
Revista Colombiana de Matemáticas
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Abstract. A proof of the Lie theorem which relates the symmetries of a first
order differential equation (or of a linear differential form) with its integrating
factors is given. It is shown that a similar result partially applies for systems of
linear differential forms and ordinary differential equations of any order.
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Resumen. Se da una prueba del teorema de Lie que relaciona las simetŕıas
de una ecuación diferencial de primer orden(o de una forma diferencial lineal)
con su factor integrante. Se demuestra que un resultado similar parcialmente
aplica para sistemas de formas diferenciales lineales y ecuaciones diferenciales
ordinarias de cualquier orden.

1. Introduction

A first order ordinary differential equation can be usually expressed in the form
dy/dx = f(x, y), where f is some function of two variables, or, equivalently, as
Ldx+Mdy = 0, where L and M are functions of two variables with −L/M = f .
It may happen that the differential form, or Pfaffian form, Ldx + Mdy is the
differential of some function, that is, there exists some function of two variables,
φ, such that dφ = Ldx+Mdy, in which case it is said that Ldx+Mdy is exact
and the differential equation Ldx+Mdy = 0 amounts to dφ = 0, in such a way
that its solution is given simply by φ = constant.

When Ldx + Mdy is not exact, there exists a function µ, called an inte-
grating factor of Ldx + Mdy, such that µ(Ldx + Mdy) is exact; but finding
directly the integrating factor, given L and M , can be highly involved (see,
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for example, [1]). Nevertheless, it turns out that knowing an integrating factor
of the differential form Ldx + Mdy is equivalent to knowing a one-parameter
group of transformations that leaves the equation Ldx+Mdy = 0 invariant or,
more precisely, to knowing the infinitesimal generator of that group. In other
words, starting from the symmetries of Ldx + Mdy, its integrating factors can
be obtained and conversely.

This correspondence is an example of the relation between the theory of
groups and the methods of integration of differential equations established ori-
ginally by Sophus Lie. Lie found that the methods employed in the solution of
differential equations can be understood by means of the theory of groups (see,
for example, [2–5]).

In this paper the relationship between the integrating factors of a differen-
tial form and the groups of transformations that leave it invariant is presented,
considering the general case of a differential form in n variables,

∑n
i=1 aidxi

(the case with n = 2 is considered, for example, in [3–5]). As mentioned abo-
ve, the differential forms in two variables correspond to first order ordinary
differential equations; the differential forms in more than two variables have
application, for instance, in thermodynamics and in connection with mechani-
cal systems with constraints. Furthermore, an ordinary differential equation of
order n corresponds to a system of n differential forms in n + 1 variables and
the integrating factors of a system of differential forms is also related with its
symmetries.

In Sec. 2 the correspondence between integrating factors and one-parameter
groups of invariance of a differential form in n variables is considered, including
some examples. In Sec. 3 the systems of differential forms are studied and it is
shown that an ordinary differential equation of order n is equivalent to a system
defined by n differential forms in n + 1 variables (an alternative treatment of
the symmetries of an ordinary differential equation of order n can be found in
[3–5]).

2. Symmetries and integrating factors of a differential form

A differential form or Pfaffian form in n variables is an expression of the form∑n
i=1 aidxi, where x1, x2, . . . , xn, are n independent variables and a1, a2, . . . , an

are n functions of the variables xi. It will be assumed that the derivatives
of any order of all the functions that appear in what follows exist and are
continuous. Furthermore, in order to simplify the notation, it will be assumed
that there exists sum over all the possible values for each index appearing
twice in the same term, once as subscript and once as superscript; for example,
aidxi =

∑n
i=1 aidxi.

The form aidxi is exact if there exists a function, φ, such that aidxi = dφ.
Since the total differential of a function φ of n variables xi is given by dφ =
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(∂φ/∂xi)dxi, the fact that aidxi is equal to dφ is equivalent to the n equations

ai =
∂φ

∂xi
. (2.1)

Differentiating both sides of (2.1) with respect to xj we have ∂ai/∂xj =
∂2φ/∂xj∂xi, and since by hypothesis the derivatives of all the functions are
continuous, ∂2φ/∂xj∂xi = ∂2φ/∂xi∂xj ; hence, aidxi is exact if

∂ai

∂xj
=

∂aj

∂xi
. (2.2)

The conditions (2.2) turn out to be also sufficient for aidxi to be exact.
The form aidxi is integrable if there exists a function, µ, called an integra-

ting factor of aidxi, such that µ(aidxi) is exact. According to (2.2), aidxi is
integrable if and only if there exists some function µ such that

∂(µai)
∂xj

=
∂(µaj)

∂xi
,

or

µ

(
∂ai

∂xj
− ∂aj

∂xi

)
= aj

∂µ

∂xi
− ai

∂µ

∂xj
. (2.3)

While any differential form in two variables is integrable, not all the diffe-
rential forms in three or more variables are.

In order to eliminate the function µ (which is not known, if only aidxi

is given), we multiply both sides of (2.3) by ak and summing the resulting
equation with those obtained by cyclically permuting the indices i, j, k we find
that

ak

(
∂ai

∂xj
− ∂aj

∂xi

)
+ ai

(
∂aj

∂xk
− ∂ak

∂xj

)
+ aj

(
∂ak

∂xi
− ∂ai

∂xk

)
= 0 , (2.4)

(which only involves the functions ai and their derivatives). Then, conditions
(2.4) are necessary for aidxi to be integrable and it can be shown that are also
sufficient (see, for example, [6]). If in (2.4) two of the indices i, j and k take the
same value, the left-hand side vanishes, therefore when n = 2, the conditions
(2.4) are satisfied for any functions ai and any differential form is therefore
integrable.

We shall consider families of transformations depending on a parameter t

x′1 = F 1(x1, . . . , xn, t),
x′2 = F 2(x1, . . . , xn, t),

...
x′n = Fn(x1, . . . , xn, t), (2.5)

where the F i are real-valued functions that depend on n+1 variables (throug-
hout this paper, the symbols like x′, y′, . . . , do not stand for derivatives but
for coordinates of points after effecting a transformation). In a more compact
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form, the n relations (2.5) are expressed as x′i = F i(xj , t). The transformations
(2.5) form a one-parameter group if

F i(xk, t + s) = F i(F j(xk, t), s), (2.6)

for all t, s ∈ R. The relations (2.6) imply that F i(xk, 0) = xi.
For example, if n = 2, using x, y in place of x1, x2, the transformations

x′ = xeat, y′ = yebt, (2.7)

where a and b are two fixed real numbers, form a one-parameter group of
transformations since

xea(t+s) = (xeat)eas, yeb(t+s) = (yebt)ebs.

Other examples are given by

x′ = x cos t− y sin t, y′ = x sin t + y cos t (2.8)

and
x′ = x + at, y′ = y + bt, (2.9)

where a and b are arbitrary real numbers.
In the applications to be considered here it is not necessary that the relations

(2.6) hold for all the values of t and s, but it is sufficient that (2.6) be satisfied
for values of t and s in some neighborhood of 0 (see (2.13) below). For example,

x′ =
x

1− tx
, y′ =

y

1− ty
,

satisfies (2.6) since

x

1− (t + s)x
=

(
x

1−tx

)

1− s
(

x
1−tx

) ,

provided that t and s are such that all the denominators are different from zero.
When the relations (2.6) hold only for some values of t and s sufficiently small,
it is said that the transformations (2.5) form a local one-parameter group of
transformations or a flux; however, in what follows, we shall not distinguish
between these two cases.

The differential form aidxi is invariant under a one-parameter group of trans-
formations x′i = F i(xj , t) if after substituting in it each xi by x′i one obtains
some multiple of aidxi, that is, ai

(
F j(xk, t)

)
dF i(xk, t) = λaidxi, where λ is

some function different from zero, which can depend on the xi and t, and in
the differentials of the functions F i, t is treated as a parameter, that is,

ai

(
F j(xk, t)

) ∂F i(xk, t)
∂xp

dxp = λaidxi . (2.10)

Thus, if aidxi is invariant under a one-parameter group of transformations, the
differential equation aidxi = 0 is transformed into λaidxi = 0 or equivalently,
into aidxi = 0.
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For example, under the group of transformations (2.7), the differential form

8xy4dx + (3y2 + 4x2y3 − 12x4y4)dy (2.11)

is transformed into

e(2a+4b)t8xy4dx + ebt
(
3y2e2bt + 4x2y3e(2a+3b)t − 12x4y4e(4a+4b)t

)
dy

= e3bt
[
e(2a+b)t8xy4dx +

(
3y2 + 4x2y3e(2a+b)t − 12x4y4e2(2a+b)t

)
dy

]

which is a multiple of (2.11) if we choose b = −2a. It can be seen that, by
contrast, the form (2.11) is not invariant under the transformations (2.8) or
(2.9), for t 6= 0.

Differentiating both sides of (2.10) with respect to the parameter t and
evaluating then at t = 0, by means of the chain rule, since F i(xk, 0) = xi, we
have

ai
∂ξi

∂xp
dxp +

∂ai

∂xj
ξjδi

pdxp =
∂λ

∂t

∣∣∣∣
t=0

aidxi , (2.12)

where we have introduced

ξi(xk) ≡ ∂F i(xk, t)
∂t

∣∣∣∣
t=0

, (2.13)

and we have made use of ∂xi/∂xp = δi
p, where δi

p is the Kronecker delta
(δi

p = 1 if i = p and δi
p = 0 if i 6= p). Hence, making ν ≡ (∂λ/∂t)|t=0,

changing the names of the indices in the first term, equation (2.12) amounts to
aj(∂ξj/∂xi)dxi + ξj(∂ai/∂xj)dxi = νaidxi; therefore, if the differential form
aidxi is invariant under the group of transformations (2.5) then the functions
ai satisfy the n conditions

aj
∂ξj

∂xi
+ ξj ∂ai

∂xj
= νai . (2.14)

The vector field with components ξ1, . . . , ξn is called the infinitesimal gene-
rator of the group of transformations x′i = F i(xj , t).

Multiplying both sides of (2.14) by ak we obtain

ajak
∂ξj

∂xi
+ ξjak

∂ai

∂xj
= νaiak.

Since the right-hand side of this equation does not change under the inter-
change of the indices i and k, the same must happen with the left-hand side,
thus

ajak
∂ξj

∂xi
+ ξjak

∂ai

∂xj
= ajai

∂ξj

∂xk
+ ξjai

∂ak

∂xj

or, equivalently,

ξj

(
ak

∂ai

∂xj
− ai

∂ak

∂xj

)
= aj

(
ai

∂ξj

∂xk
− ak

∂ξj

∂xi

)
. (2.15)
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If now we assume that aidxi is integrable, from (2.4) we can find the combi-
nation appearing in the left-hand side of (2.15) and substituting that expression
we find

ξj

(
ak

∂aj

∂xi
− ai

∂aj

∂xk
− aj

∂ak

∂xi
+ aj

∂ai

∂xk

)
= aj

(
ai

∂ξj

∂xk
− ak

∂ξj

∂xi

)
,

that can be also written as
(
ξjaj

) ∂ak

∂xi
− ak

∂
(
ξjaj

)

∂xi
=

(
ξjaj

) ∂ai

∂xk
− ai

∂
(
ξjaj

)

∂xk
,

or, equivalently, if ξjaj 6= 0,

∂

∂xi

(
ak

ξjaj

)
=

∂

∂xk

(
ai

ξjaj

)
. (2.16)

Comparing with (2.2) it follows that the form (ξjaj)−1aidxi is exact and
that

µ = (ξjaj)−1 (2.17)
is an integrating factor of aidxi.

Conversely, if µ is an integrating factor of aidxi then there exist functions
ξ1, . . . , ξn such that µ can be expressed in the form (2.17) and equation (2.16)
is satisfied. The steps leading to (2.16) are all valid and finally one deduces the
existence of some function ν such that (2.14) holds. Thus we have demonstrated
the validity of the following proposition.

Proposition 2.1. Let aidxi be an integrable differential form, (ξ1, . . . , ξn) is
the infinitesimal generator of a one-parameter group of transformations under
which aidxi is invariant if and only if µ = (ξjaj)−1 is an integrating factor of
aidxi.

In the case of the group (2.7), making use of ξ and η in place of ξ1 and ξ2,
respectively, from (2.7) and (2.13) we obtain

ξ =
∂(xeat)

∂t

∣∣∣∣
t=0

= ax, η =
∂(yebt)

∂t

∣∣∣∣
t=0

= by.

Recalling that the form (2.11) is invariant under the group (2.7) if b = −2a,
from (2.11) and (2.17) one finds that µ = [ax(8xy4) + by(3y2 + 4x2y3 −
12x4y4)]−1 = [−6ay3(4x4y2 − 1)]−1 is an integrating factor of (2.11). In ef-
fect, we have

8xy4dx + (3y2 + 4x2y3 − 12x4y4)dy

−6ay3(4x4y2 − 1)
= d

[
− 1

6a
ln

(
y3 1 + 2x2y

1− 2x2y

)]
,

so that the solution of the differential equation 8xy4dx + (3y2 + 4x2y3 −
12x4y4)dy = 0 is given by y3(1 + 2x2y)/(1− 2x2y) = constant.

A second example, for an arbitrary value of n, is given in the case where the
coefficients a1, . . . , an of the differential form aidxi are homogeneous functions
of the same degree k (that is, ai(λx1, . . . , λxn) = λkai(x1, . . . , xn) para all
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λ ∈ R). Any form of this class is invariant under the transformations x′i =
xiet since ai(x′j)dx′i = ai(xjet)d(xiet) = e(k+1)taidxi. The components of
the infinitesimal generator of this group are ξi = ∂(xiet)/∂t|t=0 = xi, hence
µ = (xjaj)−1 is an integrating factor of aidxi, if it is integrable. Accordingly,
the form (z−y)zdx+(x+z)zdy+x(x+y)dz, which is integrable as can be seen
verifying that conditions (2.4) are satisfied, has an integrating factor given by
µ = [x(z − y)z + y(x + z)z + zx(x + y)]−1 = [(x + y)(x + z)z]−1. In effect, one
can verify that

(z − y)zdx + (x + z)zdy + x(x + y)dz

(x + y)(x + z)z
= d ln

(x + y)z
x + z

.

As an example of the application of the foregoing Proposition to find the
symmetries of a differential form we shall consider the differential form

[P (x)y −Q(x)]dx + dy, (2.18)

which corresponds to the linear inhomogeneous differential equation of first
order dy/dx + P (x)y = Q(x). By inspection one finds that

[P (x)y −Q(x)]dx + dy = e−
∫ x P (u)dud

[
ye

∫ x P (u)du −
∫ x

Q(u)e
∫ u P (v)dvdu

]

hence, an integrating factor of (2.18) is µ = e
∫ x P (u)du hence e−

∫ x P (u)du =
ξjaj = ξ1[P (x)y −Q(x)] + ξ2, which implies that

(ξ1, ξ2) = (ξ1, e−
∫ x P (u)du − ξ1[P (x)y −Q(x)])

is the infinitesimal generator of transformations that leave invariant the form
(2.18). Taking, for simplicity, ξ1 = 0, and comparing with (2.13), one finds that
the group generated by (ξ1, ξ2) = (0, e−

∫ x P (u)du), is

x′ = x, y′ = te−
∫ x P (u)du + y.

3. Symmetries and integrating factors of
systems of differential forms

Now we shall consider systems formed by m differential forms in n variables
(m < n), a

(1)
i dxi, . . . , a

(m)
i dxi (a(j)

i is the i-th coefficient of the j-th form of the
system) such that at each point the matrix formed by the functions a

(i)
j has

rank m. The system of forms a
(1)
i dxi, . . . , a

(m)
i dxi is integrable if there exist

m2 functions, M
(i)
(j), (i, j = 1, . . . , m) such that det(M (i)

(j)) 6= 0 and the forms

M
(k)
(j) a

(j)
i dxi are exact, that is, there exist m functions, φ(1), . . . , φ(m), such that

M
(k)
(j) a

(j)
i dxi = dφ(k). (3.1)
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Then, the solution of the system of equations a
(1)
i dxi = 0, . . . , a

(m)
i dxi = 0 is

given by φ(1) = constant, . . . , φ(m) = constant. As in the case where we have a
single differential form, not all systems of differential forms are integrable, but
any system of n− 1 differential forms in n variables is integrable.

The system a
(1)
i dxi, . . . , a

(m)
i dxi is invariant under a one-parameter group of

transformations if there exist functions Λ(j)
(p) such that

a
(j)
i

(
F j(xk, t)

)
dF i(xk, t) = Λ(j)

(p)a
(p)
i dxi , (3.2)

(recall that there is summation over repeated indices). Thus, proceeding as in
the previous section, from (3.2) it follows that

a
(k)
j

∂ξj

∂xi
+ ξj ∂a

(k)
i

∂xj
= N

(k)
(p) a

(p)
i , (3.3)

where ξ1, . . . , ξn are the components of the infinitesimal generator of the group
of transformations and the function N

(j)
(p) is the partial derivative of Λ(j)

(p) with
respect to t, evaluated at t = 0.

An ordinary differential equation of order n, y(n) = f(x, y, . . . , y(n−1)), is
equivalent to a system of differential equations given by n differential forms
in n + 1 variables which, as mentioned above, is integrable. Making x1 = x,
x2 = y, x3 = dy/dx, . . . , xn+1 = y(n−1), the equation y(n) = f(x, y, . . . , y(n−1))
is equivalent to the system

dx2 − x3dx1 = 0,

dx3 − x4dx1 = 0,

...
dxn − xn+1dx1 = 0,

dxn+1 − fdx1 = 0. (3.4)

For example, the system of differential forms in three variables

a
(1)
i dxi = dy − zdx,

a
(2)
i dxi = ydz + z2dx, (3.5)

which corresponds to the second-order ordinary differential equation y(d2y/dx2)+
(dy/dx)2 = 0, is invariant under the one-parameter group of transformations

x′ = x + t, y′ = y, z′ = z , (3.6)

(for convenience we use here the notation x = x1, y = x2, z = x3), whose
infinitesimal generator is (ξ1

(1), ξ
2
(1), ξ

3
(1)) = (1, 0, 0), and is also invariant under

the group of transformations

x′ = xet, y′ = y, z′ = ze−t, (3.7)

whose infinitesimal generator is (ξ1
(2), ξ

2
(2), ξ

3
(2)) = (x, 0,−z).
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In the case of a system of differential forms the analog of the Proposition of
the preceding section holds partially. If the system of forms a

(1)
i dxi, . . . , a

(m)
i dxi

is integrable then the inverse of the matrix (M (i)
(j)) appearing in (3.1) can be

expressed in the form

(M−1)(i)(j) = ξk
(j)a

(i)
k (3.8)

[cf. (2.17)]. For each value of j, with 1 6 j 6 m, the functions ξ1
(j), . . . , ξ

n
(j)

are the components of the infinitesimal generator of a one-parameter group of
transformations that leave invariant the system a

(1)
i dxi, . . . , a

(m)
i dxi.

For example, the system of differential forms in three variables

a
(1)
i dxi = dy − zdx,

a
(2)
i dxi = dz − ydx, (3.9)

which corresponds to the equation d2y/dx2 = y, is integrable and it can be
verified that

[
a
(1)
i dxi

a
(2)
i dxi

]
=

[
ex e−x

ex −e−x

] [
d
(
e−x(y + z)/2

)
d
(
ex(y − z)/2

)
]

. (3.10)

The elements of the matrix 2× 2 in this last equation have the form (3.8) with(
ξ1
(1), ξ

2
(1), ξ

3
(1)

)
= (0, ex, ex), which is the infinitesimal generator of the group

of transformations x′ = x, y′ = y + ext, and z′ = z + ext and
(
ξ1
(2), ξ

2
(2), ξ

3
(2)

)
=

(0, e−x,−e−x) that generates the transformations x′ = x, y′ = y + e−xt, and
z′ = z−e−xt. It can be seen directly that the system (3.9) is, in effect, invariant
under these two groups of transformations. From (3.10) it also follows that the
solution of the equations dy − zdx = 0, dz − ydx = 0 [see (3.9)] is given by
e−x(y + z)/2 = c1, ex(y − z)/2 = c2, where c1 and c2 are two constants; hence
y = c1e

x + c2e
−x.

The assertion above can be demonstrated in the following manner. From
(3.1) and (3.8) we have

a
(j)
i = (M−1)(j)(k)

∂φ(k)

∂xi
= ξp

(k)a
(j)
p

∂φ(k)

∂xi
, (3.11)

hence

ξi
(q)a

(j)
i = ξp

(k)a
(j)
p ξi

(q)

∂φ(k)

∂xi
,

which is equivalent to

ξi
(q)

∂φ(k)

∂xi
= δ

(k)
(q) . (3.12)
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Substituting (3.11) into the left-hand side of the condition (3.3) we have

a
(k)
j

∂ξj
(q)

∂xi
+ ξj

(q)

∂a
(k)
i

∂xj
= ξr

(p)a
(k)
r

∂φ(p)

∂xj

∂ξj
(q)

∂xi
+ ξj

(q)

∂

∂xj

(
ξr
(p)a

(k)
r

∂φ(p)

∂xi

)

= ξj
(q)

∂

∂xj

(
ξr
(p)a

(k)
r

) ∂φ(p)

∂xi
+ ξj

(q)ξ
r
(p)a

(k)
r

∂2φ(p)

∂xj∂xi
+

ξr
(p)a

(k)
r

∂φ(p)

∂xj

∂ξj
(q)

∂xi
(3.13)

= ξj
(q)

∂

∂xj

(
ξr
(p)a

(k)
r

) ∂φ(p)

∂xi
+ ξr

(p)a
(k)
r

∂

∂xi

(
ξj
(q)

∂φ(p)

∂xj

)
.

The last term of (3.13) vanishes as a consequence of (3.12), therefore, using
again (3.1), we obtain

a
(k)
j

∂ξj
(q)

∂xi
+ ξj

(q)

∂a
(k)
i

∂xj
= ξj

(q)

∂

∂xj

(
ξr
(p)a

(k)
r

)
M

(p)
(s) a

(s)
i ,

and comparing with (3.3) one concludes that, effectively, ξ1
(q), . . . , ξ

n
(q) are the

components of the infinitesimal generator of a one-parameter group of trans-
formations that leave invariant the system a

(1)
i dxi, . . . , a

(m)
i dxi.

By contrast with the case where m is equal a 1, the converse of the preceding
result is not valid in general. For example, the system (3.5) is invariant under
the groups of transformations (3.6) and (3.7). Calculating the matrix (3.8) one
finds that [

(M−1)(1)(1) (M−1)(1)(2)

(M−1)(2)(1) (M−1)(2)(2)

]
=

[ −z −xz
z2 xz2 − yz

]
,

and a straightforward computation shows that the inverse of this matrix is

(M (i)
(j)) =

1
yz

[
xz − y x
−z −1

]
.

Then, substituting the expressions (3.5),

1
yz

[
xz − y x
−z −1

] [
a
(1)
i dxi

a
(2)
i dxi

]
=

1
yz

[
yzdx + (xz − y)dy + xydz

−zdy − ydz

]

=
1
yz

[
d(xyz − y2/2)

d(−yz)

]
(3.14)

[cf. (3.1)]. While the second of the entries in the last expression is an exact
differential, 1

yz d(−yz) = d ln(yz)−1, the first entry is not an exact differential,
but only integrable.

From (3.14) it follows that the solution of the differential equation y(d2y/dx2)
+(dy/dx)2 = 0 is given by xyz − y2/2 = c1, −yz = c2, where c1 and c2 are
two constants. Substituting the second of these last equalities in the first one
we have, −c2x− y2/2 = c1, therefore, finally, y = [−2(c1 + c2x)]1/2.
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4. Concluding remarks

Usually the subject of integrable equations and integrating factors is only briefly
considered in the texts on differential equations, in view of the difficulty to find
the integrating factors in a direct manner. However, from the results of Sec. 2
it follows that for any first-order ordinary differential equation an integrating
factor can be found if some one-parameter group of transformations that leave
invariant the corresponding differential form is identified. As shown in this
paper, any integrable differential form, or system of m differential forms, always
has symmetries, with m one-parameter groups of transformations that leave
invariant the system.

Referencias

[1] G. F. Simmons, Differential Equations. With Applications and Historical Notes,
2nd ed., 9. McGraw-Hill, New York, 1991.

[2] N. H. Ibragimov, Sophus Lie and Harmony in Mathematical Physics, on the
150th Anniversary of His Birth, The Mathematical Intelligencer 16, 20 (1994).

[3] H. Stephani, Differential Equations: Their Solution Using Symmetries, Cam-
bridge University Press, Cambridge, 1989.

[4] L. Dresner, Applications of Lie’s Theory of Ordinary and Partial Differential
Equations, Institute of Physics, Bristol, 1999.

[5] P. E. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Gui-
de, Cambridge University Press, Cambridge, 2000.

[6] C. von Westenholz, Differential Forms in Mathematical Physics, North-
Holland, Amsterdam, 1981.

(Recibido en agosto de 2005. Aceptado en noviembre de 2005)

Departamento de F́ısica Matemática
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