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Volumen 39 (2005), páginas 113–131
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Abstract. The first part of this article presents the definition of Lie Bracket
related to commuting flows of vector fields. In the second part, basic definitions
and of connections and curvature are given in order to emphasize the link bet-
ween Lie Brackets and curvature. Finally, by using locally-defined connections,
we give a short and original proof of a classical theorem of Beltrami. The article
is addressed to a non specialist in local differential geometry.
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Resumen. La primera parte del art́ıculo presenta al corchete de Lie asociado al
problema de la comutatividad de dos flujos. En la segunda parte se introducen
las definiciones básicas de conexión y curvatura en fibrados vectoriales, sub-
rayando la relación corchete-curvatura. Finalmente, usando conexiones afines
localmente definidas, se da una demostración original y sencilla de un teorema
de Eugenio Beltrami. Este art́ıculo apunta a un lector no especialista (e.g. un
estudiante de doctorado en matemática o f́ısica, etc) en geometŕıa diferencial
local.

1. Introducción

La primera parte de este art́ıculo presenta al corchete de Lie y la curvatura
de una conexión o derivada covariante como objetos ı́ntimamente relacionados.
Naturalmente que todo esto es bien conocido por los expertos en geometŕıa
diferencial. Esta primera parte apunta más bien a un lector no especialista e.g.
un estudiante de Licenciatura o de Doctorado. Si bien es interesante el enfoque
puesto en “descubrir” el corchete, como condición de conmutatividad de flujos,
desarrollando en serie de Taylor. También, manteniendo este punto de vista
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“descubridor”, se dan demostraciones sencillas de la identidad de Jacobi y del
clásico teorema de Frobenius (en su versión local).

El art́ıculo está escrito pensando en el aspecto local de la geometŕıa diferen-
cial. En algunos pasajes del art́ıculo se dan indicaciones del aspecto global del
problema o situación bajo estudio.

Salvo mención explicita todos los campos o funciones serán suaves i.e. C∞
La segunda parte contiene una breve introducción a la conexión de Levi-

Civita de una variedad riemanniana y al tensor de curvatura de Riemann. Esta
sección contiene una demostración original y fácil de recordar de la simetŕıa
por “parejas” 〈R(X, Y )Z, W 〉 = 〈R(Z, W )X, Y 〉 del tensor de Riemann.

En la tercera parte del art́ıculo, se da una demostración simple y original de
un clásico teorema de Eugenio Beltrami, basada en la correspondencia entre
conexiones (localmente definidas) planas sin torsión y sistemas de coordenadas.

Este art́ıculo fue escrito y revisado durante las visitas del autor al Departa-
mento de Matemáticas de la Universidad Nacional de Colombia sede Bogotá du-
rante Noviembre 2004 - Enero 2005 y Agosto 2005 gracias a la invitación del
Profesor Victor Tapia. La demostración del teorema de Beltrami es consecuen-
cia de conversaciones con Andrea Sambusetti de la Universidad de Roma “La
Sapienza”.

El autor desea agradecer al referee por las oportunas correcciones que han
ayudado a mejorar la presentación final del art́ıculo.

Flujos, conmutatividad y el corchete [X, Y ]
de dos campos vectoriales

Si un campo X y una función f están definidos en un abierto del espacio
eucĺıdeo podemos derivar f en la dirección de X. Dos notaciones para ex-
presar la derivada de f en la direccion de X son: X(f) ó df(X). Si el cam-
po X es un campo coordenado ∂

∂x en algún sistema de coordenadas, lo an-
terior es la familiar derivada parcial ∂f

∂x de f respecto de la coordenada x(
i.e. ∂

∂x (f) = df( ∂
∂x ) = ∂f

∂x

)
. Usando la linealidad de esta operación y el pro-

ducto interno se introduce el gradiente ∇f como el campo que realiza la deri-
vada desde el punto de vista del producto interno:

〈∇f, X〉 = df(X) ,

para todo campo X. Con 〈X, Y 〉 denoto el producto interno entre X e Y (i.e.
en coordenadas 〈X,Y 〉 =

∑
i xiyi).

También, si los campos vectoriales X e Y están definidos en un abierto
del espacio eucĺıdeo entonces podemos derivar Y en la dirección de X (i.e.
derivando componente a componente) esto se escribe DXY . Si X, Y y Z están
definidos en el mismo abierto, entonces se verifica:

Z〈X, Y 〉 = 〈DZX, Y 〉+ 〈X, DZY 〉 .
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Es interesante notar que si X es un campo podemos definir su divergencia
como div(X) :=

∑
i〈DeiX, ei〉 donde ei es una base ortonormal que puede ser

elegida arbitrariamente como puede verificarse con un simple cálculo (Si no
desea cálcular, note que div(X) es la traza de la transformación lineal D∗X).
De esta manera es posible introducir el familiar Laplaciano ∆f := div(∇f).

Volviendo la atención a los campos, si tenemos un campo X podemos definir
su flujo Xt como la familia de difeomorfismos a un parámetro t que constituyen
la solución de la ecuación ordinaria de primer orden con condición inicial c(0) =
p : dc(t)

dt = c′(t) = Xc(t). Es decir por definición tenemos, Xt.p := c(t).

¿Cómo medir si los flujos de dos campos vectoriales conmutan? Sean
X un campo en un abierto de RN y Xt su flujo. Desarrollando el flujo y el campo
en serie de Taylor obtenemos ( i.e. debido a las hipótesis de diferenciabilidad):

{
Xt.p = p + tXp + t2

2 DXpX + o(t3)
Xp+tvp

= Xp + tDvp
X + o(t2)

.

Podemos usar estas formulas para tener una medida de la no conmutatividad
de dos flujos, es decir para calcular el comportamiento de Y −t.X−t.Y t.Xt.p
para valores pequeños de t. En efecto, reemplazando obtenemos:

Y t.Xt.p = p + tXp +
t2

2
DXpX + o(t3) + tY

p+tXp+ t2
2 DXp X+o(t3)

+
t2

2
DY

p+tXp+ t2
2 DXp

X+o(t3)
Y .

Ahora, reemplazamos la estimación del campo Y y reagrupamos términos
o(t3):

Y t.Xt.p = p + t(Xp + Yp) +
t2

2
(DXpX + 2DXpY + DYpY ) + o(t3) .

De manera análoga, podemos obtener:

Y −t.X−t.q = q − t(Xq + Yq) +
t2

2
(DXqX + 2DXqY + DYqY ) + o(t3) .

Si hacemos q = Y t.Xt.p y introducimos las siguientes estimaciones:

Xq = Xp+t(Xp+Yp)+o(t2) = Xp + tD(Xp+Yp)X + o(t2) .

Yq = Yp+t(Xp+Yp)+o(t2) = Yp + tD(Xp+Yp)Y + o(t2) .

Obtenemos,

Y −t.X−t.Y t.Xt.p = p + t(Xp + Yp) +
t2

2
(DXpX + 2DXpY + DYpY )

− t(Xp + tD(Xp+Yp)X)− t(Yp + tD(Xp+Yp)Y )

+
t2

2
(DXpX + 2DXpY + DYpY ) + o(t3) .
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Si cancelamos términos iguales en esta última igualdad tenemos:

Y −t.X−t.Y t.Xt.p = p + t2
(
DXp

Y −DYp
X

)
+ o(t3) (1)

Es decir, si los flujos conmutan entonces el corchete [X, Y ] = DXY −DY X
se anula.

Rećıprocamente, si el corchete se anula los flujos conmutan. Para ver fácil-
mente esto se reinterpreta el corchete como la variación de un campo respecto
de otro i.e. la derivada de Lie. Esto es sencillamente, derivar lo tráıdo por los
diferenciales del flujo, más precisamente:

(LXY )p :=
d

dt |t=0
(X−t

∗ Y )p ,

donde (X−t
∗ Y )p = dX−t(Y (Xt)) se conoce como el pushforward respecto del

difeomorfismo X−t, que se puede pensar como “lo tráıdo por el flujo”.
De manera análoga a lo que se hizo en el cálculo anterior vamos a ver que:

LXY = [X, Y ] .

En efecto, para “t” fijo consideremos la recta c(s) que pasa por Xt.p con
velocidad inicial YXt.p i.e. c(s) := Xt.p + s.YXt.p. Por definición tenemos:

d

ds |s=0
X−t.c(s) = (X−t

∗ Y )p .

Luego, imitando lo que hicimos antes

X−t.c(s) = X−t.(Xt.p + s.YXt.p) = Xt.p + s.YXt.p − tXXt.p+s.YXt.p
+ o(t2)

= p + tXp + s.YXt.p − tXp+tXp+s.YXt.p
+ o(t2)

= p + tXp + s.YXt.p − t(Xp+tXp + s.DYXt.p
X) + o(t2) .

Por lo tanto,

(X−t
∗ Y )p = YXt.p − tDYXt.p

X + o(t2) ,

y expandiendo respecto de t se obtiene lo que afirmamos i.e. LXY = [X, Y ].
Veamos entonces que si LXY se anula entonces el flujo de Y conmuta con el

de X. Para ello observemos en primer lugar que: d
dt |t=t0

(X−t
∗ Y )p = 0 para todo

t0 y no solo para t0 = 0. Es decir, el campo Y no cambia a lo largo del flujo de
X (i.e. Xt

∗(Yp) = YXt.p). Por lo tanto para cada “t” fijo Xt.Y s.p es una curva
integral del campo Y que pasa por el punto Xt.p. Luego, por la unicidad de las
soluciones no queda otra que Xt.Y s.p = Y s.Xt.p que es lo que queŕıamos ver.

La identidad de Jacobi. Es interesante ver que pasa cuando tomamos la
derivada de Lie de un campo Z respecto a un Corchete [X, Y ] y al revés la
derivada de Lie de un corchete [Y,Z] respecto de un campo X, la solución se
visualiza fácilmente aqúı abajo:{

L[X,Y ]Z = LX .LY Z − LY .LXZ
LX [Y, Z] = [LXY,Z] + [Y,LXZ] .
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Naturalmente, estas dos identidades son equivalentes a la celebre identidad
de Jacobi:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0 .

Vamos a demostrar esta identidad usando el truco de los tensores. Para
ello, llamemos J(X, Y, Z) = [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X,Y ]]. La idea es
probar que J es un “tensor” es decir, que sólo depende de los valores puntuales
de los campos. A su vez, esto es equivalente a probar que J saca funciones
debido a que la linealidad está garantizada por definición. Fijemos entonces
tres campos X,Y, Z y tomemos una función f . Calculemos J(X,Y, fZ), para
ello procedemos organizadamente:




[X,[Y,fZ]] = [X,Y(f)Z] + [X,f[Y,Z]] = [X,Y(f)Z] + X(f)[Y,Z] + f[X,[Y,Z]]
[Y,[fZ,X]] = -[Y,X(f)Z] + [Y,f[Z,X]] = -[Y,X(f)Z] + Y(f)[Z,X] + f[Y,[Z,X]]
[fZ,[X,Y]] = -[X,Y](f)Z +f[Z,[X,Y]]

Sumando, resulta claro que J(X,Y, fZ) = fJ(X, Y, Z) si y solo si [X, Y ](f)
= X(Y (f))− Y (X(f)). Tenemos entonces que demostrar:

[X,Y ](f) = X(Y (f))− Y (X(f)) .

Esto es muy sencillo si uno expresa todo en un sistema de coordenadas orto-
gonales y usa que las derivadas parciales se pueden tomar en cualquier orden.
En efecto, supongamos que X := xi ∂

∂ei
, Y := yj ∂

∂ej
, donde usamos la conven-

ción de Einstein (i.e. ı́ndices iguales arriba y abajo se suman). Calculamos por
un lado X(Y (f)) = xi ∂

∂ei
(yj ∂

∂ej
(f)) = xi ∂

∂ei
(yj ∂f

∂ej
) = xi ∂yj

∂ei

∂f
∂ej

+ xiyj ∂2f
∂eiej

intercambiando los roles de x’s e y’s resulta:

X(Y (f))− Y (X(f)) = xi ∂yj

∂ei

∂f

∂ej
+ xiyj ∂2f

∂ei∂ej
− yj ∂xi

∂ej

∂f

∂ei
− yjxi ∂2f

∂ej∂ei
.

De manera análoga calculamos [X,Y ](f) = DXY (f) −DY X(f). Tenemos,
DXY (f) = xiD ∂

∂ei

yj ∂
∂ej

(f) = xi ∂yj

∂ei

∂f
∂ej

. Finalmente, intercambiando roles re-
sulta:

[X,Y ](f) = xi ∂yj

∂ei

∂f

∂ej
− yj ∂xi

∂ej

∂f

∂ei
,

de donde resulta la igualdad, recordando que el orden de las derivadas parciales
no importa. Es interesante rescatar de los cálculos anteriores la fórmula del
corchete en éstas coordenadas:

[X, Y ] = (xj ∂yi

∂ej
− yj ∂xi

∂ej
)

∂

∂ei
.

Volviendo al principio, tenemos entonces que J(X, Y, Z) es un tensor. Luego,
J ≡ 0, como queŕıamos mostrar (como resulta evaluando en campos coordena-
dos).
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El corchete en variedades. Todo lo dicho en la sección anterior puede ser
generalizado al contexto de variedades diferenciables. Un punto de partida,
seguido por muchos autores, es introducir el corchete entre dos campos X e Y
mediante su acción sobre funciones (i.e., dando sus coordenadas en cualquier
sistema de coordenadas) mediante la identidad:

[X,Y ](f) = X(Y (f))− Y (X(f)) ,

y luego justificar que dicho procedimiento realmente produce un campo vecto-
rial (i.e. viendo que sus coordenadas “transforman” cómo deben ser...).

En la categoŕıa de variedades diferenciables las “flechas” o “morfismos” son
las funciones suaves. La siguiente es la propiedad caracteŕıstica del corchete
respecto a estos morfismos.

Sea f : N → M una función suave entre variedades y sean X, Y campos
vectorial de M y X̄, Ȳ campos vectoriales en N . Supongamos que df(X̄) = X
y que df(Ȳ ) = Y (i.e. los campos están f -relacionados) entonces

df [X̄, Ȳ ] = [X, Y ] .

Los detalles se pueden consultar en casi todo libro de geometŕıa diferencial
e.g. [KNI], [ChEb].

El teorema de Frobenius

Sea M una variedad diferenciable. Observemos que un campo vectorial X que
no se anula, define un subespacio unidimensional en cada espacio tangente
TpM . En general, una asignación que a todo punto p ∈ M asigna un subespacio
p → Dp ⊂ TpM se llama distribución, si la dimensión dim(Dp) es constante
i.e. no depende de p, sino se habla de distribución con singularidades [Ste].
Si existen d campos suaves (i.e. C∞) X1, · · · , Xd localmente definidos en un
entorno U de cada punto p tales que Dq = span{X1(q), · · · , Xd(q)} para todo
q ∈ U se dice que la distribución es suave.

En el caso de un campo X, el flujo Xt garantiza la existencia de una “curva”
integral a través de cada punto de la variedad M . En general, una subvariedad
N ⊂ M tal que TpN = Dp para todo p ∈ N se llama subvariedad integral.

Una distribución D se dice localmente integrable si por cada punto pasa una
subvariedad integral maximal N .

Una distribución se dice involutiva si el conjunto de sus campos tangentes
es cerrado respecto a la operacion de tomar corchetes. Es decir, si para todo
par de campos X, Y tangentes a D el corchete de Lie [X, Y ] es nuevamente
tangente a D.

Es claro que si una distribución es integrable entonces debe ser involutiva
debido a que los corchetes de campos en M se identifican con corchetes calcula-
dos sobre las subvariedades integrales N (formalmente habŕıa que usar lo dicho
sobre campos i-relaciónados aplicado a las inclusiones canónicas i : N → M de
las subvariedades...).
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Teorema 1 (Teorema local de Frobenius). Una distribución es involutiva si y
solo si es localmente integrable.

Demostración. La demostración que sigue se basa en la siguiente observación.

Lema 2. Sea X un campo de vectores tangentes a la distribución involutiva D
y sea vp ∈ Dp ⊂ TpM un vector tangente a la distribución en el punto p ∈ M .
Sea vt el campo a lo largo del flujo generado por vp i.e. vt = dXt(vp). Entonces
vt ∈ D.

Demostración. Completemos X con otros campos de manera de obtener (lo-
calmente) una base {X = X1, X2, · · ·Xd} de la distribución involutiva D. Ad-
juntando mas campos vectoriales Xd+1, · · · , Xn podemos completar a su vez
la base de D a una base de TM .

Como estamos trabajando localmente podemos extender vt a un campo vec-
torial V en un abierto alrededor de la ĺınea de flujo que pasa por p. Incluso,
podemos hacerlo de manera que la extensión V conmute con X. Todo esto se
ve fácilmente pensando en X como un campo coordenado, i.e. trivializando la
situación usando el flujo de X y considerando una subvariedad transversal a X
que pase por p.

Tenemos entonces el siguiente sistema de ecuaciones para los coeficientes de
V respecto a una base de campos de vectores:

0 = [X,V ] = [X,
∑

i

ViXi] =
∑

i

X(Vi)Xi + Vi[X,Xi] ;

observando detenidamente notamos que este sistema es un sistema de primer
orden para los coeficientes Vi de V . Incluso debido a la involutividad de D (i.e.
si 1 ≤ i ≤ d entonces [X, Xi] es una combinacion lineal de Xi con 1 ≤ i ≤ d),
y de la condición inicial (i.e. vp ∈ D), vemos que el sistema se resuelve usando
los indices i desde 1 hasta d. Lo que demuestra el lema. ¤X

Usando el lema anterior no es dif́ıcil demostrar que la inmersion i de un
pequeño abierto alrededor del origen de Rd dada por la composicion de flujos
i(t1, t2, · · · , td) = Xt1

1 ◦ Xt2
2 ◦ · · · ◦ Xtd

d .(p) es una subvariedad integral de la
distribución D. Lo que demuestra el teorema de Frobenius. ¤X

Comentario 3. El teorema local de Frobenius es usado muchas veces para
construir un sistema de coordenadas adecuado al problema bajo estudio. Ejem-
plo de esto es la versión global del teorema de Frobenius (i.e. por cada punto
p ∈ M pasa una subvariedad integral maximal Sp): Primero se define Sp ⊂ M
como el subconjunto de puntos que se pueden unir con p ∈ M mediante una
curva continua diferenciable a trozos cuyo tangente está en la distribución D.
Segundo se usa la versión local de Frobenius para construir un atlas de Sp que
de paso demuestra que le inyección canónica i : Sp → M es una immersión
suave.
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Conexiones y curvatura en fibrados vectoriales:
La distribución horizontal

Esta sección es una breve introducción al lenguaje de la teoŕıa de conexiones en
fibrados vectoriales. La idea es introducir una conexión como una distribución
horizontal y su curvatura como la medida de su integrabilidad. También se in-
troduce la conexión mediante la idea de derivar secciones suaves i.e. la derivada
covariante. Finalmente, se dan ejemplos (locales) de conexiones afines que son
derivadas covariantes en el fibrado tangente y se observa como éstas generali-
zan el concepto de sistema de coordenadas. Para ello se introduce también el
tensor de torsión.

Fibrados vectoriales. Sea E y M dos variedades diferenciales. Se dice que
π : E → M es un fibrado vectorial si π es sobreyectiva y si vale la siguiente
condición de trivilizacion local: existe un espacio vectorial V y una familia de
cartas fibradas (i.e. difeomorfismos locales) φα : Uα × V → E, tales que los Uα

son un recubrimiento por abiertos de M y además:
a) π(φα(x, v)) = x,
b) En las intersecciones de abiertos se verifique: φ−1

β ◦ φα(x, v) = (x,

gβ,α(x)(v)) donde gβ,α : Uα ∩ Uβ → GL(V ) es lo que se llama coci-
clo, pues gγ,β ◦ gβ,α = gγ,α, etc.

La variedad M se llama base mientras que la variedad E se llama espacio
total. La fibra Ex := π−1(x) sobre x ∈ M es una subvariedad de E que se
identifica con el espacio vectorial V . Debido a esto el espacio tangente a la
fibra V (i.e. el “vertical”) se suele a su vez identificar también con V .

Como consecuencia de la definición vemos que siempre existen secciones
locales suaves, i.e. funciones ξ : U ⊂ M → E, tales que π(ξ(x)) = x para todo
x ∈ U donde U es un abierto pequeño alrededor de un punto arbitrario de M .

Podemos siempre tener presente el fibrado tangente como ejemplo de fibrado
vectorial. Las secciones locales del fibrado tangente son los campos vectoriales
localmente definidos.

Conexión o derivada covariante. Si bien en el espacio eucĺıdeo podemos
definir la derivada de campos vectoriales DXY , en un fibrado vectorial no
es posible definir la derivada de una sección de manera natural o canónica.
Observemos que si γ(t) ⊂ M es una curva en M y ξ(t) es la restricción de
una sección local sobre γ(t) (i.e. ξ(t) es una curva en E tal que π(ξ(t)) =
γ(t)), entonces dξ

dt es una curva en TE y no en E como exigiŕıa una genuina
“derivada”.

La manera de resolver este problema es mediante el concepto de conexión.
Existen varias maneras (equivalentes) de introducir este concepto. Es intere-
sante observar que una manera es usando distribuciones. La idea es simple:
observemos que si dξ

dt estuviese en el “vertical” V, entonces no habŕıa problemas
para definir la derivada debido a las identificaciones entre espacios tangentes en
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espacios vectoriales. Como en general dξ
dt no está en V, podemos complementar

V con una distribución “horizontal” (no totalmente arbitraria, ver más abajo)
H i.e. TE = V⊕H y simplemente definir la derivada de ξ(t) como la proyección
Dξ
dt = (dξ

dt )
V a lo largo de H.

Suponiendo que H posea la propiedad adicional (i.e. invarianza respecto a
la multiplicación por escalares en E) es posible recuperar la definición usual de
derivada covariante o conexión D. Es decir, obtenemos una manera de derivar
secciones del fibrado respecto a campos vectoriales tangentes a M , denotada
con DXξ. Naturalmente, D depende de H y entonces cambiando H, cambia D.

Transporte paralelo y holonomia. El transporte paralelo τt sobre una cur-
va γ(t) constituye simplemente la solución al problema de ecuaciones diferen-
ciales ordinarias Dξ

dt = 0. Luego se dice que la sección ξ(t) es paralela a lo largo
de γ(t) si se verifica Dξ

dt = 0. Tenemos entonces ξ(t) = τt(ξ(0)).
Si una sección ξ es paralela restringida a toda curva se dice simplemente que

ξ es paralela. Esto es equivalente a que ξ satisface DXξ = 0 para todo vector
tangente X. En general, dada una conexión arbitraria, no existen secciones
paralelas.

Usando curvas cerradas γ que salen y regresan al punto p ∈ M se define el
grupo de holonomia Φp en p ∈ M , como el subgrupo de GL(V ) generado por
los transportes paralelos τt a lo largo de las curvas cerradas γ.

El problema de la existencia de una sección paralela es un caso particular
del siguiente “principio de holonomia”: Existe un tensor paralelo T cuyo valor
en p es Tp si y solo si Tp es invariante por la acción del grupo de holonomia .

Curvatura. La curvatura es en realidad un corchete de Lie encubierto. En
efecto, pensando en la distribución horizontal H nos podemos preguntar si es
o no integrable. Del teorema de Frobenius sabemos que esto es aśı si y solo
si es cerrada respecto a tomar corchetes, i.e. [X, Y ] ∈ H si X,Y son campos
tangentes a H.

Independientemente de que H sea o no integrable vemos que el corchete
[X, Y ] ∈ TξpE. Entonces tiene sentido que lo proyectemos (como cuando de-

finimos Dξ
dt ) al vertical. Es decir, introducimos R(X, Y )(ξp) :=

(
[X, Y ]ξp

)V .
Aplicando lo anterior a campos vectoriales tangentes X̄, Ȳ π-relaciónados con
campos X, Y en M obtenemos el tensor de curvatura R(X, Y )(ξ) asociado a la
conexión D. Es decir,

R(X,Y )(ξ) := ([X̄, Ȳ ]ξp)V .

De lo anterior se deduce trivialmente el siguiente teorema.

Teorema 4. El tensor de curvatura de una conexión es idénticamente cero si
y solo si la distribución horizontal es integrable.

Demostración. Observemos que el flujo X̄t de un campo horizontal X̄ produce
el transporte paralelo de secciones sobre las curva integrales del campo X.
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Esta observación junto con la definición “dinámica” del corchete de Lie (i.e. en
términos de pullback de flujos) permite demostrar la siguiente identidad:

R(X,Y )ξ = DXDY ξ −DY DXξ −D[X,Y ]ξ .

Usando el principio de holonomia vemos que una conexión es plana, i.e. R es
idénticamente cero, si y solo si existen dim(V ) secciones locales paralelas. ¤X

Conexiones afines

Tradicionalmente (ver [KNI, Pág. 129]) se habla de conexión af́ın cuando el
fibrado vectorial E es el fibrado tangente de la variedad M . En general, el
contexto es muy claro y no existe peligro de confusión. Por ejemplo, si se
está estudiando una conexión que no es af́ın, es preferible usar letras griegas
para denotar las secciones del fibrado vectorial.

Más adelante veremos que a una conexión af́ın D se le asocia, además de su
tensor de curvatura RD, un tensor TD de tipo (2, 1) llamado torsión definido
mediante la ecuación:

TD(X,Y ) := DXY −DY X − [X, Y ] .

Notemos que ésta definición sólo posee sentido cuando D es una conexión
af́ın debido a que simplemente no tendŕıa sentido intercambiar X con Y en un
conexión definida en un fibrado vectorial E distinto del fibrado tangente y más
aún, tampoco tendŕıa sentido calcular el corchete [X, Y ].

Derivadas covariantes en abiertos de Rn. Mas adelante tendré necesidad
de usar derivadas covariantes D definidas localmente en abiertos de Rn. Veamos
qué quiero decir al respecto. Sea U ⊂ Rn un abierto entorno de un punto
p ∈ Rn. Si X1, X2, · · · , Xn son n campos suaves definidos en U entonces puedo
definir una derivada covariante D (i.e. una conexión af́ın en U) simplemente
dando n3 funciones Γk

ij que sirven sencillamente para calcular DXiXj mediante
la ecuación:

DXiXj =
∑

k

Γk
ijXk .

Luego, si debemos calcular DXY para campos arbitrarios debemos expre-
sar X e Y en términos de X1, X2, . . . , Xd y usar las propiedades de D i.e. la
linearidad y la regla de Leibniz.

Concretamente, por ejemplo, si Γk
ij ≡ 0, estamos decretando que todos los

campos X1, · · · , Xn sean paralelos. Obviamente que esta D tendrá curvatura
RD ≡ 0. Es decir, D será plana. Notemos que esto no implica que los campos
X1, . . . , Xn commuten entre śı (simplemente inicie con campos X1, X2, . . . , Xn

que no conmuten y defina D como hemos indicado más arriba).
Podemos asociar entonces a cada sistema de coordenadas una conexión o de-

rivada covariante definida simplemente decretando que los campos coordenados
∂

∂xi
sean paralelos.
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Estas observaciones llevan a pensar que se puede generalizar el concepto
de sistema de coordenadas pensando en conexiones o derivadas covariantes
localmente definidas. En efecto, en el parágrafo precedente hemos visto que el
conjunto de sistemas de coordenadas se puede identificar con un subconjunto
del conjunto de conexiones localmente definidas. El siguiente teorema permite
decidir cuándo una conexión D es en efecto una conexión que proviene de un
sistema de coordenadas.

Proposición 5. Una conexión localmente definida D proviene de un sistema
de coordenadas {x1, x2, . . . , xn}, i.e. D ∂

∂xi

∂
∂xj

≡ 0 si y solo si D es plana, i.e.

RD ≡ 0 y el tensor de torsion TD := DXY −DY X − [X, Y ] es idénticamente
cero i.e. TD ≡ 0.

Demostración. Es una consecuencia simple de lo dicho sobre la existencia de
secciones paralelas y de componer los flujos de campos paralelos como se hizo
en la demostración del teorema de Frobenius, observando que dichos flujos
conmutan debido a que la torsión es cero. ¤X

Se puede pensar entonces que aśı como el tensor de curvatura de una cone-
xión nos permite estudiar la existencia de campos paralelos, el tensor de torsión
nos informa sobre la conmutatividad de los flujos asociados a estos campos pa-
ralelos. Naturalmente que para una conexion general no existen campos parale-
los, sin embargo, es interesante pensar a la Proposición 5 como una motivación
para la introducción del tensor de torsión TD.

Dicho fácilmente y fácilmente recordable: un sistema de coordenadas es una
conexión (localmente definida) plana sin torsión. En realidad, es posible que dos
sistemas de coordenadas (diferentes) definan la misma conexión af́ın. Dejamos
al lector la demostración de que esto es sólo posible cuando la matriz de cambio
de coordenadas entre ambos sistemas es constante, i.e. el cambio de coordenada
es af́ın.

Comentario 6. El problema global de decidir śı una variedad M admite o no
una conexión D plana, con o sin torsión, es un problema clásico y dif́ıcil de la
topoloǵıa diferenciable (ver, por ejemplo, en el caso de superficies [Mil]).

El tensor de Riemann y un teorema de Eugenio Beltrami

Esta sección contiene una breve introducción al tensor de curvatura de Rie-
mann. Como consecuencia de la identidad de Bianchi se da una demostración
sencilla de una de las simetŕıas más conocidas de este tensor: La simetŕıa por
“parejas” 〈R(X,Y )Z, W 〉 = 〈R(Z,W )X, Y 〉. Se concluye la sección con una de-
mostración simple de un teorema de Eugenio Beltrami. Para más información
sobre geometŕıa de Riemann en general ver [Ber] y para más información sobre
teoŕıa de subvariedades riemannianas ver [BCO].
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Simetŕıas o propiedades del tensor de Riemann. Sea (M, 〈, 〉) una va-
riedad riemanniana. Alrededor de 1920 Levi-Civita demostró que se puede de-
finir una manera de derivar covariantemente de manera natural o canónica.
Mas precisamente existe una única conexión D sin torsión i.e. (¡nuevamen-
te el corchete en escena!) [X,Y ] = DXY − DY X y que preserva la métrica
DX〈Y, Z〉 = 〈DXY, Z〉+ 〈Y, DXZ〉.

Usando coordenadas (x1, . . . , xn) y expresando la métrica ds2 =
∑
i j

gijdxidxj

es sencillo demostrar el teorema de Levi-Civita. Simplemente se escribe D ∂
∂xi

∂
∂xj

=
∑

k Γk
ij

∂
∂xk

y se observa que para que D sea sin torsión debe ser Γk
ij = Γk

ji

y que preservar la métrica implica ∂gij

∂k =
∑

l Γ
l
kigjl + Γl

kjgil. Una permutación
ćıclica en i, j, k conduce a un sistema de 3×3 muy fácil de resolver produciendo
las conocidas fórmulas:

∑

l

Γl
ijglk =

∂gjk

∂i + ∂gik

∂j − ∂gij

∂k

2
(2)

En 1854 Riemann introdujo el tensor de curvatura R como medida de la
curvatura de la variedad abstracta (Mn, 〈, 〉), es decir, buscando determinar
cuando M es localmente isométrica a un espacio plano Rn. Riemann razonaba
localmente, aśı que el problema se redućıa a determinar las condiciones para
la existencia de un cambio de coordenadas donde los coeficientes de la métrica
sean constantes (para más información ver [Sp2] o [DiS]).

La definición original de Riemann del tensor R fue entonces, motivada por
este problema de isometria, de donde resulta natural pensar que Riemann
haya definido R a partir de sus coeficientes Rijkl respecto a un sistema de
coordenadas.

Modernamente y en términos de la sección anterior se recupera el tensor
de Riemann como el tensor de curvatura R(X, Y )Z asociado a la conexión de
Levi-Civita i.e. R(X, Y )Z = DXDY Z −DY DXZ −D[X,Y ]Z.

Fijado un espacio tangente TpM y vectores X,Y, Z,W ∈ TpM se sigue que
R posee las siguientes propiedades:

a) R(X,Y )Z = −R(Y,X)Z,
b) R(X,Y )Z + R(Y, Z)X + R(Z, X)Y = 0 (I identidad de Bianchi),
c) 〈R(X, Y )Z, W 〉 = −〈R(X, Y )W,Z〉.

Usando a), b) y c) se sigue que la identidad de Bianchi, i.e. suma ćıclica igual
a cero, es valida con respecto a cualesquiera tres argumentos del tensor de tipo
(0, 4) 〈R(X, Y )Z, W 〉. Más precisamente, tenemos el siguiente resultado.

Proposición 7. En las condiciones anteriores se tiene:

〈R(X, Y )Z,W 〉+ 〈R(X, Z)W,Y 〉+ 〈R(X, W )Y,Z〉 = 0
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Demostración. La demostración es muy sencilla (¡y fácil de recordar! ) y se
basa en la siguiente matriz de 3× 3:


〈R(X, Y )Z,W 〉 〈R(X, Z)W,Y 〉 〈R(X, W )Y,Z〉
〈R(Y, Z)X, W 〉 〈R(Z, W )X, Y 〉 〈R(W,Y )X, Z〉
〈R(Z,X)Y, W 〉 〈R(W,X)Z, Y 〉 〈R(Y, X)W,Z〉




La suma de la primera fila consiste exactamente en lo que queremos de-
mostrar que vale cero. Llamemos A a la suma de la primera fila. Luego, las
columnas se construyen usando la identidad de Bianchi b) a partir del primer
elemento en la primera fila i.e. cambiando ćıclicamente los primeros tres ar-
gumentos. Esto garantiza que la suma de todas las columnas es cero debido
a b). Llamemos B y C la suma de la segunda y tercera fila respectivamente.
Entonces, A + B + C = 0 pues esta suma equivale a sumar todas las entradas
de la matriz. Ahora es sencillo ver que usando c) y b) se sigue B = 0 y A = C

lo que demuestra el resultado. ¤X

Una sencilla consecuencia de las identidades de Bianchi es la siguiente sime-
tŕıa en “parejas” del tensor de Riemann.

Corolario 8. En las condiciones anteriores se tiene:

〈R(X, Y )Z, W 〉 = 〈R(Z, W )X, Y 〉
Demostración. Podemos usar la identidad de Bianchi con respecto a cuales-
quiera de los argumentos. Entonces,

〈R(X,Y )Z, W 〉 = −〈R(X, Z)W,Y 〉 − 〈R(X,W )Y, Z〉
= 〈R(Z,W )X, Y 〉+ 〈R(W,X)Z, Y 〉 − 〈R(X, W )Y, Z〉
= 〈R(Z,W )X, Y 〉.

La última identidad se sigue usando c). ¤X

Es interesante observar que esta última propiedad de R junto con a) y c)
permiten pensar a R como un operador simétrico R : Λ2(TM) → Λ2(TM).

Una consecuencia fundamental de la identidad de Bianchi es que es posible
recuperar el tensor R a partir de la la curvatura secciónal (ver [KNI] o [ChEb])

Q(X,Y ) :=
〈R(X,Y )Y, X〉
| X ∧ Y |2 =

〈R(X ∧ Y ), X ∧ Y 〉
| X ∧ Y |2 .

Notemos que la curvatura secciónal Q(X,Y ) sólo depende del 2-plano gene-
rado por X, Y . En particular se tiene que R es idénticamente cero si y solo si Q
es idénticamente cero. Como consecuencia se sigue que para una superficie la
determinación del tensor de curvatura se reduce a conocer la (única) curvatura
secciónal, más conocida como curvatura de Gauss. También es posible llegar a
la misma conclusión observando que dim(Λ2(TpM)) = 2 si M es una superficie
i.e. dim(M) = 1.

Para ilustrar la importancia de la identidad de Bianchi veamos un ejemplo de
operador simétrico de Λ2(TM) cuya “curvatura seccional” es siempre nula pero
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que no es idénticamente cero. Se trata del operador ∗ de Hodge de una variedad
de Riemann M orientada y de dimensión 4 i.e. ∗(ei ∧ ej) = ek ∧ el, tal que la
base (ei, ej , ek, el) es positiva. Por definición tenemos que 〈∗(a∧b), a∧b〉 = 0 lo
que implica que las curvaturas secciónales de ∗ son cero siempre. Claramente
el operador de Hodge no es cero. Naturalmente esto es consecuencia de que el
operador de Hodge no satisface la identidad de Bianchi.

Un teorema de E. Beltrami. El teorema de Beltrami [Bel] al que nos re-
feriremos en esta sección se puede pensar como una caracterización local y
en coordenadas de los espacios de curvatura constante i.e. aquellos en los que
Q(X, Y ) = k ∈ R o equivalentemente R(X, Y )Z = k(X ∧ Y )Z.

Probablemente, Beltrami haya partido observando que usando la proyección
central desde el centro de una esfera Sn ⊂ Rn+1 a su espacio tangente TpM
se obtiene un sistema de coordenadas locales alrededor de p ∈ Sn en el cual
las geodésicas son ĺıneas rectas, sin tener en cuenta la parametrización. Esta
observación no requiere ningún cálculo y se sigue observando que las geodésicas
de Sn se obtienen “cortando” Sn con 2-planos que pasen por el centro de la
esfera. Luego, la proyección central necesariamente env́ıa estas geodésicas a la
intersección de dicho plano con el plano tangente TpM produciendo una recta
en este último.

A su vez, el mismo argumento puede ser empleado para el espacio hiperbólico
real Hn ⊂ Rn,1 respecto al modelo lorentziano.

Resumiendo, se observa que si p ∈ M(k) es un punto en un espacio de curva-
tura constante M(k) entonces existen coordenadas {x1, x2, . . . , xn} alrededor
de p tales que las expresiones γ(t) = (x1(t), · · · , xn(t)) en estas coordenadas de
las geodésicas coinciden (salvo reparametrización) con rectas ordinarias escritas
en coordenadas x1, · · · , xn (i.e. γ

′′
(t) es proporcional a γ

′
(t) para todo t).

El teorema de Beltrami es exactamente la afirmación rećıproca de esta ob-
servación.

Teorema 9 (E. Beltrami, 1865 [Bel]). Supongamos que un sistema de coor-
denadas x1, . . . , xn de una variedad riemanniana (M, g) tiene la propiedad de
que las geodésicas son ĺıneas rectas i.e. salvo parametrización la ecuación de
las geodésicas es x

′
ix
′′
j − x

′′
i x

′
j = 0. Entonces la curvatura es constante en los

puntos parametrizados por x1, . . . , xn.

Es interesante observar que Beltrami sólo demostró su teorema cuando n = 2
i.e. para una superficie. El caso general fue demostrado por L.P. Eisenhart
[Eis, §40]. Tanto la demostración de Beltrami como la de Eisenhart son dif́ıciles
de recordar pues son consecuencia de la experiencia de ambos autores en el
manejo de ecuaciones diferenciales y técnicas “ad hoc” de análisis tensorial.
Una demostración muy bonita y clara, usando técnicas de flujos geodésicos se
puede consultar en [Mat].
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Comentario 10. En el Capitulo V del libro de Elie Cartan [Car] se demuestra
la equivalencia entre el axioma de los planos, el axioma de la libre movilidad y la
existencia de una representación geodésica sobre el espacio ordinario, i.e. de un
sistema de coordenadas como en la hipótesis del teorema de Beltrami. Cartan
demuestra la equivalencia en dimensión 3 y comenta (en el punto 115. página
130) que la demostración puede ser generalizada al caso n > 3. Finalmente, en
el punto 116, Cartan comenta que el caso n = 2 es más dif́ıcil de comprender
geométricamente y cita justamente a E. Beltrami y su art́ıculo [Bel].

No es dif́ıcil dar una demostración sencilla y conceptual para el caso dim(M) ≥
3. La idea es un principio que establece que si una variedad riemanniana posee
“muchas” subvariedades totalmente geodésicas entonces la variedad debe de ser
“muy” simétrica . El axioma de los planos de Elie Cartan es el primer ejemplo
de este principio.

Es interesante observar este “principio” en la reciente demostración de C.
Olmos del famoso teorema de Berger-Simons [Olm]. Otro ejemplo es el teorema
de rigidez de Molina-Olmos [MoOl]. Tanto en la demostración en el Capitulo
V del libro de Cartan, como en estos dos últimos art́ıculos la existencia de
subvariedades totalmente geodésicas se mezcla con un théoréme remarquable
de Gregorio Ricci-Curbastro [Car, pág. 122, punto 107]:

S’il existe dans l’espace de Riemann une famille á un paramétre de plans,
leurs trajectories orthogonales etablissent entre les differents plans de la famille
une correspondence ponctuelle isométrique.

La demostración de éste theorema remarquable es muy sencilla y puede con-
sultarse en [HeLi, pág. 154, Lemma 1.2.], donde se la usa nuevamente como
instrumento en la construcción de isometŕıas.

Una manera de evitar introducir el axioma de libre movilidad es hablar de
espacios de curvatura constante (naturalmente ambas nociones son equivalen-
tes).

Proposición 11. Sean (Mn, g) (n ≥ 3) una variedad riemanniana y R(X, Y )Z
su tensor de Riemann. Si R(X, Y )Z ∈ span{X, Y } para todos X,Y, Z ∈ TM
entonces M es un espacio de curvatura constante.

Demostración. Como hemos visto, en dimensión 2 los tensores de curvatura son
siempre de la forma R(X, Y )Z = k(X ∧ Y )Z. Luego la hipótesis implica que
el tensor de curvatura R(X, Y )Z de M satisface R(X,Y )Z = k(Z)(X ∧ Y )Z
donde k podria depender de Z. Usando la linealidad resulta que k solo depende
del punto p ∈ M y no del vector Z ∈ TpM . Es decir, R(X,Y )Z = k(p)(X∧Y )Z
y como dim(M) ≥ 3 resulta k constante i.e. Lema de Schur, que a su vez es
consecuencia de la II identidad de Bianchi (ver [KNI]). ¤X

Observemos que la hipótesis del teorema de Beltrami implica la existencia de
“muchas” subvariedades totalmente geodésicas (i.e. cuyas geodésicas son las del
espacio ambiente). Esto fuerza a que el espacio ambiente M sea de curvatura
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constante. La siguiente proposición se encuentra en el libro de M. Spivak [Sp3],
si bien la demostración que damos aqúı es ligeramente diferente.

Corolario 12. Sea (Mn, g) (n ≥ 3) una variedad riemanniana. Si para todo 2-
plano πp ⊂ TM existe una subvariedad totalmente geodésica N ⊂ M tangente
a πp i.e. TpN = πp, entonces M es un espacio de curvatura constante.

Demostración. Una subvariedad N ⊂ M es totalmente geodésica si y solo si
DXY ∈ TN si X, Y ∈ TN , donde D es la conexión de Levi-Civita de M .
A partir de esto es sencillo concluir que para cualesquiera X, Y, Z se tiene
R(X,Y )Z ∈ span{X, Y } y el corolario sigue de la proposición anterior. ¤X

Claramente si n ≥ 3 entonces el teorema de Beltrami es simplemente un
consecuencia del corolario anterior.

A continuación damos una demostración alternativa que incluye el caso n =
2 usando observaciones simples sobre conexiones afines i.e. conexiones en el
fibrado tangente de una variedad.

Comentario 13. La existencia de muchas subvariedades totalmente geodésicas
en una variedad lorentziana implica en general un alto grado de simetria, ver
por ejemplo [Zeg, Prop. 3].

Conexiones afines planas sin torsión y el teorema de Beltrami. Re-
cordemos la correspondencia entre sistemas de coordenadas y conexiones afines
planas sin torsión de la que he hablado en una sección precedente. Es decir, si
tenemos un sistema de coordenadas {x1, . . . , xn} podemos introducir una cone-
xión af́ın plan sin torsión∇ simplemente definiendo∇ ∂

∂xi

∂
∂xj

= 0. Es decir como
la derivada usual en este sistema de coordenadas. Claramente las “geodésicas”
de ∇ son lineas rectas cuando las escribimos respecto de {x1, . . . , xn}. Rećıpro-
camente, recordemos la Proposición 5: si ∇ es una conexión flat sin torsión
entonces ∇ es de la forma anterior, es decir, existen coordenadas x1, . . . , xn

tales que ∇ ∂
∂xi

∂
∂xj

= 0.
Un hecho conocido en la teoria de conexiones afines es que la diferencia

entre dos conexiones es un tensor. Resumimos estas propiedades en la siguiente
proposición.

Proposición 14. Sean D y ∇ dos conexiones afines sin torsión de la varie-
dad M . Entonces DXY − ∇XY = S(X,Y ) donde S es un tensor simétrico
de tipo (0, 2). Mas aún, si las geodésicas de ambas conexiones coinciden co-
mo subconjuntos de M entonces existe una 1-forma ω(X) tale que S(X,Y ) =
Xω(Y ) + Y ω(X).

Demostración. Dejamos la verificación de que S es un tensor y simétrico al
lector. Recordemos que una curva γ(t) es una geodésica respecto de D si
Dγ′(t)γ

′(t) = 0. Como no nos interesa la parametrización de γ podemos so-
lamente pensar que Dγ′(t)γ

′(t) es proporcional a γ′(t). Entonces como S es



CORCHETE Y CURVATURA 129

simétrico la identidad polar permite recuperar S a partir de la diagonal i.e.
a partir de los valores de la forma cuadrática S(X,X). Si asumimos que D y
∇ poseen las mismas geodésicas entonces concluimos que S(X, X) es propor-
cional a X i.e. S(X, X) = ω(X)X. Luego polarizando obtenemos el resultado
deseado. ¤X

Usando esta proposicion obtenemos una nueva demostración del teorema de
Beltrami.

Demostración general del teorema de Beltrami. Asumamos entonces que exis-
ten las coordenadas x1, . . . , xn en las cuales las geodésicas son ĺıneas rectas. Sea
entonces ∇ la conexión af́ın plana sin torsión que genera este sistema de coor-
denadas. Llamemos D a la conexión de Levi-Civita de (M, g). Existe entonces
una 1-forma ω(X) tal que

∇XY = DXY + Xω(Y ) + Y ω(X).

Esta ecuación nos permite calcular el tensor de curvatura R∇ de ∇ en función
de D y de ω obteniendo (simplemente calcular R∇ usando la definición en
términos de derivada covariante):

R∇(X, Y )Z = RD(X, Y )Z + dω(X, Y ).Z

+ X. {ω(DY Z)− Y ω(Z) + ω(Y )ω(Z)}
+ Y. {ω(DXZ)−Xω(Z) + ω(X)ω(Z)} .

Naturalmente que sabemos que R∇(X, Y )Z es idénticamente cero pues ∇
es plana. Deducimos entonces que el tensor de curvatura de Riemann R = RD

satisface:

R(Y, X)Z = dω(X,Y ).Z

+ X. {ω(DY Z)− Y ω(Z) + ω(Y )ω(Z)}
+ Y. {ω(DXZ)−Xω(Z) + ω(X)ω(Z)} .

Observemos que ω es cerrada, i.e. dω = 0. En efecto, si Z es paralelo en un
punto p ∈ M i.e. DTpMZ = 0 con Zp ∈ nucleo(ω) entonces tomando producto
interno en ambos miembros contra Zp obtenemos dω(X, Y ) = 0. La existencia
de campos Z paralelos en un punto en una dirección arbitraria se sigue usando
por ejemplo coordenadas geodésicas.

La identidad anterior se convierte entonces en:

R(Y, X)Z = X. {ω(DY Z)− Y ω(Z) + ω(Y )ω(Z)}
+ Y. {ω(DXZ)−Xω(Z) + ω(X)ω(Z)} .

Observemos que esta identidad implica R(X, Y )Z ∈ span{X, Y } y si dim(M)
≥ 3 entonces el teorema de Beltrami se sigue de la Proposición 11.

Podemos entonces concentrarnos, como hizo Beltrami, en el caso de una
superficie, i.e. dim(M) = 2.
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Recordemos que toda 1-forma ω(X) es igual a tomar producto interno
contra un campo. Sea entonces H el campo vectorial que realiza ω(X), i.e.
ω(X) = 〈X, H〉. Recordemos también que R(X, Y )Z = κ(X ∧Y )Z, donde κ es
la curvatura de Gauss. Podemos usar esta identidad para obtener:

κX = DXH − 〈X, H〉H, (3)

para todo vector X ∈ TM .
Antes de seguir recordemos que estamos trabajando localmente. Entonces

podemos usar que tenemos definida en nuestra superficie una estructura com-
pleja J . Usando la ecuación anterior para calcular las derivadas covariantes
DJHH y DHH resulta el siguiente lema.

Lema 15. En las condiciones anteriores se tiene

〈R(JH,H)H, JH〉 = −dκ(H)‖H‖2 + κ‖H‖4 .

y como consecuencia

dκ(H) ≡ 0.

Si introducimos un sistema de coordenadas ortogonales (x, h), i.e. ds2 =
Adx2 + Bdh2 donde ∂

∂h = H el lema anterior implica que la curvatura de
Gauss κ depende solo de x i.e. ∂κ

∂h ≡ 0.
Finalmente, si calculamos la derivada covariante D ∂

∂h

∂
∂h usando la ecuación

(2) obtenemos:

D ∂
∂h

∂

∂h
=
−Bx

2A

∂

∂x
+

By

2B

∂

∂h
.

De la ecuación (3) se sigue Bx ≡ 0 y en general:

(κ(x) + B(h))
∂

∂h
= D ∂

∂h

∂

∂h
=

Bh

2B

∂

∂h
,

es decir κ(x) + B(h) = B′(h)
2B(h) .

De donde se sigue el Teorema de Beltrami. Es decir, la curvatura de Gauss
κ tampoco depende de x y por lo tanto es constante. ¤X

Comentario 16. Como hemos observado anteriormente las coordenadas sobre
una esfera que provienen de la proyección central a un plano tangente tienen la
propiedad de que las geodésicas son ĺıneas rectas. Usando una esfera de radio 1
centrada en el punto (0, 0, 1) ∈ R3 y la proyección central al plano (tangente)
x y no es dif́ıcil calcular que la 1-forma ω, que se introduce en la anterior
demostración, es: ω = d(2log(1 + x2 + y2)) i.e. H es el gradiente (visto sobre
la esfera) de la función 2log(1 + x2 + y2).
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