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Resumen. En este art́ıculo nosotros investigaremos la normalidad en clases
(WN) y (Y).

1. Introduction

Let H be a complex Hilbert space with inner product 〈,〉 and let B(H) be the
algebra of all bounded linear operators on H. For A in B(H) the adjoint of A

is denoted by A∗. For any operator A in B(H) set, as usual, | A |= (A∗A)
1
2

and [A∗, A] = A∗A − AA∗ = | A |2 − | A∗ |2 (the self commutator of A), and
consider the following standard definitions: A is hyponormal if | A∗ |2 ≤ | A |2
(i.e., if [A∗, A] is nonnegative or, equivalently, if ‖A∗x‖ ≤ ‖Ax‖ for every x
in H), normal if A∗A = AA∗, quasinormal if A∗A commutes with A, and
m-hyponormal if there exists a positive number m, such that

m2(A− λI)∗(A− λI)− (A− λI)(A− λI)∗ ≥ 0, for all λ ∈ C.

Let (N), (QN), (H), and (m − H) denote the classes constituting of normal,
quasinormal, hyponormal, and m-hyponormal operators. Then

(N) ⊂ (QN) ⊂ (H) ⊂ (m−H).

An operator T in B(H) is said to be hermitian if T = T ∗. It is well known
that hermitian operators can be characterized in the following way: an operator
T in B(H) is hermitian if and only if 〈Tx, x〉 is real. In [3] the authors gave an
other characterization involving inequalities. We denote by (WN) the class of
operators in B(H) satisfying the following inequality

(Re T )2 ≤ |T |2 ,
87



88 SALAH MECHERI

where Re T = (T+T∗)
2 is the real part of T and we will write ImT = (T−T∗)

2 for
the imaginary part of T . This class has been introduced by Fong and Istratescu
[3] who conjectured:

If T ∈ (WN) and σ(T )(the spectrum of T ) is real, then T is hermitian. It
is known that if in addition T is hyponormal or T +T ∗ commutes with TT ∗ or
if H is finite-dimensionel the conjecture holds [3, Corollary 2.2]. Notice that T
is hermitian if and only if

(Re T )2 ≥ |T |2 . (1.1)

By reversing the inequality (1.1) we obtain the class (WN). This class contains
the class of hyponormal operators. Indeed, T hyponormal implies that

(ReT )2 + (ImT )2 ≤ |T |2 .

Since (ImT )2 is a positive operator,

(Re T )2 ≤ |T |2 ,

that is, T ∈ (WN). In this note we will investigate the normality in (WN).
A is said to be of class Yα for α ≥ 1 if there exists a positive number kα

such that

|AA∗ −A∗A|α ≤ k2
α(A− λ)∗(A− λ) for all λ ∈ C .

It is known that Yα ⊂ Yβ if 1 ≤ α ≤ β. Let Y = ∪1≤αYα. We remark that a
class Y1 operator A is M -hyponormal, i.e., there exists a positive number M
such that

(A− λI)(A− λI)∗ ≤ M2(A− λI)∗(A− λI) for all λ ∈ C ,

and M -hyponormal operators are class Y2 (see[13]).
In [15] Weber shows that every compact operator in R(δA)

w ∩ {A}′ is
quasinilpotent, where {A}′ denotes the commutant of A, δA stands for the
derivation operator generated by A, i.e., δA(X) = AX − XA, R(δA) is the
range (image) of δA and R(δA)

w
is its weak closure. In [7] we showed that We-

ber’s result is a consequence of a more general result. A reasonable conjecture
is the following:

(S) Let T be a compact operator. If T ∈ R(δA)
w ∩ {A∗}′, then T is

quasinilpotent, where {A∗}′ is the commutant of the adjoint of A.
In [7], [8] it is proved that if A is normal, subnormal, dominant or m-

hyponormal, then the conjecture holds. In this paper we shall see that the
conjecture holds for an interesting class of operators which includes hyponor-
mal operators. It is clear that the class (Y) contains the class of normal oper-
ators. In the following we will denote the spectrum, the point spectrum, the
approximate reduced spectrum, and the approximate spectrum of an operator
A ∈ B(H) by σ(A), σp(A), σar(A), and σa(A) respectively (see [7]). In this
paper we will investigate the normality in (Y).
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2. Preliminaries

Let us list some spectral properties of operators in (WN).

Proposition 2.1. [3] Suppose that T ∈ B(H) is in (WN). Then we have
(i) If λ is a real number, then T − λ is also in (WN).
(ii) ‖(T − λ)∗x‖ ≤ 3 ‖(T − λ)x‖ , for all x ∈ H and all real number λ.
(iii) If M is an invariant supspace of T , then T |M is also in (WN); if

furthermore, T |M is hermitian, then M reduces T .
(iv) If λ is real eigenvalue of T , then the eigenspace ker(T − λ) reduces T.
(v) If λ is real and (T − λ)nx = 0 for some n ≥ 1, then (T − λ)x = 0.

Remark 2.1. As a consequence of the previous proposition, if (λn)n∈N is a
countable sequence of real eigenvalues of T in (WN), then H = M ⊕M⊥ and
T |M is hermitian where M = ⊕n≥0 ker(T − λnI).

3. Normality in (Y)-classes

Let us begin by the following Berberian techniques [2]: Let H be a complex
Hilbert space. Then there exists an Hilbert space H◦ ⊃ H, and an isometric
*–homomorphism

ϕ : B(H) 7→ B(H◦) (A 7→ A◦)
preserving order, i.e., for all A,B ∈ B(H) and for all α, β ∈ C we have:

(1) ϕ(A∗) = ϕ(A)∗;
(2) ϕ(αA + βB) = αϕ(A) + βϕ(B);
(3) ϕ(IH) = IH◦ ;
(4) ϕ(AB) = ϕ(A)ϕ(B);
(5) ‖ ϕ(A) ‖=‖ A ‖;
(6) ϕ(A) ≤ ϕ(B) if A ≤ B;
(7) σ(ϕ(A)) = σ(A), σa(A) = σa(ϕ(A)) = σp(ϕ(A));
(8) if A is a positive operator, then ϕ(Aα) = | ϕ(A) |α for all α > 0.

Lemma 3.1. If S ∈ (Y), then ϕ(S) ∈ (Y).

Proof. If S ∈ (Y), then there exists α ≥ 1 and kα > 0 such that

| TT ∗ − T ∗T |α ≤ k2
α(T − λI)∗(T − λI), for all λ ∈ C.

It follows from the properties of the map ϕ that

ϕ(| TT ∗ − T ∗T |α) ≤ ϕ(k2
α(T − λI)∗(T − λI)), for all λ ∈ C.

By the condition (8) above we have

ϕ(| TT ∗ − T ∗T |α) = | ϕ(TT ∗ − T ∗T ) |α ,

for all α > 0. Therefore

|ϕ(T )ϕ(T ∗)− ϕ(T ∗)ϕ(T )|α ≤ ϕ(k2
α(T − λI)∗(T − λI)), for all λ ∈ C.

Hence ϕ(T ) ∈ (Y). ¤X
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Now we will present some spectral properties of the class (Y).

Theorem 3.1. Let S ∈ (Y).
(i) If λ ∈ σp(S), then λ ∈ σp(S∗), furthermore if λ 6= µ, then Mλ (the

proper subspace associated with λ) is orthogonal to Mµ;
(ii) If λ ∈ σa(S), then λ ∈ σa(S∗);
(iii) SS∗ − S∗S is not invertible;
(iv) If M is an invariant subspace for S and S |M is normal, then M reduces

S;
(v) If there exists a reducing subspace M , then S |M∈ (Y).

Proof. For (i) and (iv) see [13].
(ii) Let µ ∈ σa(S) from the condition (7) above, we have

σa(S) = σa(ϕ(S)) = σp(ϕ(S).

Therefore µ ∈ σp(ϕ(S)). By applying Lemma 3.1 and the above con-
dition (i), we get

µ ∈ σp(ϕ(S)∗) = σp(ϕ(S∗)).

Hence µ ∈ σa(ϕ(S∗)).
(iii) Let S ∈ (Y). Then there exists an integer n ≥ 1 and kn > 0 such that

‖ | SS∗ − S∗S |2n−1

x ‖≤ k2
n ‖ (S − λI)x ‖

for all x ∈ H, and for all λ ∈ C.
It is known that σa(S) 6= φ. If λ ∈ σa(S), then there exists a normed
sequence (xn) in H such that ‖ (S − λI)xn ‖→ 0. Then (SS∗ −
S∗S)xn → 0 and so, (SS∗ − S∗S) is not invertible.

¤X

Let A denote a complex Banach Algebra with identity e. A state on A is a
functional f ∈ A∗ such that f(e) = 1 = ‖f‖. For x ∈ A let

W0(x) = {f(x) : f is a state on A}
be the numerical range of x [14]. W0(x) is a compact convex set containing
coσ(x) ( the convex hull of the spectrum of x ) [1].

For the case A = B(H), if A ∈ B(H) then W0(A) = W (A), where

W (A) = {(Ah, h) : h ∈ H, ‖h‖ = 1}
is the special numerical range of A. An element a ∈ A is finite if 0 ∈ W0(ax−
xa) for each x in A; F(A) (or F) denotes the set of all finite elements of A.
It is known that F contains every normal, hyponormal and dominant operator
(see [7], [14]). In [10] the author initiated the study of a more general class of
finite operators called generalized pair of finite operators defined by

GF = {(A,B) ∈ B(H)×B(H) : ‖AX −XB − I‖ ≥ 1, ∀X ∈ B(H)} .
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Now we will prove that the class (Y) of operators is included in the class of
finite operators. For this we need the following lemma.

Lemma 3.2. If S ∈ (Y), then σar(S) 6= φ.

Proof. It is known that σar(S) ⊂ σa(S). Since σa(S) 6= 0, it suffices to prove
that σa(S) ⊂ σar(S). If S ∈ (Y), then there exists α ≥ 1 and kα > 0 such that

‖ | SS∗ − S∗S |α
2 x ‖≤ k2

α ‖ (S − λI)x ‖ for all x ∈ H and for all λ ∈ C. (2.1)

Since

(S − µI)(S − µI)∗ = SS∗ − S∗S + (S − µI)∗(S − µI) for allµ ∈ C,

then
| 〈(SS∗ − S∗S)x, x〉 |≤

∥∥∥|SS∗ − S∗S| 12 x
∥∥∥

2

, for all x ∈ H.

Indeed, consider the polar decomposition of the operator SS∗ − S∗S = V D,
where D = |SS∗ − S∗S|. Then V is a Hermitian partial isometry which com-
mutes with D because SS∗ − S∗S is Hermitian. Hence, for any x ∈ H such
that ‖x‖ = 1

|〈|SS∗ − S∗S|x, x〉| ≤
∣∣∣
〈
|SS∗ − S∗S| 12 x, |SS∗ − S∗S| 12 V ∗x

〉∣∣∣

≤
∥∥∥|SS∗ − S∗S| 12 x

∥∥∥
∥∥∥|SS∗ − S∗S| 12 V ∗x

∥∥∥

=
∥∥∥|SS∗ − S∗S| 12 x

∥∥∥
∥∥∥V ∗ |SS∗ − S∗S| 12 x

∥∥∥

≤
∥∥∥|SS∗ − S∗S| 12 x

∥∥∥
2

.

Consequently

‖(S − µI)∗x‖2 ≤ ‖(S − µI)x‖2 +
∥∥∥|SS∗ − S∗S| 12 x

∥∥∥
2

, (2.2)

for all µ ∈ C and for all x ∈ H. Let λ ∈ σa(S), then there exists a normed
sequence (xn)n ⊂ H such that ‖(S − λI)xn‖ → 0. Therefore for λ = µ, xn = x,
and for all n we get

‖ | SS∗ − S∗S |α
2 xn ‖≤ k2

α ‖ (S − µI)xn ‖ . (2.3)

By applying (2.2) and (2.3) we deduce that

‖(S − µI)∗x‖2 ≤ (1 + k2
α) ‖(S − µI)x‖ , for all n.

Therefore ‖(S − µI)∗x‖ → 0 and λ ∈ σar(S), that is, σar(S) 6= φ. ¤X

Now we are ready to show that (Y) ⊂ F .

Theorem 3.2. The class (Y) of operators is included in the class of finite
operators.

Proof. It is shown in [9] that if σa(A) 6= φ, then A is finite. It suffices to apply
the above lemma. ¤X
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It is shown in [13] that:

(1) If T ∈ (Y) and T ∗ ∈ (Y), then T is normal.
(2) If T ∈ (Y)is a compact operator, then T is normal.
(3) if T ∈ (Y) is similar to a normal operator, then T is normal.

In this section we will continue this study.
We begin by the following lemma. Note that concerning this lemma more

general results in this direction can be found in [11] and [4]. Recall that an
operator T is said to be algebraic if P (T ) = 0 for a certain polynomial P .

Lemma 3.3. If T is an algebraic operator, then σ(T ) = σp(T ) (point spectrum
of T ).

Proof. It is well known that an operator T is algebraic if and only if its spectrum
consists of poles only. But a pole of an operator is always an eigenvalue. Hence
for an algebraic operator the spectrum and the point spectrum coincide. ¤X

In the following propositions, theorems and corollaries we will show other
cases for the normality in (Y)-classes.

Theorem 3.3. Let T ∈ (Y). If T is an algebraic operator, then T is normal.

Proof. According to [13] the nilpotent operators of order n in (Y) are null.
Since T ∈ (Y) implies the existence of a number α ≥ 1 and kα > 0 such that

|TT ∗ − T ∗T |α ≤ k2
α (T − µI)∗ (T − µI) ,∀µ ∈ C,

it follows that for all µ ∈ C, that
∣∣(T − µI) (T − µI)∗ − (T − µI)∗ (T − µI)

∣∣α = |TT ∗ − T ∗T |α ≤ 1

k2
α (T − µI)∗ (T − µI) ≤ k2

α [(T − µI)− (T − µI)]∗ [(T − µI)− (T − µI)] .

Therefore,

(T − µI) (T − µI)∗−(T − µI)∗ (T − µI) ≤ k2
α [(T − µI)− γI]∗ [(T − µI)− γI] ,

for all γ ∈ C. Hence (T − µI) ∈ (Y), for all µ ∈ C. By applying the above
lemma we get σ(T ) = σp(T ). Finally Theorem 3.1(i) ensures that T is normal.

¤X

Theorem 3.4. Let T ∈ (Y). If there exists a polynomial P such that P (T ) is
normal, then T is normal.

Proof. According to [6] there exist reducing subspaces (Hn) for T such that
H = ⊕nHn, where T0 = T |H0 is algebraic and Tn = T | Hn (n ≥ 1) is
similar to a normal operator. Hence from Theorem 3.1 and [13] we complete
the proof. ¤X
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4. Normality in (WN)-classes

Proposition 4.1. [3, Theorem 2.3] Let T ∈ (WN). If T is similar to a normal
operator, then T is normal.

Recall that an operator T is said to be isometric if T ∗T = I and co-isometric
if TT ∗ = I.

Proposition 4.2. Let T ∈ (WN). If T is co-isometric, then T is unitary.

Proof. It is known [5] that if an operator in (WN) is right invertible, then it
is invertible. ¤X

Remark 4.1. It is evident that any polynomial of a normal operator is normal.
but the converse is not true. As an example take T ∈ B(H) such that T 2 = 0.
It is shown in [20] that:

Theorem 4.1. [13] Let T ∈ (WN). If T p and T q are normal operators for
certain coprime integers p, q, then T is normal.

Remark 4.2. The normality of T 2 for a certain operator T ∈ (WN) it is not
sufficient to ensure the normality of T. As an example take

dim H = 2, T =
(

i 1
0 −i

)
,

T ∈ (WN). It is clear that T is normal but

T 2 =
( −1 0

0 −1

)

is not normal.

Theorem 4.2. Let T ∈ (WN). If T is a partial isometry and 0 /∈ W (T ), then
T is normal.

Proof. It is known [5] that If T is a partial isometry in (WN), then T is quasi-
normal. Therefore

[T, T ∗]T = 0.

If there exists a vector x ∈ H such that x /∈ ker[T, T ∗], set

y =
[T, T ∗]x
‖[T, T ∗]‖ ,

hence 〈Ty, y〉 ∈ W (T ). Since 0 /∈ W (T ), it results that 〈Ty, y〉 is not null. This
contradicts the fact that [T, T ∗]T = 0. Consequently ker[T, T ∗] = H, i.e., T is
normal. ¤X

Now we are ready to prove that the conjecture holds for operators in (WN).

Theorem 4.3. If A or A∗ ∈ (WN), then every compact operator in R(δA)
w ∩

{A∗}′ is quasinilpotent.
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Proof. We start with the second assumption. Suppose that A∗ ∈ (WN) and
T ∈ R(δA)

w ∩ {A∗}′. Let λ ∈ σp(T ) such that E = ker(T − λ) be finite
dimensional, then the subspace E is invariant under T and A∗. Since A∗ ∈
(WN), E reduces A∗. Let H = E ⊕ E⊥, hence we can write

A∗ =
[

A∗1 0
0 A∗2

]
, T =

[
λ ∗
0 ∗

]
.

Since T ∈ R(δA)
w
, λIE ∈ R(δA1) and this implies that λ = 0. Since T is a

compact operator in R(δA)
w ∩ {A∗}′, it results that σ(T ) = {0} which implies

that T is quasinilpotent. This completes the proof of the second assymption.
Remark that if T ∈ R(δA)

w ∩ {A∗}′, then

T ∗ ∈ R(δA∗)
w ∩ {A}′ .

Then the first assumption of the theorem follows in exactly the same way
as the second. ¤X

By the same arguments as in the above proof we prove the following theorem

Theorem 4.4. If A or A∗ is of class (Y), then every compact operator in
R(δA)

w ∩ {A∗}′ is quasinilpotent.
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