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Corchete y curvatura

ANTONIO J. DI ScALA
Politecnico di Torino, Italy

ABsTRACT. The first part of this article presents the definition of Lie Bracket
related to commuting flows of vector fields. In the second part, basic definitions
and of connections and curvature are given in order to emphasize the link bet-
ween Lie Brackets and curvature. Finally, by using locally-defined connections,
we give a short and original proof of a classical theorem of Beltrami. The article
is addressed to a non specialist in local differential geometry.
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RESUMEN. La primera parte del articulo presenta al corchete de Lie asociado al
problema de la comutatividad de dos flujos. En la segunda parte se introducen
las definiciones béasicas de conexién y curvatura en fibrados vectoriales, sub-
rayando la relacién corchete-curvatura. Finalmente, usando conexiones afines
localmente definidas, se da una demostracién original y sencilla de un teorema
de Eugenio Beltrami. Este articulo apunta a un lector no especialista (e.g. un
estudiante de doctorado en matemadtica o fisica, etc) en geometria diferencial
local.

1. Introduccién

La primera parte de este articulo presenta al corchete de Lie y la curvatura
de una conexién o derivada covariante como objetos intimamente relacionados.
Naturalmente que todo esto es bien conocido por los expertos en geometria
diferencial. Esta primera parte apunta maés bien a un lector no especialista e.g.
un estudiante de Licenciatura o de Doctorado. Si bien es interesante el enfoque
puesto en “descubrir” el corchete, como condiciéon de conmutatividad de flujos,
desarrollando en serie de Taylor. También, manteniendo este punto de vista
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“descubridor”, se dan demostraciones sencillas de la identidad de Jacobi y del
cldsico teorema de Frobenius (en su versién local).

El articulo estd escrito pensando en el aspecto local de la geometria diferen-
cial. En algunos pasajes del articulo se dan indicaciones del aspecto global del
problema o situacién bajo estudio.

Salvo mencién explicita todos los campos o funciones seran suaves i.e. C*®

La segunda parte contiene una breve introducciéon a la conexién de Levi-
Civita de una variedad riemanniana y al tensor de curvatura de Riemann. Esta
seccién contiene una demostracion original y facil de recordar de la simetria
por “parejas” (R(X,Y)Z, W) = (R(Z,W)X,Y) del tensor de Riemann.

En la tercera parte del articulo, se da una demostracién simple y original de
un clésico teorema de Eugenio Beltrami, basada en la correspondencia entre
conexiones (localmente definidas) planas sin torsién y sistemas de coordenadas.

Este articulo fue escrito y revisado durante las visitas del autor al Departa-
mento de Matematicas de la Universidad Nacional de Colombia sede Bogota du-
rante Noviembre 2004 - Enero 2005 y Agosto 2005 gracias a la invitacién del
Profesor Victor Tapia. La demostracion del teorema de Beltrami es consecuen-
cia de conversaciones con Andrea Sambusetti de la Universidad de Roma “La
Sapienza”.

El autor desea agradecer al referee por las oportunas correcciones que han
ayudado a mejorar la presentacion final del articulo.

Flujos, conmutatividad y el corchete [X,Y]
de dos campos vectoriales

Si un campo X y una funcién f estdn definidos en un abierto del espacio
euclideo podemos derivar f en la direccién de X. Dos notaciones para ex-
presar la derivada de f en la direccion de X son: X(f) 6 df(X). Si el cam-
po X es un campo coordenado a% en algun sistema de coordenadas, lo an-
terior es la familiar derivada parcial % de f respecto de la coordenada =z

( ie. a%(f) = df(a%) = %). Usando la linealidad de esta operaciéon y el pro-

ducto interno se introduce el gradiente V f como el campo que realiza la deri-
vada desde el punto de vista del producto interno:

(Vf, X) = df(X),

para todo campo X. Con (X,Y) denoto el producto interno entre X e Y (i.e.
en coordenadas (X,Y) = > z;y,).

También, si los campos vectoriales X e Y estdn definidos en un abierto
del espacio euclideo entonces podemos derivar Y en la direccién de X (i.e.
derivando componente a componente) esto se escribe DxY. Si X, Y y Z estdn
definidos en el mismo abierto, entonces se verifica:

Z(X,Y)=(DzX,Y)+ (X,DzY).
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Es interesante notar que si X es un campo podemos definir su divergencia
como div(X) := > ,(De, X, e;) donde e; es una base ortonormal que puede ser
elegida arbitrariamente como puede verificarse con un simple célculo (Si no
desea célcular, note que div(X) es la traza de la transformacién lineal D, X).
De esta manera es posible introducir el familiar Laplaciano A f := div(V f).

Volviendo la atencién a los campos, si tenemos un campo X podemos definir
su flujo X! como la familia de difeomorfismos a un pardmetro ¢ que constituyen
la solucién de la ecuacién ordinaria de primer orden con condicién inicial ¢(0) =

: dil—(tt) = /(t) = X,@1). Es decir por definicién tenemos, X*.p := ¢(t).
{Cémo medir si los flujos de dos campos vectoriales conmutan? Sean
X un campo en un abierto de RY y X* su flujo. Desarrollando el flujo y el campo
en serie de Taylor obtenemos ( i.e. debido a las hipdtesis de diferenciabilidad):

Xtp=p+tX, + 5 Dx X +o(t?)
Xpitv, = X, +tDy, X 4 0(t?)

Podemos usar estas formulas para tener una medida de la no conmutatividad
de dos flujos, es decir para calcular el comportamiento de Y~ X~t.Yt Xt p
para valores pequenos de t. En efecto, reemplazando obtenemos:

t2

toyt, 3
ViXip=p+iXp+ 5 Dx, X+ o(t”) + B X+ 2 D, X+o(t2)
2
—D
+ 2 Yp+tXp+%Dpr+o(1/3>

Ahora, reemplazamos la estimacién del campo Y y reagrupamos términos
o(t3):
2

t
YiXip=p+t(X,+Y,) + 5 (Dx, X +2Dx,Y + Dy, Y) + o(t%).

De manera analoga, podemos obtener:
t2
Y X g=q—t(X,+Y,)+ §(qux +2Dx,Y + Dy,Y) +o(t*).
Si hacemos ¢ = Y. X% p y introducimos las siguientes estimaciones:
X, = Xp+t(Xp+Yp)+o(t2) =X, + tD(Xeryp)X + O(t2> .

Yy = Yoprt(x,4v,)40(2) = Yp + tD(x,1v,)Y + o(t?).
Obtenemos,
2
Y EXT'Y' X p=p+t(X,+Y,) + §(DXPX +2Dx,Y + Dy,Y)
- t(Xp + tD(Xp+yp)X) — t(Yp + tD(Xp+yp)Y)
2
+ E(DXPX + 2DXpY + DYPY) + O(t?)) .
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Si cancelamos términos iguales en esta iltima igualdad tenemos:
Y EXT LY X p=p+t* (Dx,Y — Dy, X) + o(t?) (1)

Es decir, si los flujos conmutan entonces el corchete [X,Y] = DxY — Dy X
se anula.

Reciprocamente, si el corchete se anula los flujos conmutan. Para ver facil-
mente esto se reinterpreta el corchete como la variaciéon de un campo respecto
de otro i.e. la derivada de Lie. Esto es sencillamente, derivar lo traido por los
diferenciales del flujo, més precisamente:

d
LxY),:=— Xty
( X )p dt\t:O( * );D ’

donde (X;'Y), =dX '(Y(X")) se conoce como el pushforward respecto del
difeomorfismo X ~t, que se puede pensar como “lo traido por el flujo”.
De manera andloga a lo que se hizo en el cdlculo anterior vamos a ver que:
LxY =[X,Y].
En efecto, para “t” fijo consideremos la recta c(s) que pasa por X'.p con
velocidad inicial Yyt , i.e. ¢(s) := X'.p+ s.Yxt . Por definicién tenemos:
d
— X te(s) = (XY),.
G X el = (XY,

Luego, imitando lo que hicimos antes
X7te(s) =X (X p+ s.Yxt ) = Xtp+ s.Yxt , — tXXt.p+s.YXt_p + o(t?)
=p+tX,+sYxt,— tXp+tXp+S.YXt_p + 0(t2)
=p+tX, +5Yxtp, — ( Xprex, + s.Dyxt.pX) + o(tQ) .
Por lo tanto,
(X,Y)p = Yxep —tDy,, X +o(t?),

y expandiendo respecto de t se obtiene lo que afirmamos i.e. LxY = [X,Y].
Veamos entonces que si LxY se anula entonces el flujo de Y conmuta con el
de X. Para ello observemos en primer lugar que: %H:to (X;'Y), = 0 para todo
to v no solo para tg = 0. Es decir, el campo Y no cambia a lo largo del flujo de
X (ie. XL(Y,) = Yxt ). Por lo tanto para cada “t” fijo X*.Y*.p es una curva
integral del campo Y que pasa por el punto X*.p. Luego, por la unicidad de las
soluciones no queda otra que X:.Y*.p =Y. X'.p que es lo que querfamos ver.

La identidad de Jacobi. Es interesante ver que pasa cuando tomamos la
derivada de Lie de un campo Z respecto a un Corchete [X,Y] y al revés la
derivada de Lie de un corchete [Y, Z] respecto de un campo X, la solucién se
visualiza facilmente aqui abajo:

{ Lixy)Z Lx.LyZ—Ly.LxZ

Lx[Y,Z] = [LxY,Z]+Y,LxZ]
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Naturalmente, estas dos identidades son equivalentes a la celebre identidad
de Jacobi:

[X> [sz]] + [Yv [ZvX]] + [Zv [X’Y]] =0.

Vamos a demostrar esta identidad usando el truco de los tensores. Para
ello, llamemos J(X,Y,Z) = [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]]. La idea es
probar que J es un “tensor” es decir, que sélo depende de los valores puntuales
de los campos. A su vez, esto es equivalente a probar que J saca funciones
debido a que la linealidad estd garantizada por definiciéon. Fijemos entonces
tres campos X,Y,Z y tomemos una funcién f. Calculemos J(X,Y, fZ), para
ello procedemos organizadamente:

(X,[Y,1Z]] = [X,Y(6)Z] + [XAY,Z]] = [X,Y(£)Z] + X()[Y,Z] +
[Y,[fZ,X]] = -[Y.X(0)Z] + [Y,f[Z,X]] = -[Y,X(£)Z] + Y(F)[ZX]
[fZ,[X,Y]] = -[X,Y](f)Z +{[Z,[X,Y]]

Sumando, resulta claro que J(X,Y, fZ) = fJ(X,Y, Z) siy solo si [X,Y](f)
= XY (f)) = Y(X(f)). Tenemos entonces que demostrar:

(X, Y](f) = X(Y(f)) =Y (X(S))-

Esto es muy sencillo si uno expresa todo en un sistema de coordenadas orto-
gonales y usa que las derivadas parciales se pueden tomar en cualquier orden.

i 0 30
En efecto, supongamos que X := T 5, Y (=7 ey donde usamos la conven-

cién de Einstein (i.e. indices iguales arriba y abajo se suman). Calculamos por

) ) ) i 9 i 0y’ 9 i 5 0°
un lado X(Y'(f)) = 2" 5. (Z/Ja*ej(f)) = T'5; (yja*e]:.) = z' 5L 37{2 + Ilijé
intercambiando los roles de x’s e y’s resulta:

0yl Of o 0% f 0zt Of L, O
X(Y(f) = YV(X(f) =20 LG 4 gy oy gl .
( (f)) ( (f)> . 861- 86j o y 8eic’)ej 4 aej 6‘@1- vy 8ejaei
De manera andloga calculamos [X,Y](f) = DxY(f) — Dy X(f). Tenemos,

DxY(f) = xiDa%iyja%j(f) = xi‘g—i%. Finalmente, intercambiando roles re-

sulta:
0yl Of j ozt Of
=a'— o —y ;
Oe; Oe; Oe; Oe;
de donde resulta la igualdad, recordando que el orden de las derivadas parciales

no importa. Es interesante rescatar de los cédlculos anteriores la férmula del
corchete en éstas coordenadas:

(X, YI(f)

0y’ Ozt 0

J

36]‘ Y 86)6761

[X,Y] = (&

Volviendo al principio, tenemos entonces que J(X,Y, Z) es un tensor. Luego,
J =0, como queriamos mostrar (como resulta evaluando en campos coordena-

dos).
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El corchete en variedades. Todo lo dicho en la seccién anterior puede ser
generalizado al contexto de variedades diferenciables. Un punto de partida,
seguido por muchos autores, es introducir el corchete entre dos campos X e Y
mediante su accién sobre funciones (i.e., dando sus coordenadas en cualquier
sistema de coordenadas) mediante la identidad:

(X, Y](f) = X(Y(f)) = Y(X(£)),

y luego justificar que dicho procedimiento realmente produce un campo vecto-
rial (i.e. viendo que sus coordenadas “transforman” cémo deben ser...).

En la categoria de variedades diferenciables las “flechas” o “morfismos” son
las funciones suaves. La siguiente es la propiedad caracteristica del corchete
respecto a estos morfismos.

Sea f : N — M una funcién suave entre variedades y sean X,Y campos
vectorial de M y X,Y campos vectoriales en N. Supongamos que df (X) = X
y que df(Y) =Y (i.e. los campos estan f-relacionados) entonces

df[X, Y] = [X,Y].

Los detalles se pueden consultar en casi todo libro de geometria diferencial
e.g. [KNI], [ChEb].

El teorema de Frobenius

Sea M una variedad diferenciable. Observemos que un campo vectorial X que
no se anula, define un subespacio unidimensional en cada espacio tangente
T, M. En general, una asignacién que a todo punto p € M asigna un subespacio
p — D, C T,M se llama distribucion, si la dimensién dim(D,) es constante
i.e. no depende de p, sino se habla de distribucion con singularidades [Ste].
Si existen d campos suaves (i.e. C*®) X1, -, Xy localmente definidos en un
entorno U de cada punto p tales que D, = span{Xi(q),--- , Xa(q)} para todo
q € U se dice que la distribucién es suave.

En el caso de un campo X, el flujo X* garantiza la existencia de una “curva”
integral a través de cada punto de la variedad M. En general, una subvariedad
N C M tal que T,N = D, para todo p € N se llama subvariedad integral.

Una distribucién D se dice localmente integrable si por cada punto pasa una
subvariedad integral maximal N.

Una distribucién se dice involutiva si el conjunto de sus campos tangentes
es cerrado respecto a la operacion de tomar corchetes. Es decir, si para todo
par de campos X,Y tangentes a D el corchete de Lie [X,Y] es nuevamente
tangente a D.

Es claro que si una distribucion es integrable entonces debe ser involutiva
debido a que los corchetes de campos en M se identifican con corchetes calcula-
dos sobre las subvariedades integrales N (formalmente habria que usar lo dicho
sobre campos i-relaciénados aplicado a las inclusiones canénicas i : N — M de
las subvariedades...).
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Teorema 1 (Teorema local de Frobenius). Una distribucion es involutiva si y
solo si es localmente integrable.

Demostracion. La demostracién que sigue se basa en la siguiente observacién.

Lema 2. Sea X un campo de vectores tangentes a la distribucion involutiva D
y sea v, € D, C T, M un vector tangente a la distribucion en el punto p € M.
Sea vy el campo a lo largo del flujo generado por vy, i.e. v = dX*(v,). Entonces
v € D.

Demostracion. Completemos X con otros campos de manera de obtener (lo-
calmente) una base {X = X, Xo, - X4} de la distribucién involutiva D. Ad-
juntando mas campos vectoriales Xg1,---,X,, podemos completar a su vez
la base de D a una base de T'M.

Como estamos trabajando localmente podemos extender v; a un campo vec-
torial V' en un abierto alrededor de la linea de flujo que pasa por p. Incluso,
podemos hacerlo de manera que la extensiéon V' conmute con X. Todo esto se
ve facilmente pensando en X como un campo coordenado, i.e. trivializando la
situacion usando el flujo de X y considerando una subvariedad transversal a X
que pase por p.

Tenemos entonces el siguiente sistema de ecuaciones para los coeficientes de
V respecto a una base de campos de vectores:

0=[X,V]=[X,) ViX,] =) X(Vi)Xi +Vi[X, X;];

observando detenidamente notamos que este sistema es un sistema de primer
orden para los coeficientes V; de V. Incluso debido a la involutividad de D (i.e.
si 1 < ¢ < d entonces [X, X;] es una combinacion lineal de X; con 1 < i < d),
y de la condicién inicial (i.e. v, € D), vemos que el sistema se resuelve usando
los indices ¢ desde 1 hasta d. Lo que demuestra el lema. o

Usando el lema anterior no es dificil demostrar que la inmersion ¢ de un
pequefio abierto alrededor del origen de R? dada por la composicion de flujos
i(t1,ta, -+ ,tg) = X{' 0 X320 --- 0 X.(p) es una subvariedad integral de la
distribucién D. Lo que demuestra el teorema de Frobenius. o

Comentario 3. FEl teorema local de Frobenius es usado muchas veces para
construir un sistema de coordenadas adecuado al problema bajo estudio. FEjem-
plo de esto es la versidn global del teorema de Frobenius (i.e. por cada punto
p € M pasa una subvariedad integral mazimal Sp): Primero se define S, C M
como el subconjunto de puntos que se pueden unir con p € M mediante una
curva continua diferenciable a trozos cuyo tangente estd en la distribucion D.
Segundo se usa la version local de Frobenius para construir un atlas de S, que
de paso demuestra que le inyeccion candnica i : S, — M es una immersion
suave.



120 ANTONIO J. DI SCALA

Conexiones y curvatura en fibrados vectoriales:
La distribucién horizontal

Esta seccion es una breve introduccion al lenguaje de la teoria de conexiones en
fibrados vectoriales. La idea es introducir una conexién como una distribucion
horizontal y su curvatura como la medida de su integrabilidad. También se in-
troduce la conexién mediante la idea de derivar secciones suaves i.e. la derivada
covariante. Finalmente, se dan ejemplos (locales) de conexiones afines que son
derivadas covariantes en el fibrado tangente y se observa como éstas generali-
zan el concepto de sistema de coordenadas. Para ello se introduce también el
tensor de torsién.

Fibrados vectoriales. Sea E y M dos variedades diferenciales. Se dice que
m: E — M es un fibrado vectorial si m es sobreyectiva y si vale la siguiente
condicién de trivilizacion local: existe un espacio vectorial V' y una familia de
cartas fibradas (i.e. difeomorfismos locales) ¢, : U, x V — E, tales que los U,
son un recubrimiento por abiertos de M y ademaés:

a) (¢a(z,v)) =z,

b) En las intersecciones de abiertos se verifique: ¢El o dalz,v) = (x,
98,a(z)(v)) donde ggo : Uy NUg — GL(V) es lo que se llama coci-
clo, pues g, 8 ° gg,a = gv,a, etc.

La variedad M se llama base mientras que la variedad E se llama espacio
total. La fibra E, := 7w~ !(z) sobre x € M es una subvariedad de E que se
identifica con el espacio vectorial V. Debido a esto el espacio tangente a la
fibra V (i.e. el “vertical”) se suele a su vez identificar también con V.

Como consecuencia de la definiciéon vemos que siempre existen secciones
locales suaves, i.e. funciones £ : U C M — E, tales que w(£(z)) = x para todo
z € U donde U es un abierto pequeno alrededor de un punto arbitrario de M.

Podemos siempre tener presente el fibrado tangente como ejemplo de fibrado
vectorial. Las secciones locales del fibrado tangente son los campos vectoriales
localmente definidos.

Conexién o derivada covariante. Si bien en el espacio euclideo podemos
definir la derivada de campos vectoriales DxY ', en un fibrado vectorial no
es posible definir la derivada de una seccién de manera natural o candnica.
Observemos que si y(t) C M es una curva en M y £(t) es la restriccién de
una seccién local sobre v(t) (i.e. £(¢t) es una curva en E tal que w(£(t)) =
~(t)), entonces % es una curva en TFE y no en E como exigirfa una genuina
“derivada”.

La manera de resolver este problema es mediante el concepto de conexion.
Existen varias maneras (equivalentes) de introducir este concepto. Es intere-
sante observar que; §una manera es usando distribuciones. La idea es simple:

observemos que si I estuviese en el “vertical” V, entonces no habria problemas

para definir la derivada debido a las identificaciones entre espacios tangentes en
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espacios vectoriales. Como en general % no estd en V, podemos complementar
V con una distribucién “horizontal” (no totalmente arbitraria, ver mds abajo)
Hie TE =V@®H y simplemente definir la derivada de £(t) como la proyeccién
% = (%)V a lo largo de H.

Suponiendo que H posea la propiedad adicional (i.e. invarianza respecto a
la multiplicacién por escalares en E) es posible recuperar la definicién usual de
derivada covariante o conexiéon D. Es decir, obtenemos una manera de derivar
secciones del fibrado respecto a campos vectoriales tangentes a M, denotada
con Dx¢&. Naturalmente, D depende de H y entonces cambiando H, cambia D.

Transporte paralelo y holonomia. El transporte paralelo 7, sobre una cur-
va (t) constituye simplemente la solucién al problema de ecuaciones diferen-
% = 0. Luego se dice que la seccién £(t) es paralela a lo largo
de (1) si se verifica % = 0. Tenemos entonces &(t) = 7(£(0)).

Si una seccion £ es paralela restringida a toda curva se dice simplemente que
& es paralela. Esto es equivalente a que ¢ satisface Dx& = 0 para todo vector
tangente X. En general, dada una conexién arbitraria, no existen secciones
paralelas.

Usando curvas cerradas y que salen y regresan al punto p € M se define el
grupo de holonomia ®, en p € M, como el subgrupo de GL(V') generado por
los transportes paralelos 7; a lo largo de las curvas cerradas 7.

El problema de la existencia de una seccién paralela es un caso particular
del siguiente “principio de holonomia”: Existe un tensor paralelo T cuyo valor
en p es T, si y solo si T}, es invariante por la accion del grupo de holonomia .

ciales ordinarias

Curvatura. La curvatura es en realidad un corchete de Lie encubierto. En
efecto, pensando en la distribucién horizontal H nos podemos preguntar si es
o no integrable. Del teorema de Frobenius sabemos que esto es asi si y solo
si es cerrada respecto a tomar corchetes, i.e. [X,Y] € H si X,Y son campos
tangentes a H.

Independientemente de que H sea o no integrable vemos que el corchete
[X,Y] € Tt E. Entonces tiene sentido que lo proyectemos (como cuando de-

finimos %) al vertical. Es decir, introducimos R(X,Y)(¢,) = (X, Y]gp)v.
Aplicando lo anterior a campos vectoriales tangentes X, Y w-relaciénados con
campos X, Y en M obtenemos el tensor de curvatura R(X,Y)(&) asociado a la

conexién D. Es decir,
R(X,Y)(€) = ([X,Y]g,)”
De lo anterior se deduce trivialmente el siguiente teorema.

Teorema 4. FEl tensor de curvatura de una conexion es idénticamente cero si
y solo si la distribucion horizontal es integrable.

Demostracion. Observemos que el flujo X* de un campo horizontal X produce
el transporte paralelo de secciones sobre las curva integrales del campo X.
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Esta observacién junto con la definicién “dindmica” del corchete de Lie (i.e. en
términos de pullback de flujos) permite demostrar la siguiente identidad:

R(X,Y){ = DxDy& — Dy Dx§ — Dix yi€-

Usando el principio de holonomia vemos que una conexién es plana, i.e. R es
idénticamente cero, si y solo si existen dim(V') secciones locales paralelas. oif

Conexiones afines

Tradicionalmente (ver [KNI, Pdg. 129]) se habla de conexidn afin cuando el
fibrado vectorial E es el fibrado tangente de la variedad M. En general, el
contexto es muy claro y no existe peligro de confusién. Por ejemplo, si se
esta estudiando una conexién que no es afin, es preferible usar letras griegas
para denotar las secciones del fibrado vectorial.

Miés adelante veremos que a una conexién afin D se le asocia, ademads de su
tensor de curvatura RP, un tensor TP de tipo (2,1) llamado torsién definido
mediante la ecuacion:

TP(X,Y):= DxY — DyX — [X,Y].

Notemos que ésta definicién sélo posee sentido cuando D es una conexién
afin debido a que simplemente no tendria sentido intercambiar X con Y en un
conexion definida en un fibrado vectorial E distinto del fibrado tangente y maés
aun, tampoco tendria sentido calcular el corchete [X,Y].

Derivadas covariantes en abiertos de R™. Mas adelante tendré necesidad
de usar derivadas covariantes D definidas localmente en abiertos de R™. Veamos
qué quiero decir al respecto. Sea U C R™ un abierto entorno de un punto
peR™ Si Xy, X, , X, son n campos suaves definidos en U entonces puedo
definir una derivada covariante D (i.e. una conexién afin en U) simplemente
dando n? funciones Ff- que sirven sencillamente para calcular Dx, X; mediante

J
la ecuacion:

Dx,X; = ngxk.
k

Luego, si debemos calcular DxY para campos arbitrarios debemos expre-
sar X e Y en términos de X1, Xo,..., Xy y usar las propiedades de D i.e. la
linearidad y la regla de Leibniz.

Concretamente, por ejemplo, si I‘fj = 0, estamos decretando que todos los

campos X1, -+, X, sean paralelos. Obviamente que esta D tendra curvatura
RP = 0. Es decir, D seré plana. Notemos que esto no implica que los campos
X1,..., X, commuten entre si (simplemente inicie con campos X1, Xs,..., X,

que no conmuten y defina D como hemos indicado més arriba).
Podemos asociar entonces a cada sistema de coordenadas una conexién o de-
rivada covariante definida simplemente decretando que los campos coordenados

0
5., Sean paralelos.
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Estas observaciones llevan a pensar que se puede generalizar el concepto
de sistema de coordenadas pensando en conexiones o derivadas covariantes
localmente definidas. En efecto, en el paragrafo precedente hemos visto que el
conjunto de sistemas de coordenadas se puede identificar con un subconjunto
del conjunto de conexiones localmente definidas. El siguiente teorema permite
decidir cuando una conexién D es en efecto una conexién que proviene de un
sistema de coordenadas.

Proposiciéon 5. Una conexion localmente definida D proviene de un sistema
de coordenadas {x1,x2,...,Tn}, i.e. D%B%j =0 si y solo si D es plana, i.e.

RP =0 y el tensor de torsion TP := DxY — Dy X — [X,Y] es idénticamente
cero i.e. TP = 0.

Demostracion. Es una consecuencia simple de lo dicho sobre la existencia de
secciones paralelas y de componer los flujos de campos paralelos como se hizo
en la demostracion del teorema de Frobenius, observando que dichos flujos
conmutan debido a que la torsién es cero. o

Se puede pensar entonces que asi como el tensor de curvatura de una cone-
xi6n nos permite estudiar la existencia de campos paralelos, el tensor de torsién
nos informa sobre la conmutatividad de los flujos asociados a estos campos pa-
ralelos. Naturalmente que para una conexion general no existen campos parale-
los, sin embargo, es interesante pensar a la Proposicién 5 como una motivacién
para la introduccién del tensor de torsién TP .

Dicho fécilmente y facilmente recordable: un sistema de coordenadas es una
conexion (localmente definida) plana sin torsién. En realidad, es posible que dos
sistemas de coordenadas (diferentes) definan la misma conexién afin. Dejamos
al lector la demostracién de que esto es sélo posible cuando la matriz de cambio
de coordenadas entre ambos sistemas es constante, i.e. el cambio de coordenada
es afin.

Comentario 6. El problema global de decidir si una variedad M admite o no
una conexion D plana, con o sin torsion, es un problema cldsico y dificil de la
topologia diferenciable (ver, por ejemplo, en el caso de superficies [Mil]).

El tensor de Riemann y un teorema de Eugenio Beltrami

Esta seccién contiene una breve introduccién al tensor de curvatura de Rie-
mann. Como consecuencia de la identidad de Bianchi se da una demostraciéon
sencilla de una de las simetrias méas conocidas de este tensor: La simetria por
“parejas” (R(X,Y)Z, W) = (R(Z,W)X,Y). Se concluye la seccién con una de-
mostracién simple de un teorema de Eugenio Beltrami. Para mas informacién
sobre geometria de Riemann en general ver [Ber| y para mds informacién sobre
teoria de subvariedades riemannianas ver [BCO].
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Simetrias o propiedades del tensor de Riemann. Sea (M, (,)) una va-
riedad riemanniana. Alrededor de 1920 Levi-Civita demostré que se puede de-
finir una manera de derivar covariantemente de manera natural o candnica.
Mas precisamente existe una unica conexién D sin torsién i.e. (jnuevamen-

te el corchete en escenal!) [X,Y] = DxY — Dy X y que preserva la métrica
Dx(Y,Z)=(DxY,Z)+(Y,DxZ).
Usando coordenadas (z1,. .., ,) y expresando la métrica ds® = > gijdridx;
ij

es sencillo demostrar el teorema de Levi-Civita. Simplemente se escribe D o %
z; J

=Y Ffj% y se observa que para que D sea sin torsién debe ser I'j; = T'%;
y que preservar la métrica implica ag,ij =3 I‘ﬁﬂ- g1+ FZ ;gi1- Una permutacién
ciclica en 1, j, k conduce a un sistema de 3 x 3 muy facil de resolver produciendo
las conocidas férmulas:

99k + 9gik _ 99ij
. i 05 ok
Z Fijglk - 9 (2)
l

En 1854 Riemann introdujo el tensor de curvatura R como medida de la
curvatura de la variedad abstracta (M™,(,)), es decir, buscando determinar
cuando M es localmente isométrica a un espacio plano R™. Riemann razonaba
localmente, asi que el problema se reducia a determinar las condiciones para
la existencia de un cambio de coordenadas donde los coeficientes de la métrica
sean constantes (para mds informacién ver [Sp2] o [DiS]).

La definicién original de Riemann del tensor R fue entonces, motivada por
este problema de tsometria, de donde resulta natural pensar que Riemann
haya definido R a partir de sus coeficientes R;;;; respecto a un sistema de
coordenadas.

Modernamente y en términos de la seccién anterior se recupera el tensor
de Riemann como el tensor de curvatura R(X,Y)Z asociado a la conexién de
Levi-Civita i.e. R(X,Y)Z = DxDyZ — DyDxZ — Dix y|Z.

Fijado un espacio tangente T, M y vectores X,Y,Z, W € T, M se sigue que
R posee las siguientes propiedades:

a) R(X,Y)Z = —R(Y,X)Z,
b) R(X,Y)Z+ R(Y,Z2)X + R(Z,X)Y =0 (I identidad de Bianchi),
&) (R(X,Y)Z, W) = —(R(X,Y)W, Z).

Usando a), b) y ¢) se sigue que la identidad de Bianchi, i.e. suma ciclica igual
a cero, es valida con respecto a cualesquiera tres argumentos del tensor de tipo
(0,4) (R(X,Y)Z,W). Més precisamente, tenemos el siguiente resultado.

Proposicion 7. En las condiciones anteriores se tiene:

(R(X,Y)Z,W) + (R(X, Z)W,Y) + (R(X, W)Y, Z) = 0
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Demostracion. La demostracién es muy sencilla (jy fécil de recordar! ) y se
basa en la siguiente matriz de 3 x 3:
(R(X,Y)Z,W) (R(X,Z)W.Y) (R(X,W)Y,Z)
(R(Y,Z)X,W) (R(Z,W)X.Y) (R(W,Y)X,Z)
(R(Z,X)Y,W) (R(W,X)Z,Y) (R(Y,X)W,Z)

La suma de la primera fila consiste exactamente en lo que queremos de-
mostrar que vale cero. Llamemos A a la suma de la primera fila. Luego, las
columnas se construyen usando la identidad de Bianchi b) a partir del primer
elemento en la primera fila i.e. cambiando ciclicamente los primeros tres ar-
gumentos. Esto garantiza que la suma de todas las columnas es cero debido
a b). Llamemos B y C la suma de la segunda y tercera fila respectivamente.
Entonces, A + B + C = 0 pues esta suma equivale a sumar todas las entradas
de la matriz. Ahora es sencillo ver que usando ¢) y b) se signe B=0y A=C
lo que demuestra el resultado. o

Una sencilla consecuencia de las identidades de Bianchi es la siguiente sime-
tria en “parejas” del tensor de Riemann.

Corolario 8. En las condiciones anteriores se tiene:
(R(X,Y)Z,W) = (R(Z,W)X.Y)

Demostracion. Podemos usar la identidad de Bianchi con respecto a cuales-
quiera de los argumentos. Entonces,

(RX,Y)Z,W) = —(R(X,Z2)W,Y) — (R(X, W)Y, Z)
=(R(Z,W)X,Y)+ (R(W,X)Z,)Y) — (R(X,W)Y, Z)
=(R(Z,W)X,Y).
La ultima identidad se sigue usando c). ™

Es interesante observar que esta tltima propiedad de R junto con a) y c)
permiten pensar a R como un operador simétrico R : A2(TM) — A?(TM).

Una consecuencia fundamental de la identidad de Bianchi es que es posible
recuperar el tensor R a partir de la la curvatura secciénal (ver [KNI] o [ChEb])

QXY) = (R(X,Y)Y, X) _ (RIXANY),XNY)
| X AY |2 | X AY |2

Notemos que la curvatura secciénal Q(X,Y") s6lo depende del 2-plano gene-
rado por X, Y. En particular se tiene que R es idénticamente cero si y solo si @
es idénticamente cero. Como consecuencia se sigue que para una superficie la
determinacién del tensor de curvatura se reduce a conocer la (dnica) curvatura
secciénal, méas conocida como curvatura de Gauss. También es posible llegar a
la misma conclusién observando que dim(A2?(T,M)) = 2 si M es una superficie
ie. dim(M) = 1.

Para ilustrar la importancia de la identidad de Bianchi veamos un ejemplo de
operador simétrico de A2(T M) cuya “curvatura seccional” es siempre nula pero
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que no es idénticamente cero. Se trata del operador * de Hodge de una variedad
de Riemann M orientada y de dimension 4 i.e. x(e; A ej) = ex A e, tal que la
base (e;, €;, e, €;) es positiva. Por definicién tenemos que (x(aAb),aAb) =01lo
que implica que las curvaturas secciénales de * son cero siempre. Claramente
el operador de Hodge no es cero. Naturalmente esto es consecuencia de que el
operador de Hodge no satisface la identidad de Bianchi.

Un teorema de E. Beltrami. El teorema de Beltrami [Bel] al que nos re-
feriremos en esta seccién se puede pensar como una caracterizacién local y
en coordenadas de los espacios de curvatura constante i.e. aquellos en los que
Q(X,Y) =k € R o equivalentemente R(X,Y)Z = k(X AY)Z.

Probablemente, Beltrami haya partido observando que usando la proyeccion
central desde el centro de una esfera S C R"*! a su espacio tangente T,.M
se obtiene un sistema de coordenadas locales alrededor de p € S™ en el cual
las geodésicas son lineas rectas, sin tener en cuenta la parametrizacién. Esta
observacion no requiere ninguin calculo y se sigue observando que las geodésicas
de S™ se obtienen “cortando” S™ con 2-planos que pasen por el centro de la
esfera. Luego, la proyeccion central necesariamente envia estas geodésicas a la
interseccién de dicho plano con el plano tangente T, M produciendo una recta
en este ultimo.

A su vez, el mismo argumento puede ser empleado para el espacio hiperbdlico
real H"” C R™! respecto al modelo lorentziano.

Resumiendo, se observa que si p € M (k) es un punto en un espacio de curva-
tura constante M (k) entonces existen coordenadas {x1,zs,...,z,} alrededor
de p tales que las expresiones v(t) = (z1(¢), -+ ,x,(t)) en estas coordenadas de
las geodésicas coinciden (salvo reparametrizacion) con rectas ordinarias escritas
en coordenadas x1,--- ,x, (i.e. ¥ () es proporcional a ~ (t) para todo t).

El teorema de Beltrami es exactamente la afirmacién reciproca de esta ob-
servacion.

Teorema 9 (E. Beltrami, 1865 [Bel]). Supongamos que un sistema de coor-
denadas x4, ...,x, de una variedad riemanniana (M tiene la propiedad de
b b )
que las geodésicas son lineas rectas i.e. salvo parametrizacion la ecuacion de
L. i ’
las geodésicas es x,x . = 0. Entonces la curvatura es constante en los
1

J J
puntos parametrizados por xi,...,Tn.

"
71:1-:.5

Es interesante observar que Beltrami s6lo demostré su teorema cuando n = 2
i.e. para una superficie. El caso general fue demostrado por L.P. Eisenhart
[Eis, §40]. Tanto la demostracién de Beltrami como la de Eisenhart son dificiles
de recordar pues son consecuencia de la experiencia de ambos autores en el
manejo de ecuaciones diferenciales y técnicas “ad hoc” de andlisis tensorial.
Una demostracién muy bonita y clara, usando técnicas de flujos geodésicos se
puede consultar en [Mat].
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Comentario 10. En el Capitulo V' del libro de Elie Cartan [Car] se demuestra
la equivalencia entre el axioma de los planos, el axioma de la libre movilidad y la
existencia de una representacion geodésica sobre el espacio ordinario, i.e. de un
sistema de coordenadas como en la hipdtesis del teorema de Beltrami. Cartan
demuestra la equivalencia en dimension 3 y comenta (en el punto 115. pdgina
130) que la demostracion puede ser generalizada al caso n > 3. Finalmente, en
el punto 116, Cartan comenta que el caso n = 2 es mds dificil de comprender
geométricamente y cita justamente a E. Beltrami y su articulo [Bel].

No es dificil dar una demostracién sencilla y conceptual para el caso dim (M) >
3. La idea es un principio que establece que si una variedad riemanniana posee
“muchas” subvariedades totalmente geodésicas entonces la variedad debe de ser
“muy” simétrica . El axioma de los planos de Elie Cartan es el primer ejemplo
de este principio.

Es interesante observar este “principio” en la reciente demostracion de C.
Olmos del famoso teorema de Berger-Simons [Olm]. Otro ejemplo es el teorema
de rigidez de Molina-Olmos [MoOl]. Tanto en la demostracién en el Capitulo
V del libro de Cartan, como en estos dos tltimos articulos la existencia de
subvariedades totalmente geodésicas se mezcla con un théoréme remarquable
de Gregorio Ricci-Curbastro [Car, pdg. 122, punto 107]:

Sl existe dans l’espace de Riemann une famille d un paramétre de plans,
leurs trajectories orthogonales etablissent entre les differents plans de la famille
une correspondence ponctuelle isométrique.

La demostraciéon de éste theorema remarquable es muy sencilla y puede con-
sultarse en [HeLi, pdg. 154, Lemma 1.2.], donde se la usa nuevamente como
instrumento en la construccién de isometrias.

Una manera de evitar introducir el azioma de libre mouwilidad es hablar de
espacios de curvatura constante (naturalmente ambas nociones son equivalen-
tes).

Proposicién 11. Sean (M™,g) (n > 3) una variedad riemanniana y R(X,Y)Z
su tensor de Riemann. Si R(X,Y)Z € span{X,Y} para todos X,Y,Z € TM
entonces M es un espacio de curvatura constante.

Demostracion. Como hemos visto, en dimensién 2 los tensores de curvatura son
siempre de la forma R(X,Y)Z = k(X AY)Z. Luego la hipétesis implica que
el tensor de curvatura R(X,Y)Z de M satisface R(X,Y)Z = k(Z)(X ANY)Z
donde k podria depender de Z. Usando la linealidad resulta que & solo depende
del punto p € M y no del vector Z € T, M. Es decir, R(X,Y)Z = k(p)(XAY)Z
y como dim(M) > 3 resulta k constante i.e. Lema de Schur, que a su vez es
consecuencia de la II identidad de Bianchi (ver [KNT]). vf

Observemos que la hipétesis del teorema de Beltrami implica la existencia de
“muchas” subvariedades totalmente geodésicas (i.e. cuyas geodésicas son las del
espacio ambiente). Esto fuerza a que el espacio ambiente M sea de curvatura
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constante. La siguiente proposicién se encuentra en el libro de M. Spivak [Sp3],
si bien la demostracién que damos aqui es ligeramente diferente.

Corolario 12. Sea (M",g) (n > 3) una variedad riemanniana. Si para todo 2-
plano m, C T'M existe una subvariedad totalmente geodésica N C M tangente
a mp, i.e. T,N =mp, entonces M es un espacio de curvatura constante.

Demostracion. Una subvariedad N C M es totalmente geodésica si y solo si
DxY € TN si XY € TN, donde D es la conexiéon de Levi-Civita de M.
A partir de esto es sencillo concluir que para cualesquiera X,Y,Z se tiene
R(X,Y)Z € span{X,Y} y el corolario sigue de la proposicién anterior. o

Claramente si n > 3 entonces el teorema de Beltrami es simplemente un
consecuencia del corolario anterior.

A continuacién damos una demostracién alternativa que incluye el caso n =
2 usando observaciones simples sobre conexiones afines i.e. conexiones en el
fibrado tangente de una variedad.

Comentario 13. La existencia de muchas subvariedades totalmente geodésicas
en una variedad lorentziana implica en general un alto grado de simetria, ver
por ejemplo [Zeg, Prop. 3].

Conexiones afines planas sin torsiéon y el teorema de Beltrami. Re-
cordemos la correspondencia entre sistemas de coordenadas y conexiones afines
planas sin torsién de la que he hablado en una seccién precedente. Es decir, si
tenemos un sistema de coordenadas {x1, ..., x,} podemos introducir una cone-
xi6n afin plan sin torsién V simplemente definiendo V N % = 0. Es decir como
la derivada usual en este sistema de coordenadas. Claramente las “geodésicas”
de V son lineas rectas cuando las escribimos respecto de {z1,...,z,}. Recipro-
camente, recordemos la Proposicién 5: si V es una conexién flat sin torsién
entonces V es de la forma anterior, es decir, existen coordenadas x1,...,%,
tales que Va%% =0.

Un hecho conocido en la teoria de conexiones afines es que la diferencia
entre dos conexiones es un tensor. Resumimos estas propiedades en la siguiente

proposicién.

Proposicion 14. Sean D y V dos coneziones afines sin torsion de la varie-
dad M. Entonces DxY — VxY = S(X,Y) donde S es un tensor simétrico
de tipo (0,2). Mas atn, si las geodésicas de ambas conexiones coinciden co-
mo subconjuntos de M entonces existe una 1-forma w(X) tale que S(X,Y) =
Xw(Y) +Yw(X).

Demostracion. Dejamos la verificacién de que S es un tensor y simétrico al
lector. Recordemos que una curva (t) es una geodésica respecto de D si
D, #7'(t) = 0. Como no nos interesa la parametrizacion de v podemos so-
lamente pensar que D./4)7/(t) es proporcional a +/(t). Entonces como S es
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simétrico la identidad polar permite recuperar S a partir de la diagonal i.e.
a partir de los valores de la forma cuadritica S(X, X). Si asumimos que D y
V poseen las mismas geodésicas entonces concluimos que S(X, X) es propor-
cional a X ie. S(X,X) = w(X)X. Luego polarizando obtenemos el resultado
deseado. odf

Usando esta proposicion obtenemos una nueva demostracion del teorema de
Beltrami.

Demostracion general del teorema de Beltrami. Asumamos entonces que exis-
ten las coordenadas 1, ..., x, en las cuales las geodésicas son lineas rectas. Sea
entonces V la conexion afin plana sin torsiéon que genera este sistema de coor-
denadas. Llamemos D a la conexién de Levi-Civita de (M, g). Existe entonces
una 1-forma w(X) tal que

VxY =DxY + Xw((Y) + Yw(X).

Esta ecuacién nos permite calcular el tensor de curvatura RY de V en funcién
de D y de w obteniendo (simplemente calcular RV usando la definicién en
términos de derivada covariante):
RY(X,Y)Z = RP(X,Y)Z + dw(X,Y).Z
+ X Aw(Dy Z) —Yw(Z)+wY)w(2)}
+Y A{w(DxZ) — Xw(Z) + w(X)w(Z)}.
Naturalmente que sabemos que RV (X,Y)Z es idénticamente cero pues V

es plana. Deducimos entonces que el tensor de curvatura de Riemann R = R”
satisface:

RY,X)Z =dw(X,Y).Z
+ X Aw(DyZ) —Yw(Z)+w(Y)w(Z)}
+Y A{w(Dx2Z) — Xw(Z) + w(X)w(Z)}.

Observemos que w es cerrada, i.e. dw = 0. En efecto, si Z es paralelo en un
punto p € M i.e. D1, Z =0 con Z, € nucleo(w) entonces tomando producto
interno en ambos miembros contra Z,, obtenemos dw(X,Y’) = 0. La existencia
de campos Z paralelos en un punto en una direccién arbitraria se sigue usando
por ejemplo coordenadas geodésicas.

La identidad anterior se convierte entonces en:

RY,X)Z =X A{Aw(DyZ) —Yw(Z)+w(Y)w(Z)}
+Y A{w(Dx2Z) - Xw(Z) + w(X)w(Z)}.

Observemos que esta identidad implica R(X,Y)Z € span{X,Y } y si dim(M)
> 3 entonces el teorema de Beltrami se sigue de la Proposicién 11.

Podemos entonces concentrarnos, como hizo Beltrami, en el caso de una
superficie, i.e. dim(M) = 2.
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Recordemos que toda 1-forma w(X) es igual a tomar producto interno
contra un campo. Sea entonces H el campo vectorial que realiza w(X), i.e.
w(X) = (X, H). Recordemos también que R(X,Y)Z = k(X AY)Z, donde & es
la curvatura de Gauss. Podemos usar esta identidad para obtener:

kX = DxH — (X, H)H, (3)

para todo vector X € T M.

Antes de seguir recordemos que estamos trabajando localmente. Entonces
podemos usar que tenemos definida en nuestra superficie una estructura com-
pleja J. Usando la ecuaciéon anterior para calcular las derivadas covariantes
DjygH y Dy H resulta el siguiente lema.

Lema 15. En las condiciones anteriores se tiene
(R(JH,H)H,JH) = —ds(H)||H||” + x| H||* .

Yy como CONSECUENCLa

dr(H) = 0.

Si introducimos un sistema de coordenadas ortogonales (z,h), i.e. ds? =

Adx? + Bdh® donde 2 = H el lema anterior implica que la curvatura de

c o Ok —
Gauss r depende solo de z i.e. 57 = 0.

Finalmente, si calculamos la derivada covariante D % usando la ecuacion

o
(2) obtenemos:
0 -B, 0 By 0
Do~ = A
an Oh 2A 0r 2B Oh
De la ecuacién (3) se sigue B, = 0y en general:
9 _p,9 _Bno
oh ~ 3 dh  2BOh’

(r(x) + B(h))

es decir k(z) + B(h) = %((hh)).
De donde se sigue el Teorema de Beltrami. Es decir, la curvatura de Gauss

k tampoco depende de x y por lo tanto es constante. o

Comentario 16. Como hemos observado anteriormente las coordenadas sobre
una esfera que provienen de la proyeccion central a un plano tangente tienen la
propiedad de que las geodésicas son lineas rectas. Usando una esfera de radio 1
centrada en el punto (0,0,1) € R y la proyeccion central al plano (tangente)
xy no es dificil calcular que la 1-forma w, que se introduce en la anterior
demostracion, es: w = d(2log(1 + 2 + y?)) i.e. H es el gradiente (visto sobre
la esfera) de la funcion 2log(1 + z% + y?).
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