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Abstract. We give a survey on recent results on the Diophantine equation
x2 + c = yn.
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Resumen. Nosotros hacemos una revisión acerca de resultados recientes sobre
la ecuación Diofántica x2 + c = yn.

1. Who was Diophantus?

The expression ‘Diophantine equation’ comes from Diophantus of Alexandria
(about A.D. 250), one of the greatest mathematicians of the Greek civilization.
He was the first writer who initiated a systematic study of the solutions of
equations in integers. He wrote three works, the most important of them
being ‘Arithmetic’, which is related to the theory of numbers as distinct from
computation, and covers much that is now included in Algebra. Diophantus
introduced a better algebraic symbolism than had been known before his time.
Also in this book we find the first systematic use of mathematical notation,
although the signs employed are of the nature of abbreviations for words rather
than algebraic symbols in contemporary mathematics. Special symbols are
introduced to present frequently occurring concepts such as the unknown up
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to its sixth power. He stands out in the history of science as one of the great
unexplained geniuses. A Diophantine equation or indeterminate equation is
one which is to be solved in integral values of the unknowns.

The fundamental problem when studying a given Diophantine equation is
whether a solution exists, and, in the case it exists, how many solutions there
are. A very important problem closely related to the previous one is the ques-
tion of the actual computation of the existing solutions or whether there is a
general form for the solutions. For more information, we refer the reader to
the books [32, 36].

2. The Diophantine equation f(x) = ynf(x) = ynf(x) = yn

Let f(X) be an irreducible polynomial with integer coefficients and of degree
m ≥ 2. Let n ≥ 2 be an integer. Since the work of Siegel, we know that the
Diophantine equation

f(x) = yn, in integers x, y, (1)

has only finitely many solutions, provided that (m, n) 6= (2, 2). Several papers
deal with (1) or particular cases from (1). In particular, there is a very broad
literature on the Diophantine equations

ax2 + bx + c = dyn, in integers x, y, n ≥ 3, (2)

and
ax2 + bx + c = dyn, in integers x, n ≥ 3, (3)

where a, b, c and d are fixed integers, and y is a fixed integer in (3).

3. The Diophantine equation x2 + c = ynx2 + c = ynx2 + c = yn

In the present survey, we restrict our attention to the Diophantine equation

x2 + c = yn, in integers x, y, n ≥ 3, (4)

where c is a positive integer.
The first result on (4) seems to be the proof in 1850 by V. A. Lebesgue [20]

that there are no non-trivial solutions for c = 1. He assumed that there exist
positive integers x, y and n ≥ 3 such that x2 + 1 = yn. He then worked in the
ring of Gaussian integers, estimated the 2-adic valuation of various quantities
and reached eventually a contradiction.

The next cases to be solved were c = 3 and c = 5 by Nagell [27] (see also [28])
in 1923. It is for this reason that equation (4) is called the Lebesgue–Nagell
equation in [12]. Then, Ljunggren [22] established that equation (4) with c = 2
has only the solution 52 + 2 = 33. The case D = 4 was subsequently solved by
Nagell [30]: the only solutions are 22 + 4 = 23 and 112 + 4 = 53. As pointed
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out by Cohn [14], there are numerous cases of duplication of known results:
for instance, Ljunggren’s result on the case c = 2 has been later rediscovered
by Nagell [29] (note that, recently, a more elementary proof has been given by
Sury [37]). Note that Nagell’s works have been collected by Ribenboim [31].

The next important step is an article by Cohn [14], where he completed
the solutions for 77 values of c in the range 1 ≤ c ≤ 100. His methods are
ingenious and elementary, in the sense that they do not rest on deep tools
from Diophantine approximation. His paper also contains an extensive list of
references on earlier works on (4).

The smallest value of c not treated by Cohn is c = 7. The difficulty comes
from the fact that 2 = (1 +

√−7)(1 − √−7) in the field Q(
√−7), as will be

explained in the next section.
The solutions for the cases c = 74, 86 were completed by Mignotte and de

Weger [26] (indeed, Cohn solved these two equations of type (4) except for p =
5, in which case difficulties occur since the class numbers of the corresponding
imaginary quadratic fields are divisible by 5). Bennett and Skinner (Proposition
8.5 of [9]) applied the modular approach to solve the cases D = 55 and 95. The
19 remaining values, namely

c = 7, 15, 18, 23, 25, 28, 31, 39, 45, 47, 60, 63, 71, 72, 79, 87, 92, 99, 100,
(5)

are clearly beyond the scope of Cohn’s elementary method, and were solved in
2004 by Bugeaud, Mignotte and Siksek [12].

4. Methods and difficulties

The starting point when dealing with equation (4) is to factor it over the
quadratic field K generated by

√−c. In the sequel, we assume that n is an
odd prime, and we choose to denote it by p. Assume that (x, y, p) is a solution
of (4) and write

(x +
√−c) · (x−√−c) = yp.

We would like to conclude that both x +
√−c and x +

√−c are then perfect
p-th powers in K. Unfortunately, this is far from being always the case.

A first problem occurs when x +
√−c and x +

√−c are not coprime. We
can then only conclude that both numbers are ‘almost’ perfect p-th powers.
Observe that the greatest common divisor in the ring of algebraic integers of
K of x +

√−c and x +
√−c divides both 2x and 2

√−c. Furthermore, if c is
squarefree, then x and

√−c are necessarily coprime, and a problem may only
occur when 2 splits in the number field K, that is, when c is congruent to 7
modulo 8. If c is not squarefree, then (4) may have a solution (x, y, p) with
gcd(x, y) > 1.

A second problem occurs when p divides the class number of the quadratic
field K. Then, the principal ideal π generated by x +

√−c can be written
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under the form π = ξp, for some ideal ξ, but it is not always the case that ξ is
principal.

A third problem occurs when K = Q(
√−1) or Q(

√−3), that is, when there
exist in K units other than ±1 (see [14], Lemma 2).

The main methods used in [12] for attacking equation (4) are linear forms
in logarithms (to bound p) and the modular approach, though for some small
values of p it is necessary to reduce the equation to a family of Thue equations.
The tools for reducing equation (4) to Thue equations are well-known.

For all the 19 remaining examples, estimates for linear forms in three vari-
ables (and not in two: Le’s paper [17] is erroneous) are needed. The current
best bounds are due to Mignotte [25] and lead to upper estimates for p (in
our range of values for c) being comprised between 108 and 2.4 × 109. Then,
the authors of [12] used the modular method, which is very well explained by
Siksek in the expository paper [34] (see also [35]), to solve equation (4) for all
values of c listed at (5). A sample of their result is the following.

Theorem ([12]). The Diophantine equation x2 + 7 = yn in positive integers
x, y and n ≥ 3, has only the solutions given by

(x, y, n) ∈ {(1, 2, 3), (3, 2, 4), (5, 2, 5), (11, 2, 7), (181, 2, 15)}.

The above Theorem shows that the equation x2 + 7 = yn has no more
solutions than the equation x2 +7 = 2n. Earlier results on x2 +7 = yn are due
to Lesage [21] and to Siksek and Cremona [35].

5. The BHV Theorem

Yu. Bilu, G. Hanrot and P. M. Voutier [11] completely solved the problem of
existence of primitive divisors in Lucas–Lehmer sequences. Their deep result,
which we refer to as the ‘Theorem BHV’, turns out to have many applications to
Diophantine equations, and, in particular, to equation (4). Indeed, as observed
by Cohn [16], the equations solved in his paper [14] can now easily be solved
by using Theorem BHV.

This theorem has also been applied in several papers [23, 7, 24] whose results
are discussed in the next section. Furthermore, it has been used in many works
on equations of type (1), see for instance [10].

6. The Diophantine equation
x2 + c = ynx2 + c = ynx2 + c = yn, with ccc in some infinite set

Several authors have studied various extensions of equation (4). Cohn [13]
showed that if c = 22k+1, then equation (4) has solutions only when n = 3
and in this case there are three families of solutions. He also pointed out
that the case c = 22k is much more difficult. Arif and Abu Muriefah [5]
conjectured that the only solutions are then given by (x, y) =

(
2k, 22k+1

)
and
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(x, y) =
(
11 · 2k−1, 5 · 22(k−1)/3

)
, with the latter solution existing only when

(k, n) = (3M + 1, 3) for some integer M ≥ 0. Partial results towards this
conjecture were obtained in [5, 15], and it was finally proved by Arif and Abu
Muriefah [7]. Alternative proofs are due to Le [18] and to Siksek [33].

Luca [23] was able to prove the conjecture of Abu Muriefah and Arif [2] con-
cerning the solutions of the Diophantine equation x2+32m = yn. Subsequently,
Luca [24] solved completely the case c = 2a3b, under the additional assumption
that x and y are coprime. Here, a and b denote arbitrary non-negative integers.

Arif and Abu Muriefah [6] proved that if c = 32k+1, then (4) has exactly
one (infinite) family of solutions. The case c = 32k has been solved by Luca
[23] under the additional hypothesis that x and y are coprime.

Abu Muriefah [1] established that if c = 52k, then equation (4) may have
a solution only if 5 divides x and p does not divide k for any odd prime p
dividing n. Abu Muriefah and Arif [3] proved that if c = 52k+1, then (4) has
no solutions for all k ≥ 0. They further obtained several results [4] if c = q2k,
where q is an odd prime.

Let q ≥ 11 be an odd prime number not congruent to 7 modulo 8. Arif and
Abu Muriefah [8] established that (4) with c = q2k+1, n ≥ 5 odd and coprime
with the class number of Q(

√−q), has exactly two families of solutions.
In the very particular case when c is the square of an odd prime number,

Le [19] gave rather complicated, but very strong necessary conditions for the
solutions (x, y, n) of (4) satisfying the additional assumption gcd(x, y) = 1.
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