �, we obtain the same equations and conclusions as                             
in (6). 
 
Example 3.5 In the following Table we show some ��-sets obtained for different                     
values of � � �� � �

 
Table 6. Examples based in Proposition 3.5. 

� � � √� ��-sets 
     

5 2 24 4.89 1, 2, 3, 5, 10, 15 
7 2 48 6.9 1, 2, 3, 7, 14, 21 
    1, 2, 4, 7, 14, 28 
    1, 2, 5, 7, 14, 35 
    1, 3, 4, 7, 21, 28 
    1, 3, 6, 7, 21, 42 
    1, 4, 5, 7, 28, 35 
    1, 4, 6, 7, 28, 42 
    1, 5, 6, 7, 35, 42 

 
 

      With a few modifications at the proof of Proposition (3.5), we have: 
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       Proof: Using the notation as in the proof of Proposition (3.4), let us assume                       
that there exist �, �, �, � � ��, �, �� and integer numbers � � �, �, �, � � � � � such                
that, 

      ��� � ��� � ��� � ���,                                                          (5)
                     

       with � � � if � � � and � � � if � � �. We distinguish three cases: 

       Case 1. If � � � and � � �, then after canceling �� in (5) we obtain ��� or ���             
which is a contradiction. 

       Case 2. � � � and � � �. In this case, if � � � or �, then after canceling ��                           
in (5) we obtain ���; if � � � or �, then ��� or ���. The case � � � � � leads                              
to ����� � ����� � � � �, which is again a contradiction. On the other hand, if                     
� � � � � � � we obtain � � ����� � � � �.  Now after to consider the different 
possibilities for �, �, �, we obtain the following equalities: 
 

���� � � � � � �,����� � ����� � � � �,������ � ����� � � � ��          (6) 
 

But � � � � � implies that none of the above equations are satisfied. 

       Case 3. � � � and � � �. If �, �, �, � are distinct and � � �, �, � or �, then                          
���, �, � or � which is a contradiction. If two exponents are equal, for example                          
� � � and � � � � �, then we have � � � � ����� � ����� which is absurd. Finally,             
if three exponents are equal, for example � � � � � and � � � � � � �, then                   
equation (5) is nothing else but ����� � � � � � �� Now again after consider all                      
the possibilities for �, �, �, �, we obtain the same equations and conclusions as                             
in (6). 
 
Example 3.5 In the following Table we show some ��-sets obtained for different                     
values of � � �� � �

 
Table 6. Examples based in Proposition 3.5. 

� � � √� ��-sets 
     

5 2 24 4.89 1, 2, 3, 5, 10, 15 
7 2 48 6.9 1, 2, 3, 7, 14, 21 
    1, 2, 4, 7, 14, 28 
    1, 2, 5, 7, 14, 35 
    1, 3, 4, 7, 21, 28 
    1, 3, 6, 7, 21, 42 
    1, 4, 5, 7, 28, 35 
    1, 4, 6, 7, 28, 42 
    1, 5, 6, 7, 35, 42 

 
 

      With a few modifications at the proof of Proposition (3.5), we have: 
 

Corollary 3.5  If � � � � � � � and � � � � �� � �, then the set 

��� ���� ∪ ��� ∪ ���� 
is an ��-set. 

Example 3.6 If we take � � 7 and � � 2, we obtain the following Table: 

Table 7. Joining 3 7-cycles of length 2. 
 

� � �� � 1 √� ��-sets 
   

48 6.9 2, 3, 4, 14, 21, 28 
  2, 3, 5, 14, 21, 35 
  2, 3, 6, 14, 21, 42 
  2, 4, 5, 14, 28, 35 
  2, 4, 6, 14, 28, 42 
  2, 5, 6, 14, 35, 42 
  3, 4, 5, 21, 28, 35 
  3, 4, 6, 21, 28, 42 
  4, 5, 6, 28, 35, 42 

 
Proposition 3.6  If 1 � �� � �� � �� � �, �� � �� � � � 1 and the set �1, ��, ��, ���
is an ��-set, then the set 

��� ��1� ∪ ���� ∪ ���� 	∪ �����
is an ��-set. 
	

Proof: By Proposition (3.5) in order to prove our assertion, we only have to analyze                
the equation 

�� � ���� � ���� � ����,    (7) 

with 0 � �, �, �, � � �. As in the proof of Proposition (3.5) let � =  min{r,s,u,v}. 
	

1. If � � � � � � � � �, then equation (7) becomes 0 � 1 � �� � �� � ������         
which is a contradiction.    

2. If � � � � � � � � �, we obtain 1 � �� � ������ � ������ which is absurd. 

3. The cases � � � with � � �, �, � and � � � � � � � � � are trivial. 
	

Example 3.7 If � � 11 and � � 2, there exist 36 possibilities for ��, ��, �� which satisfies 
the hypothesis of the Proposition (3.6), we exhibit in the Table 8 only some of such sets. 
Before this note that although this example did not give sets whose cardinality is near to 
√120 � 11, we point out that each of these sets provides examples of �� sets for any values 
less than � � 120. In some cases, we find good examples. 
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Table 8.  Joining 4 11-cycles of length 2. 
	

1, 2, 3, 5, 11, 22, 33, 55 1, 2, 3, 6, 11, 22, 33, 66 
1, 2, 3, 7, 11, 22, 33, 77 1, 2, 3, 8, 11, 22, 33, 88 
1, 3, 5, 10, 11, 33, 55, 110 1, 3, 6, 7, 11, 33, 66, 77 
1, 3, 6, 10, 11, 33, 66, 110 1, 3, 7, 8, 11, 33, 77, 88 
1, 3, 7, 10, 11, 33, 77, 110 1, 4, 6,7,11,44,66,77 
1, 4, 6, 10, 11, 44, 66, 110 1,4,7,9,11,44,77,99 
1, 4, 9, 10, 11, 44, 99, 110 1,5,9,10,11,55,99,110 
1, 6, 7, 8, 11, 66, 77, 88 1,6,9,10,11,66,99,110 
1, 7, 8, 9, 11, 77, 88, 99 1,7,9,10,11,77,99,110 

 

4     Particular Examples	
       So far, we have provided some criteria that allow us to glue �� �-cycles ���, ���,                          
��� such that, the resulting set ��� ���� ∪ ��� ∪ ���� maintains the �� property,                          
the condition on their generators �� �� � is 1 � � � � � � � �. In this section we                        
will try to go a little further. 

4.1   The Case � � �� 

       Let us suppose that 1 � � � � � � � � are the generators of the the �-cycles           
��� ���� ���� ��� and ��� ��������. As always, we want to establish conditions on                       
their generators so that the resulting set ��� ���� ∪ ��� ∪ ���� has the �� property.                 
Now, observe that for this purpose it is easier to establish conditions for which �                      
does not have the �� property. In fact,	� � ��� ��� �� ��� �� ���	����} is not an ��                          
set if there exist distinct ��� ���		��� �� 		 � �  such that �� � �� � �� � ��, then                             
it is evident that this equality leads us to consider a large number of equations.             
Fortunately many of these equations are not possible, for example it is impossible                  
that � � � � �� � �� or � � � � �� � ������� or � � � � � � ��. After check all                    
the possibilities, we must consider only the following equations: 
	

1) � � �� � 1�� � � � �   8)    � � � � �� � 1�� 
2) � � �� � 1�� � �� � �  9)    � � �� � �� � 1�� � � 
3) � � �� � 1�� � �� � �  10)   � � � � �� � 1�� 
4) � � �� �	�� � 1��	 � �  11)   �� � �� � 1�� � �� � ���	 � 1�� 
5) � � � � �� � 1�� � �   12)   �� � �� � �� � 1�� � ���	 � 1�� 
6) � � � � �� � 1��   13)   �� � � � �� � 1�� � ���	 � 1�� 
7) � � � � �� � 1�� � �   14)   �� � 1�� � �� � �� � ���	 � 1�� 

 
      Equation 6 corresponds to case � � ������� � � � ��, equation 11 corresponds                   
to case � � ������� � �� � �� and so on. To illustrate, we consider � � � and we                    
will to analyze the equations 3, 5, 6, 9, 10 and 12. 
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Table 8.  Joining 4 11-cycles of length 2. 
	

1, 2, 3, 5, 11, 22, 33, 55 1, 2, 3, 6, 11, 22, 33, 66 
1, 2, 3, 7, 11, 22, 33, 77 1, 2, 3, 8, 11, 22, 33, 88 
1, 3, 5, 10, 11, 33, 55, 110 1, 3, 6, 7, 11, 33, 66, 77 
1, 3, 6, 10, 11, 33, 66, 110 1, 3, 7, 8, 11, 33, 77, 88 
1, 3, 7, 10, 11, 33, 77, 110 1, 4, 6,7,11,44,66,77 
1, 4, 6, 10, 11, 44, 66, 110 1,4,7,9,11,44,77,99 
1, 4, 9, 10, 11, 44, 99, 110 1,5,9,10,11,55,99,110 
1, 6, 7, 8, 11, 66, 77, 88 1,6,9,10,11,66,99,110 
1, 7, 8, 9, 11, 77, 88, 99 1,7,9,10,11,77,99,110 

 

4     Particular Examples	
       So far, we have provided some criteria that allow us to glue �� �-cycles ���, ���,                          
��� such that, the resulting set ��� ���� ∪ ��� ∪ ���� maintains the �� property,                          
the condition on their generators �� �� � is 1 � � � � � � � �. In this section we                        
will try to go a little further. 

4.1   The Case � � �� 

       Let us suppose that 1 � � � � � � � � are the generators of the the �-cycles           
��� ���� ���� ��� and ��� ��������. As always, we want to establish conditions on                       
their generators so that the resulting set ��� ���� ∪ ��� ∪ ���� has the �� property.                 
Now, observe that for this purpose it is easier to establish conditions for which �                      
does not have the �� property. In fact,	� � ��� ��� �� ��� �� ���	����} is not an ��                          
set if there exist distinct ��� ���		��� �� 		 � �  such that �� � �� � �� � ��, then                             
it is evident that this equality leads us to consider a large number of equations.             
Fortunately many of these equations are not possible, for example it is impossible                  
that � � � � �� � �� or � � � � �� � ������� or � � � � � � ��. After check all                    
the possibilities, we must consider only the following equations: 
	

1) � � �� � 1�� � � � �   8)    � � � � �� � 1�� 
2) � � �� � 1�� � �� � �  9)    � � �� � �� � 1�� � � 
3) � � �� � 1�� � �� � �  10)   � � � � �� � 1�� 
4) � � �� �	�� � 1��	 � �  11)   �� � �� � 1�� � �� � ���	 � 1�� 
5) � � � � �� � 1�� � �   12)   �� � �� � �� � 1�� � ���	 � 1�� 
6) � � � � �� � 1��   13)   �� � � � �� � 1�� � ���	 � 1�� 
7) � � � � �� � 1�� � �   14)   �� � 1�� � �� � �� � ���	 � 1�� 

 
      Equation 6 corresponds to case � � ������� � � � ��, equation 11 corresponds                   
to case � � ������� � �� � �� and so on. To illustrate, we consider � � � and we                    
will to analyze the equations 3, 5, 6, 9, 10 and 12. 

       The following Table contains the solutions: 
  
 

Equation Solutions 
  

 
�3������� � �� � 1�� � �� � 0 

�1, 2, 20�; �1, 3, 27�; �1, 4, 34�; �1, 5, 39�; 
�1, 6, 48� 
�2, 3, 33�; �2, 4, 40�; �2, 5, 47�. 
�3, 4, 46� 

 
 

�5������� � � � �� � 1�� � 0 

�1, 2, 13�; �1, 3, 19�; �1, 4, 25�; �1, 5, 31�; 
�1, 6, 37�. 
�2, 3, 20�; 2, 4, 26�; �2, 5, 32�; �2, 6, 38�. 
�3, 4, 27�; �3, 5, 33�; �3, 6, 39�. 
�4, 5, 34�; �4, 6, 40�. 
�5, 6, 41�. 

 
 
 
 
 

�6������ � � � �� � 1�� 

�1, �, 9, 1�; �1, �, 17, 2�; �1, �, 25, 3�; 
�1, �, 33, 4�; �1, �, 41, 5�. 
�2, �, 10,1�; �2, �, 18, 2�; �2, �, 26, 3�; 
�2, �, 34, 4�; �2, �, 42, 5�. 
�3, �, 11, 1�; �3, �, 19, 2�; �3, �, 27, 3�; 
�3, �, 35, 4�; �3, �, 43, 5�. 
�4, �, 12, 1�; �4, �, 20, 2�; �4, �, 28, 3�; 
�4, �, 36, 4�; �4, �, 44, 5�. 
�5, �, 13, 1�; �5, �, 21, 2�; �5, �, 29, 3�; 
�5, �, 37, 4�, �5, �, 45, 5�. 
�6, �, 14, 1�; �6, �, 22, 2�; �6, �, 30, 3�; 
�6, �, 38, 4�; �6, �, 46, 5�. 

 
 

�9������ � �� � �� � 1�� � 0 

�1, 3, 11�; �1, 4, 17�; �1, 5, 23�; �1, 6, 29�. 
�2, 4, 10�; �2, 5, 16�; �2, 6, 22�. 
�3, 5, 9�; �3, 6, 15�. 
�4, 6, 8�. 

 
 

�10������� � � � �� � 1�� 

��, 3, 9, 1� 
��, 4, 10, 1�. 
��, 5, 11, 1�; ��, 5, 17, 2�. 
��, 6, 12, 1�; ��, 6, 18, 2�. 

 
(12) 

��� � ��� � �� � 1����� � � ���2 � 1�� 

�1, 2, 37, 5�; �1, 3, 31, 4�; �1, 4, 25, 3�; 
�1, 5, 19, 2�; �1, 6, 13, 1�. 
�2, 3, 32, 4�; �2, 4, 26, 3�; �2, 5, 20, 2�. 
�3, 4, 27, 3�. 

 

       Note that equations containing ������� such that �6�, �10� and �12�, have                             
as solutions quadruples ��, �, �, ��. The value � appears because � � � � 7                              
and therefore, �� � ��� � 1�� � ������� � 48� � �7��. The other equations have                  
as solutions triples ��, �, ��. The first solution of the equation �6� for example, says                  
that the set � = {1, 7, k, 7k, 9, 15} is not an �� set for 2 � � � 6. The following                       
Table contains all the �� sets which were obtained joining three 7-cycles of length                       
2 whose generators satisfy the condition 1 � � � � � � � �. 
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Table 9. �� sets as union of three 7-cycles of length 2. 
 

1,2,7,11,14,29 1,4,7,11,28,29 1,5,7,26,35,38 
1,2,7,12,14,36 1,4,7,13,28,43 1,5,7,27,35,45 
1,2,7,14,27,45 1,4,7,18,28,30 1,5,7,34,35,46 
1,3,7,10,21,22 1,4,7,19,28,37 1,6,7,10,22,42 
1,3,7,12,21,36 1,4,7,26,28,38 1,6,7,11,29,42 
1,3,7,13,21,43 1,4,7,27,28,45 1,6,7,20,42,44 
1,3,7,18,21,30 1,5,7,10,22,35 1,6,7,26,38,42 
1,3,7,20,21,44 1,5,7,12,35,36 1,6,7,27,42,45 
1,3,7,21,26,38 1,5,7,18,30,35 1,6,7,34,42,46 
1,3,7,21,34,46 1,5,7,20,35,44  

       The next Table should be read as follows: The two generators �� � that appear                       
in the left-hand column can be put together with exactly one generator � in the                       
second column to obtain an �� set � � ��� ��� �� ��� �� �������. for example,                              
line 4 says that the sets �� � ��� �� �� ��� ��� ���, �� � ��� �� ��� ��� ��� ���,                              
�� � ��� �� ��� �7� ��� ���, �� � ��� �� ��� ��� ��� ���, �� � ��� �� ��� �7� ��� ���,                         
�� � ��� �� �� ��� ��� ��� ���, and �� � ��� �� ��� ��� ��� �7� are �� sets. 

Table 10. 

 
�� � � 
  

2,3 12,17,25,41 
2,4 9,11,13,17,19,25,27,33,41 
2,5 9,12,19,25,27,33 
2,6 9,11,17,20,27,33,41 
3,4 5,6,13,17,18,25,26,33,41 
3,5 6,10,12,18,20,26,34,41 
3,6 10,13,17,20,25,26,34,41 
4,5 6,9,18,19,25,26,33,41 
4,6 9,11,13,17,19,25,27,33,34,41, 
5,6 9,10,19,20,25,26,27,33 

4.2 The Case � � ��� 
With the notations as in Proposition 3.1, let � be an integer number, � � �� and 

i� � � � � � ���. . . ����� � ��ˆ � �����. . . ����. 
With this assumption, we have the following proposition: 

Proposition 4.2.1  The set �� � � ����� �i�� is an �� set. 

Proof: As always, we will assume that �� � � ����� �i�� has not the �� property. If                       
this   occurs,   then  at  least  one  of  following  equalities  is  satisfied.   For   simplicity   we                              
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Table 9. �� sets as union of three 7-cycles of length 2. 
 

1,2,7,11,14,29 1,4,7,11,28,29 1,5,7,26,35,38 
1,2,7,12,14,36 1,4,7,13,28,43 1,5,7,27,35,45 
1,2,7,14,27,45 1,4,7,18,28,30 1,5,7,34,35,46 
1,3,7,10,21,22 1,4,7,19,28,37 1,6,7,10,22,42 
1,3,7,12,21,36 1,4,7,26,28,38 1,6,7,11,29,42 
1,3,7,13,21,43 1,4,7,27,28,45 1,6,7,20,42,44 
1,3,7,18,21,30 1,5,7,10,22,35 1,6,7,26,38,42 
1,3,7,20,21,44 1,5,7,12,35,36 1,6,7,27,42,45 
1,3,7,21,26,38 1,5,7,18,30,35 1,6,7,34,42,46 
1,3,7,21,34,46 1,5,7,20,35,44  

       The next Table should be read as follows: The two generators �� � that appear                       
in the left-hand column can be put together with exactly one generator � in the                       
second column to obtain an �� set � � ��� ��� �� ��� �� �������. for example,                              
line 4 says that the sets �� � ��� �� �� ��� ��� ���, �� � ��� �� ��� ��� ��� ���,                              
�� � ��� �� ��� �7� ��� ���, �� � ��� �� ��� ��� ��� ���, �� � ��� �� ��� �7� ��� ���,                         
�� � ��� �� �� ��� ��� ��� ���, and �� � ��� �� ��� ��� ��� �7� are �� sets. 

Table 10. 

 
�� � � 
  

2,3 12,17,25,41 
2,4 9,11,13,17,19,25,27,33,41 
2,5 9,12,19,25,27,33 
2,6 9,11,17,20,27,33,41 
3,4 5,6,13,17,18,25,26,33,41 
3,5 6,10,12,18,20,26,34,41 
3,6 10,13,17,20,25,26,34,41 
4,5 6,9,18,19,25,26,33,41 
4,6 9,11,13,17,19,25,27,33,34,41, 
5,6 9,10,19,20,25,26,27,33 

4.2 The Case � � ��� 
With the notations as in Proposition 3.1, let � be an integer number, � � �� and 

i� � � � � � ���. . . ����� � ��ˆ � �����. . . ����. 
With this assumption, we have the following proposition: 

Proposition 4.2.1  The set �� � � ����� �i�� is an �� set. 

Proof: As always, we will assume that �� � � ����� �i�� has not the �� property. If                       
this   occurs,   then  at  least  one  of  following  equalities  is  satisfied.   For   simplicity   we                              

 

write in this prove ����� instead of  ��������. 

����� � �� � �� � ��� ����� � ��� � ��� � ���
����� � �� � �� � ��������� ����� � ��� � ��� � ���������
����� � �� � ��� � ��� ����� � ��� � ��������� � ���������
����� � �� � ��� � ��������� ����� � ��������� � ��������� � ���������
����� � �� � ��������� � ���������.

 

       We must show that if one of these equations is satisfied, then we obtain a           
contradiction. We give the proof of equations 4,7 and 9 only for some particular                              
cases. 

       For equation 4, let us suppose that � � � � �� � �� � � � � with � � �� � � � �, 
then by (2) the equation defined by item 4, can be rewritten as 

    �� � �� � ��� � ��� � ������i������.                  (8) 

       If � � �, after we cancel common powers in (8) we obtain: 

 ��. ����	��	������	��		�� � � � �� � ���	�. . . ����� � �����	�. . . �	���. 
       These equalities imply that ���������� which is absurd. On the other hand, � � �               
carries us again to the absurd divisibility relation ������. 
 
       Now, suppose that the equation defined by item 7 holds; i.e., 

            �� � ��i � ��i� �������i�.              
(9) 

       Note that implicitly � � �� � � �� � �. Moreover, we have assumed that                              
� � � � �� � � and � � � � � � �� � � � �� � �� with � � �� � � � �. 

       Under these hypotheses and using (2), we have ����� which is absurd. On the                  
other hand, if � � �� � �� � �, then again by (2) we have: 

�� � ��i����� � �� � �������������� � i������������.         (10) 
 
       And therefore, if � � �� it is clear that we have a contradiction, but if �� � �                           
(10) becomes, 

�� � ��i����� � �� � ���������� � i���.                      (11) 
 
       Now � � � implies ��i, while � � � lead us to ������, both facts being absurd. 
 
       Finally, to analyze the equation �� � �������i� � �������i� � �������i� defined        
by item 9, we will assume that � � � � �� � � and � � �� � �� � � � �� � �� � �. 
Now again by (2), we have: 
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									�� � ��� � ������ � ��� � ������ � i���������� � ��������������.           (12) 

      Now this equality is the same as 

  �� � ������ � ������������� � ������ � i���������� � ��������������.             (13)  

and consequently �|i���������� which is impossible. 

 

Example 4.2.1 Taking � � 2 and � � ��	we have that i � 2� and by Propositions            
(4.2.1.) and (3.1) the set 

� � ��� 2� 4� 8� ��� 2�� 32� 54� �4� ��� �08� �28� �4�� ���� ��8� 2��	�	
is an �� set in the integer interval ��� 255�. Note that we have actually provided                              
a good example of an �� set which has a nice property: For each element �� 	� 	�                         
the subset 	��� � 	�	⋂ 	 ��� � � is a good �� set. 
	

4.3 The Case � � 3� 

      The following Proposition provides a criterion to construct �� sets in the integer                  
interval ��.80� by joining two �� 3-cycles of length 4. By Theorem (5.1) and                    
Corollary (3.4) we have that the set of generators of �� 3-cycles of length 4 is � �
��� 2� �� ��� �3� �4� ��� 22� 23� 2�� 4�� 53�. 
Proposition 4.3.1  Let �� � � � such that � � �	 � �	����	2�, then �	 � ��	�	�	�	�	�	��                  
is an �� set. 

Proof: To begin with, observe that � is not an �� set if and only if there exists                
��� �� �� ��, with � � ��� � � � and �� �� �� � � �0� �� 2� 3� such that one of the                     
following congruencies is satisfied: 
 

     3�	� � 	3�		�	 � 	3�	� �	3�	�	����	�80��                      (14) 

     3�	� � 	3�		�	 � 	 3�	� �	3�	�	����	�80��               (15) 

         3�	� � 	3�		�	 � 	3�	� �	3�	�	����	�80��                 (16) 

       If  3�	� + 3�	�	+   3�	� (mod (80)) and I = 2�. By parity arguments, the                       
congruence (14) is equivalent to:  

20� � 	3�	i	 �3
��� � �
2 � � 3�	�2� � ��		�3

��� � �
4 �. 

 

      Now since �3��� � ���4 is 1 or 7, then �3��� � ���2 must be equal to 5 and hence                
5|2� +1 which is a contradiction.  
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       On the other hand if i = 2�+1 and keeping in mind that 3� � � � 2.�	��	2�,                      
then congruence (15) is equivalent to: 
	

2�� � 	3�	�	 �3
��� � �
2 � � 3�	�2i� ��	 ∙ 2	. 

 
      This equality implies that �3��� � ���2 must be even and hence equals to 4.         
Consequently 

��� � 3� ∙ 2	 ∙ � � 3��2i� ��, 
which is again an contradiction. 
	
       Finally, congruence (16) is nothing but 
 

��� � 3���� � 3��� � 3���� � 3��. 
 
      But this is impossible since the RHS is negative. 
	
Example 4.3.1 By Proposition (4.3.1), we can put together the following 3-cycles            
generated by � and � (Table): 
 

� � 
  

1 2,14,22,26 
2 7,11,13,17,23,41,53 
7 14,22,26 

11 14,22,26 
13 14,22,26 
14 17,23,41,53 
17 22,26 
22 23,41,53 
23 26 
26 41,53 

 

       The following Table contains some of these sets: 

Table 11.   Union of two 3-cycles of length 4. 

1, 2, 3, 6, 9, 18, 27, 54 2, 6, 11, 18, 19, 33, 54, 57 
2, 6, 18, 53, 54, 71, 77, 79 7, 14, 21, 29, 42, 46, 58, 63 

7, 21, 22, 29, 34, 38, 63, 66 11, 14, 19, 33, 42, 46, 57, 58 
13, 22, 31, 34, 37, 38, 39, 66 14, 42, 46, 53, 58, 71, 77, 79 
17, 22, 34, 38, 51, 59, 66, 73 22, 34, 38, 53, 66, 71, 77, 79 
23, 26, 47, 61, 62, 69, 74, 78 26, 53, 62, 71, 74, 77, 78, 79 
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5       Curves with many rational points over finite fields 
 

      We consider the non-singular complete irreducible Kummer curve � over �� defined              
by the affine equation: 

�� � ����� 
where �|� � � and the rational function �(x) ∈	 ����� satisfies the following                 
conditions: 

1. � is not the �-th power of an element �	 ∈ 	��	��� for any divisor � � � of  �; 

2. � � � on a substantial subset ��	of  ℙ�	����; 
3. ���� has many multiple zeros and poles. 

      For details about this conditions and proofs we refer (7) and (11). With above                         
notation we have: 
	

Proposition 5.1 ((11), Proposition 2.1)  The curve � over the finite field �� given                         
by the Kummer equation �� � ����, where � divides � � � and the rational function            
���� is not the �-th power of an element ���� ∈ 	��	��� for any divisor � of � with                 
� � �, has the following properties: 

    1. If ��� � ∑ ������ � ��	 is the divisor of � with distinct  ��	 ∈ 	ℙ�	���� and there                 
exists � such that gcd��� |��|� � �, then the genus � of � is given by 

��	��� � � � � � �� � �� �		� 	
�

���
������ |��|�.			 

2. The set of  �� �rational points (essentially) satisfies |�����|� � �	|��	|.		 
 

       Proof: For details and proofs, we refer to the literature on algebraic function                 
fields for instance, (12). 

       Now, let us explain briefly how construct such rational functions �: Let                              
ℓ��� ∈ �����, and we denote by  �ℓ  the set �� ∈ ��; 	ℓ�α� � ��.   

1. We split ℓ���	as	ℓ��� � ���� � 	����	����	����� ���� 	∈ 	�����. We denote the 
zero sets (in ��) of � (resp �) by �� (resp ,��), then the rational function 

������ � ����
���� 

     satisfies  ��α� � �	fo�	α	 ∈ 	�ℓ � ��� ⋃���.   
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�	 � 	��∘���
∗ 	

2. Given  ���� � �����, we will denote by  �ℓ	������ the remainder of the            
Euclidean division of ���� by ℓ(x). In this way, we have (essentially):  

ℓ��� � �	 � ����
�ℓ������ 		� �.					 

       In accordance with above observation, we need consider polynomials                              
ℓ��� � ����� having many roots in ��. 
	

Definition 5.1 A polynomial	���� 	� 	��	���  is a restricted range polynomial if                  
���� � �		 	���⊂  for some proper subset of �� and for all  � � 		 ��.	 In particular,                      
when  � �	��,we say that ���� is a ���� 	���-polynomial. 

       A classical example of restricted range polynomial is the norm polynomial 
���		̸	��	��� � �����	���� 	� �����. 
 

Definition 5.2 A nonzero ���� ��� �polynomial ���� � ����� will be called                            
minimal, if deg������ � � � � and none its proper partial sums is a ���� ���-          
polynomial. 

       We recall briefly some properties of ���� ���-polynomial. For proofs, we refer                   
to (5) and (13). 

Proposition 5.2 (13) ���� 	���-polynomials are surjective. 
 

Theorem 5.1 (5) (Characterization of ���� 	���-polynomials) The exponent sets                            
of the minimal ���� 	���-polynomials are the �-cycles of set ��� . . . � � � ��. For each                   
�-cycle �, all the minimal ���� 	���-polynomials with exponent set � are: 

ƒ�	��� �� � 	 � ���	��⊓� 		
������

���
 

  

       where � is an arbitrary but fixed representative of �. In addition, we have                              
all the different ���� 	���-polynomials of less or equal degree to � � � by sums of 
polynomials ��	��� �) corresponding to different cycles. 
	

Example 5.1 : Using Theorem 5.1 and Example 2.2, we exhibit some ����	� ���-
polynomials. 

��� ���
� � �� � �� �� � �� � ��� �� � ��� � ��� �� � ��� � ���
�� � ��� � ��� �� � ��� � ��� ��� � ��� � ��� ��� � ��� � ���
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�� � ����� 
where �|� � � and the rational function �(x) ∈	 ����� satisfies the following                 
conditions: 

1. � is not the �-th power of an element �	 ∈ 	��	��� for any divisor � � � of  �; 

2. � � � on a substantial subset ��	of  ℙ�	����; 
3. ���� has many multiple zeros and poles. 

      For details about this conditions and proofs we refer (7) and (11). With above                         
notation we have: 
	

Proposition 5.1 ((11), Proposition 2.1)  The curve � over the finite field �� given                         
by the Kummer equation �� � ����, where � divides � � � and the rational function            
���� is not the �-th power of an element ���� ∈ 	��	��� for any divisor � of � with                 
� � �, has the following properties: 

    1. If ��� � ∑ ������ � ��	 is the divisor of � with distinct  ��	 ∈ 	ℙ�	���� and there                 
exists � such that gcd��� |��|� � �, then the genus � of � is given by 

��	��� � � � � � �� � �� �		� 	
�

���
������ |��|�.			 

2. The set of  �� �rational points (essentially) satisfies |�����|� � �	|��	|.		 
 

       Proof: For details and proofs, we refer to the literature on algebraic function                 
fields for instance, (12). 

       Now, let us explain briefly how construct such rational functions �: Let                              
ℓ��� ∈ �����, and we denote by  �ℓ  the set �� ∈ ��; 	ℓ�α� � ��.   

1. We split ℓ���	as	ℓ��� � ���� � 	����	����	����� ���� 	∈ 	�����. We denote the 
zero sets (in ��) of � (resp �) by �� (resp ,��), then the rational function 

������ � ����
���� 

     satisfies  ��α� � �	fo�	α	 ∈ 	�ℓ � ��� ⋃���.   
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Remark 5.1  Proposition 5.2 says that each  ���� 	���-polynomial is surjective,                     
hence, we can use this fact to construct appropriate rational functions which leads                      
us to obtain curves over the finite field  �� with good parameters. The following              
examples explain how. The reader who is not familiar with the concepts of                         
algebraic function fields (i.e., algebraic curves) as genus, rational points etc is                   
referred to (12). 
	

Example 5.2  The curve � over �� given by �� � ���� � �� � �� � 2�� � 2� has        
���� � 2 and 20 rational points. The best value possible, cf (2). 

       The affirmation is clear. Let us briefly explain how we obtained this equation.             
Observe that there are 3 3-cycles of length 2, namely ���3�� �2��� and �����,                              
then set ���3����� which is not an �� set! induces the ���� ���-polynomial                              
ℓ��� 	� �� � �� � �� � � which has its roots in ��. We will take advantage of                         
this fact to construct our curve. In general, given two co-primes polynomials ℓ���� ���� �
����� and ��� � �, the Euclidean division 

����� � ℓ��� ∙ 	���� � �ℓ��������	
implies that for each �	 � �� root of ℓ���� �ℓ���������� � ������ 	�. �. � �ℓ����������                
is an �-th power in ��, therefore the polynomial �� � �ℓ���������� splits                     
completely en �����, this means many points. Now in our situation taking                              
���� � �� � ��	�� � ����� � 2�� � 2� we have, �ℓ������� � ���� � �� � �� � 2�� �
2�, this carry us to our equation. 

Example 5.3 The curve � over ��� given by �� � ���� � 2�� � �� � ��� has                  
���� � � and #������ � 3�. 

       By Proposition 3.4, the union of the underlying sets of the 3-cycles ���3���                          
and �2������ is an �� set. This set induces the ���� � 	 ���-polynomial ℓ��� � ��� � �� �
�� � �� � �� � � which induces the rational function ���� � ����� � ������ � 2�� �
�� � ��� and consequently the algebraic curve � over ���$ defined by the equation: 

�� � ���� � 2�� � �� � ���. 
(Here we split ℓ���	as	ℓ��� � ℓ���� � ℓ����	�����	ℓ���� � � � �� and ℓ���� � �� �
�� � �� � ��� = ���� � ������ � 2�� � �� � ���. Observe that the places             
corresponding to � � � and � � �� are unramified.) 

      It is easy to see that the curve � has genus � � �. For the number of rational                   
points (or places of degree one in the language of algebraic function fields), observe                
that ����ℓ���� ��� � �� � � � �� � �� � 2�� � �� � 2�� � ��, therefore the curve              
� has at least $2 ∙ #ℓ����� � 2 ∙ � � ��. We use computer program                             
Mathematica to complete the determination of the rational points, we refer to (11), Remark 
2.2 for details. 

Example 5.4  The �� 3-cycle of length 3, ���� 2�� 23� induces the minimal                             
���� � 	 ���-polynomial ℓ��� � ��� � ��� � ��� which has 9 roots in ���, namely the 
zeros  
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us to obtain curves over the finite field  �� with good parameters. The following              
examples explain how. The reader who is not familiar with the concepts of                         
algebraic function fields (i.e., algebraic curves) as genus, rational points etc is                   
referred to (12). 
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���� � 2 and 20 rational points. The best value possible, cf (2). 

       The affirmation is clear. Let us briefly explain how we obtained this equation.             
Observe that there are 3 3-cycles of length 2, namely ���3�� �2��� and �����,                              
then set ���3����� which is not an �� set! induces the ���� ���-polynomial                              
ℓ��� 	� �� � �� � �� � � which has its roots in ��. We will take advantage of                         
this fact to construct our curve. In general, given two co-primes polynomials ℓ���� ���� �
����� and ��� � �, the Euclidean division 
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is an �-th power in ��, therefore the polynomial �� � �ℓ���������� splits                     
completely en �����, this means many points. Now in our situation taking                              
���� � �� � ��	�� � ����� � 2�� � 2� we have, �ℓ������� � ���� � �� � �� � 2�� �
2�, this carry us to our equation. 

Example 5.3 The curve � over ��� given by �� � ���� � 2�� � �� � ��� has                  
���� � � and #������ � 3�. 

       By Proposition 3.4, the union of the underlying sets of the 3-cycles ���3���                          
and �2������ is an �� set. This set induces the ���� � 	 ���-polynomial ℓ��� � ��� � �� �
�� � �� � �� � � which induces the rational function ���� � ����� � ������ � 2�� �
�� � ��� and consequently the algebraic curve � over ���$ defined by the equation: 

�� � ���� � 2�� � �� � ���. 
(Here we split ℓ���	as	ℓ��� � ℓ���� � ℓ����	�����	ℓ���� � � � �� and ℓ���� � �� �
�� � �� � ��� = ���� � ������ � 2�� � �� � ���. Observe that the places             
corresponding to � � � and � � �� are unramified.) 

      It is easy to see that the curve � has genus � � �. For the number of rational                   
points (or places of degree one in the language of algebraic function fields), observe                
that ����ℓ���� ��� � �� � � � �� � �� � 2�� � �� � 2�� � ��, therefore the curve              
� has at least $2 ∙ #ℓ����� � 2 ∙ � � ��. We use computer program                             
Mathematica to complete the determination of the rational points, we refer to (11), Remark 
2.2 for details. 

Example 5.4  The �� 3-cycle of length 3, ���� 2�� 23� induces the minimal                             
���� � 	 ���-polynomial ℓ��� � ��� � ��� � ��� which has 9 roots in ���, namely the 
zeros  

Example 5.4 The �� 3-cycle of length 3, �17� 2�� 23� induces the minimal                             
���� � 	 ���-polynomial ℓ��� � ��� � ��� � ��� which has 9 roots in ���, namely the 
zeros  

of the polynomial ���� � � � �� � �� � ��1 � ���2 � ���2 � �� � ����1 � 2�� � ���. 
If we split ℓ��� as ℓ��� � ��� � ������ � 1� and consider the rational function               
������ ������ � 1�, then for each α root of ����, ���� � 1. 

       Now, the curve � over ��� defined by the Kummer equation 

��� � ������ ������ � 1�� 
has genus � � 2� and 208 rational points. This is the best value know for ��� �� �
�27�2�� (see (2)). 
	

Example 5.5  We will construct here two maximal curves �	� and �	�	over  ���                      
with ���	�� � 1 and ���	�� � 3. 

       In Table 9, we exhibit some �� sets � ⊂	��� which was obtained as                              
union of 3 7-cycles of length 2. For this example we consider the set �	 �
�1�2�7�11�1��2�� � �〈1〉 	∪ 	 〈2〉 		∪ 〈11〉, this set induces the ���� � 	���-polynomial 
ℓ��� 	� 	� � �� � �� � ��� � ��� � ���. By Proposition 5.2 there exist a subset                      
� ⊂ ��� such that ℓ(�) = 1 and after some computations we obtain that � is the                        
zero set of the polynomial ���� � 1 � � � �� � ��� � ��. We use this polynomial                     
to construct our curves instead of ℓ(x), the reason is that ℓ(x) has high degree compared             
to ���. Now we split ���� as ���� � �1 � � � ��� � ��� � �����, the polynomial                   
1 � � � ��� � �� can be factored as 1 � � � ��� � �� � �� � ����� � �� and therefore 
we consider the Kummer cover defined by the equation 

�� � 	 ��
�� � ���	�� � �� 									���� 

This algebraic function field has genus � � � � � with � � ������ 3�. This gives,                 
for �	 � 	2� ����� � 1 and for � � �� ����� � 3, the rational points satisfies                       
��� � ��	���	�	�� � �2 (see tables in (3)). 
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