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On the Nonlinear Mechanical
Response of an Arterial Wall

Arcady V. Sokolov

Rostov State University, Russia

Abstract. The nonlinear mechanical behavior of an arterial wall under the
effect of a perivascular medium (muscular and areolar tissue) is investigated.
The artery is modeled by an anisotropic, incompressible, nonlinear, elastic,
two-layer, thick-walled tube under torsion, tension, and inflation. The arterial
vessel is assumed to be surrounded by an elastic medium with the property of
Winkler’s foundation. An analytical expression for the components of the stress
tensor is established. Comparative analysis of perivascular media is carried out.
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Resumen. Se investiga el comportamiento mecánico no lineal de una pared
arterial bajo el efecto de un medio perivascular (tejido areolar y muscular). La
arteria es modelada por un tubo no-isotrópico no-comprimible, no lineal, de
dos capas y de paredes gruesas bajo torsión tensión e inflación. Se asume que
el vaso está rodeado por un medio elástico con soporte de tipo Winkler. Se
establece una expresión anaĺıtica para las componentes de el tensor de tensión.
Se lleva a cabo un análisis comparativo del medio perivacular.

There are various mechanical models of an arterial wall, within the framework of
the linear isotropic and nonlinear anisotropic theories of elasticity, that describe
its real properties. Reviews of such models are presented in B.A. Purinja and
V.A. Kasyanov [6] and G.A. Holzapfel et al [2]. But the models which take
into account the effects of perivascular tissue on the mechanical behavior of
an arterial wall are still not widely accepted. The goal of this paper is to
extend the model of the mechanical response of an arterial wall proposed in
[2] when the effect of perivascular tissue is taken into account. An artery
is represented as a thick-walled tube consisting of two layers: the media, a
middle layer of an artery, and the adventitia, an external layer. These are
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its main mechanically important components. The third layer, the intima, is
neglected. Each layer is represented by a non-collagenous matrix treated as an
isotropic material, and by two families of collagen fibres helically wound along
the arterial axis and symmetric with respect to the axis; however, the families
have different orientations in the two layers. The fibres induce the anisotropy
of the material response. The mechanical response is given according to the
theory of fiber-reinforced solids. As the volume of an artery does not change
within the physiological range of deformation, the material is considered to be
incompressible.

The artery is modeled by a two-layer nonlinear elastic tube with a screw
anisotropy that contains a disclination (Fig. 1). The muscular and areolar tis-
sue environments of a vessel are represented by an elastic media having the
properties of Winkler’s foundation [7,8]. The tube-cylinder is subjected to
stretching, inflating, and twisting. We will consider the case when the environ-
ment only resists against radial displacements of the vessel.

Figure 1. An artery as a two-layer cylinder.

The deformation of the cylinder is given by the relations






R = R(r)
Φ = κϕ+ ψz

Z = λz

r0 ≤ r ≤ r2, 0 ≤ ϕ ≤ 200◦ ,

(0.1)
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here (r, ϕ, z) and (R,Φ, Z) are cylindrical coordinates in the reference and
deformed configurations respectively, ψ and λ are loading parameters, and κ is
a disclination parameter. The deformation gradient is [3]

C = R′ereR +
R

r
κeϕeΦ +RψezeΦ + λezeZ , (0.2)

where (er, eϕ, ez) and (eR, eΦ, eZ) are the unit bases associated with (r, ϕ, z)
and (R,Φ, Z), respectively. We will also use the following relations:

eR = er cos(Φ − ϕ) + eϕ sin(Φ − ϕ),

eΦ = −er sin(Φ − ϕ) + eϕ cos(Φ − ϕ),

eZ = ez.

The Cauchy–Green tensor is

G = C · CT = (R′)2erer +

(

κR

r

)2

eϕeϕ+

R2ψκ

r
(eϕez + ezeϕ) + λ2ezez .

(0.3)

The components of the deformation gradient and those of the Cauchy–Green
tensor depend only on the radial coordinate r.

The cylinder material is assumed to be anisotropic and incompressible. The
strain energy function [2] of deformation is given by

Wj =
Cj

2
(I1 − 3) +

k1j

2k2j

{

exp
[

k2j (I4j − 1)
2
]

+ exp
[

k2j (I6j − 1)
2
]

− 2
}

,

I4j = A1j ◦G, I6j = A2j ◦G, I1 = trG,

A1j = a1ja1j ,A2j = a2ja2j , (0.4)

a1j =





0
cosβj

sinβj



 , a2j =





0
cosβj

− sinβj



 ,

where j = A,M for the adventitia and the media respectively, and βj are the
angles between the collagen fibers and the circumferential direction in the media
and adventitia.

In what follows we shall omit the index j, as all formulas and transformations
for both layers are identical.

Using the decomposition of the first Piola–Kirchhoff stress tensor

D = DrRereR + DrΦereΦ + DrZereΦ + DϕReϕeR + DϕΦeϕeΦ

+ DϕZeϕeΦ + DzRezeR + DzΦezeΦ + DzZezeZ

we transform the equilibrium equations

◦

∇ ·D = 0,
◦

∇ = er

∂

∂r
+ eϕ

1

r

∂

∂ϕ
+ ez

∂

∂z
(0.5)
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Material Geometry

Media
CM = 3 kPa
k1M = 2.3632 kPa
k2M = 0.8393

HM = 0.26 mm
βM = 29◦

r0 = 0.71 mm
κ = 1.8

Adventitia
CA = 0.3 kPa
k1A = 0.5620 kPa
k2A = 0.7112

HM = 0.13 mm
βM = 62◦

r2 = 1.1 mm
κ = 1.8

Table 1. Material and geometrical data for a carotid of a
rabbit [2].

to the scalar form

∂DrR

∂r
+
∂DzR

∂z
+
DrR −DϕΦ

r
− ψDzΦ = 0 ,

∂DrΦ

∂r
+

1

r

∂DϕΦ

∂ϕ
+
∂DzΦ

∂z
+
DϕR −DrΦ

r
+ ψDzR = 0 , (0.6)

∂DrZ

∂r
+

1

r

∂D
ϕ Z
∂ϕ

+
∂DzZ

∂z
+

1

r
DrZ = 0 .

These equations are supplemented by the boundary conditions on the exter-
nal and internal surfaces of the vessel. On the internal surface the action of
blood pressure is equivalent to a distributed normal loading. So the boundary
condition is

R′DrR|r=r0
= −f, (0.7)

where f is the intensity of pressure on the unit area of the deformed solid. The
condition on the external surface represents the properties of the perivascular
tissue:

DrR|r=r2
= CAk̃

(

R(r)

r
− 1

)∣

∣

∣

∣

r=r2

, (0.8)

where k̃ is a dimensionless coefficient that describes the properties of the elastic
foundation.

From the condition of incompressibility it follows that

R(r) =

√

R2
0 +

1

κλ
(r2 − r20), (0.9)

where R0 = R(r0) is the inner radius of the vessel after deformation.
Following relations [3], let us use for the second Piola–Kirchhoff stress tensor

the form

P = 2
dW

dG
− pG−1, (0.10)
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where p is a function of the hydrostatic pressure in the incompressible material.
Since it is a function of the radial coordinate r only, it does not depend on
deformation.

From the form of the energy function (0.4), the relations (0.10),

D = P · C , (0.11)

and the restrictions on the function p, it follows that the components of the
first Piola–Kirchhoff stress tensor that have the form

DrR =

(

2
∂W

∂Grr

− pG−1
rr

)

R′

DϕΦ =

(

2
∂W

∂Gϕϕ

− pG−1
ϕϕ

)

κR

r
+

(

∂W

∂Gϕz

− pG−1
ϕz

)

Rψ

DzΦ =

(

∂W

∂Gϕ z

− pG−1
ϕz

)

κR

r
+

(

2
∂W

∂Gzz

− pG−1
zz

)

Rψ

DϕZ =

(

∂W

∂Gϕz

− pG−1
ϕz

)

λ

DzZ =

(

2
∂W

∂Gzz

− pG−1
zz

)

λ

(0.12)

are functions of r only. Therefore two of three equilibrium equations are satis-
fied identically, and the third becomes

dDrR

dr
+
DrR −DϕΦ

r
− ψDzΦ = 0. (0.13)

Solving the boundary-value problem

dDrR

dr
+
DrR −DϕΦ

r
− ψDzΦ = 0

DA
rR

∣

∣

r=r2

= CAk̃
(

R(r)
r

− 1
)∣

∣

∣

r=r2

(0.14)

with the boundary condition on the internal surface

R′DM
rR

∣

∣

r=r0

= −f (0.15)

we find the internal deformed radius of the cylinder R0 and the function of hy-
drostatic pressure p(r) in the incompressible material. TheDij(r) are piecewise
continuous functions of the form

Dij(r) =







DM
ij (r), r0 < r < r1

DA
ij(r), r1 < r < r2

,

where M denotes the media and A the adventitia.
The physiological condition of a vessel is characterized by the parameter

values f = 13.33 kPa and λ = 1.7.
The elastic material defined by the energy function (0.4) has a screw aniso-

tropy, and is not affected by the interaction of torsion and radial deformations.
This means that at ψ = 0 in the cylinder the shear stresses DϕR, DrΦ, DzR,



150 ARCADY V. SOKOLOV

and DrZ are absent. Thus, the problem of inflating and axial stretching of the
cylinder can be separated from the torsion problem. Torsion will arise only if
a twisting couple is applied at the cylinder faces.

Numerical solution of the problem is carried out in the absence of cylinder
torsion, ψ = 0. Figures 2 and 3 represent the distribution of normal stresses
for various values of the loading parameters λ and k.

Qualitative analysis of the distribution of stresses for various λ shows that
the main contribution to the mechanical properties of a vessel wall is seen in the
vicinity of the media. The increase in stretching is due mainly to the adventitia.
The adventitia’s elastic properties show more influence on the stress DzZ than
on the other two components. At λ = 1.9, the value of DzZ in the adventitia
takes a maximum in the media twice approximately. Thus, the external layer
of a vessel protects it from breaking during stretching. This complies fully with
the experimental data [2,6].

It is known that the reason for destruction of the internal surface of a vessel,
as well as the occurrence of atherosclerosis, increases with an increase in the
level of stress in the internal layer of the vessel wall. Is of interest to investigate
the influence of the rigidity of perivascular tissue on the value of stress in the
internal wall of a vessel. A comparison of the stress values shows that the
effect of the external elastic environment results in a reduction in the calculated
values of the normal stresses in the internal wall of the vessel (Table 2). Note

λ = 1.7 λ = 1.8 λ = 1.9

k = 10

DrR 2.22 0.12 1.6
DϕΦ 4.85 2.43 4.66
DzZ 4.44 2.22 4.24

k = 100

DrR 2.76 1.37 3.76
DϕΦ 25.36 25.07 31.05
DzZ 23.34 23.04 28.45

k = 200

DrR 3.51 5.5 8.384
DϕΦ 50.64 56.25 66.34
DzZ 46.9 52.26 61.68

Table 2. Reduction of stresses in the internal wall of a vessel
in percentage terms when k = 0 (absolute values).

that the presence of the elastic base results in an increase in the values of the
radial components DrR in the external wall of a vessel, while the values of the
distribution of DϕΦ and the axial component DzZ decrease.

Considering the influence of the rigidity coefficient of the environment on the
values of the stresses, it is possible to conclude that the values k that correspond
to the properties of a real perivascular tissue lie in the interval (8, 120).
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Figure 2. Distribution of normal stresses on the radius of the
cylinder for various values of k when λ = 1.7.
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Figure 3. Distribution of normal stresses on the radius of the
cylinder for various values of k when λ = 1.9.
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