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Abstract. Let ϕ be analytic in the unit disk D and let ϕ(D) ⊂ D, ϕ(0) 6= 0.
Then w = z/ϕ(z) has an analytic inverse z = f(w) for w ∈ D, the fixed
point function. This paper studies the case that ϕ(1) = ϕ′(1) = 1 with a
growth condition for ϕ′′(x) and determines the asymptotic behaviour of various
combinations of the coefficients of ϕ connected with f . The results can be
interpreted in various contexts of probability theory.
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Resumen. Sea ϕ anaĺıtica en el disco unitario D y ϕ(D) ⊂ D, ϕ(0) 6= 0. Entonces
w = z/ϕ(z) tiene una inversa anaĺıtica z = f(w) para w ∈ D, la función de punto
fijo. Este art́ıculo estudia el caso en que ϕ(1) = ϕ′(1) = 1 con una condición
de crecimiento para ϕ′′(x) y determina el comportamiento asintótico de varias
combinaciones de los coeficientes de ϕ conectados con f . Los resultados se
pueden interpretar en varios contextos de la teoŕıa de la probabilidad.

1. Introduction

Let the function ϕ be analytic in the unit disk D and ϕ(D) ⊂ D, ϕ(0) 6= 0. In
[MePo05, Sec. 3] it was shown that there is a unique function f that maps D
conformally onto a starlike domain F in D and satisfies f(0) = 0,

w ϕ(f(w)) = f(w) for w ∈ D. (1.1)
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Thus z = f(w) is the inverse function of w = z/ϕ(z). We call f the fixed point
function of ϕ because f(w) is the unique fixed point of wϕ in D.

The fixed point function f has a continuous and injective extension to D,
see [MePo05, Th. 3.2]. Furthermore [MePo05, Th. 2.2] we have

∂D ∩ ∂F = {ζ ∈ ∂D : |ϕ(ζ)| = 1, |ϕ′(ζ)| ≤ 1} (1.2)

where ϕ(ζ) and ϕ′(ζ) are angular limits [Po92, Sect. 4.3]. It follows from (1.1)
by differentiation that

w
f ′(w)
f(w)

=
1

1− w ϕ′(f(w))
=

1
1− z ϕ′(z)/ϕ(z)

(1.3)

for z = f(w), w ∈ D.
We shall restrict ourselves to the case that ϕ(1) = 1 and ϕ′(1) ≤ 1; since

ϕ(D) ⊂ D the Julia-Wolff lemma [Po92, Prop. 4.13] shows that ϕ(1) = 1 implies
that the angular derivative ϕ′(1) is positive real or infinite. The case ϕ′(1) < 1
will be considered only in the last section.

In Section 4 we study the condition

ϕ(x) = x + b(1− x)β + o
(
(1− x)β

)
as x → 1− (1.4)

where 1 < β ≤ 2 and 0 < b < ∞. Then ϕ′′(1) is finite if and only if β = 2. Our
main result is Theorem 4.3 about coefficients.

The results about the coefficients can be interpreted as results about proba-
bilities. Let X denote a random variable with values in IN0 and the distribution
ak = P(X = k) for k = 0, 1, . . . . Then

ϕ(z) =
∞∑

k=0

ak zk (z ∈ D) (1.5)

is the generating function of X and satisfies ϕ(1) = 1 and ϕ(D) ⊂ D. We
assume that ϕ(0) = P(X = 0) > 0.

Let Sn be the sum of n independent random variables all distributed like
X. The Bürmann-Lagrange formula (Theorem 2.1) shows that the fixed point
function f has a special affinity to probabilities of the form P(Sn = n− k).

The study of Sn is a classical chapter of probability theory, see e.g. the book
of V.V. Petrov [Pe75]. Most of our results on probability are known, at least,
in the case β = 2 of finite variance.

2. The Bürmann-Lagrange formula

Let ϕ : D → D be analytic with ϕ(0) 6= 0 and let z = f(w) be the inverse
function of w = z/ϕ(z). We define an,k for n ∈ ZZ and k ∈ IN0 by

ϕ(z)n =
∞∑

k=0

an,k zk . (2.1)

Now we present the Bürmann-Lagrange formula [PoSz25, p. 125] in a somewhat
different form and also for functions ψ with a pole at 0.



THE ANALYTIC FIXED POINT FUNCTION II 41

The formulas still hold near w = 0 if we only assume that ϕ is analytic near
z = 0 and ϕ(0) 6= 0.

Theorem 2.1. Let m ≥ 0, 0 < ρ ≤ 1 and

ψ(z) =
∞∑

k=−m

bk zk for 0 < |z| < ρ . (2.2)

If 0 < |w| < ρ then

w f ′(w)ψ(f(w)) =
∞∑

n=−m+1

(
n∑

k=−m+1

bk−1 an,n−k

)
wn , (2.3)

ψ(f(w)) = b0 −
m∑

k=1

b−k a∗k +
∞∑

n=−m

(
n∑

k=−m

k

n
bk an,n−k

)
wn (2.4)

where n = 0 is omitted in the last outer sum and where z ϕ′(z)/ϕ(z) =
∑

a∗k zk .

Proof. Since |f(w)| ≤ |w| by the Schwarz lemma and since f is univalent in
D, we have 0 < |f(w)| < ρ for 0 < |w| < ρ so that ψ ◦ f is analytic in
{0 < |w| < ρ} .

Let 0 < r < ρ and C = {|w| = r}. Let n ∈ ZZ. The coefficient of wn of the
function w f ′(w) ψ(f(w)) is

1
2πi

∫

C

ψ(f(w))
wn

f ′(w) dw =
1

2πi

∫

f(C)

ψ(z)ϕ(z)n

zn
dz ,

where we have substituted w = z/ϕ(z) with z = f(w). This is the coefficient
of zn−1 of the function

ψ(z)ϕ(z)n =
∞∑

k=−m+1

bk−1 zk−1
∞∑

j=0

an,j zj

which is equal to the inner sum in (2.3).
Next we apply (2.3) to ψ′. We obtain

d

dw
ψ(f(w)) =

∞∑
n=−m

(
n∑

k=−m+1

k bk an,n−k

)
wn−1 .

Integrating we obtain (2.4) except for a constant. The coefficient of w0 is

1
2πi

∫

C

ψ(f(w))
w

dw =
1

2πi

∫

f(C)

ψ(z)
z

(
1− z

ϕ′(z)
ϕ(z)

)
dz

because of (1.3), which gives the value in (2.4). ¤X
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In particular we obtain

w f ′(w) f(w)k−1 =
∞∑

n=k

an,n−k wn for k ∈ ZZ , (2.5)

f(w)k =
∞∑

n=k

k

n
an,n−k wn for k ∈ IN . (2.6)

3. Some auxiliary estimates

A Stolz angle at 1 is an open triangle 4 symmetric to IR that satisfies 4∩∂D =
{1}. We say that a function has an angular limit at 1 if this limit exists for
z → 1 in every Stolz angle 4.

Proposition 3.1. Let g be analytic in D and

g(z) ∼ b(1− z)β as z → 1 angularly. (3.1)

where b 6= 0 and β 6= 0. Then

g′(z) ∼ −β b(1− z)β−1 as z → 1 angularly. (3.2)

Proof. By (3.1) the function (1 − z)−β g(z) has the angular limit b 6= ∞ at 1.
It follows [Po92, Prop. 4.8] that

(1− z)−β+1 g′(z) + β(1− z)−β g(z) = (1− z)
d

dz

[
(1− z)−β g(z)

]

has the angular limit 0 at 1. Hence (3.2) follows from (3.1). ¤X

Proposition 3.2. Let g be analytic in D and

(1− x)α g(x) → 0 as x → 1− , (3.3)

|1− z|α |g(z)| ≤ c < ∞ for z ∈ D (3.4)
where 1 < α < ∞. Then

π∫

−π

|g(reit)| dt = o
(
(1− r)1−α

)
as r → 1− . (3.5)

Proof. We establish (3.5) for 0 ≤ t ≤ π. The analytic function (1− z)α g(z) is
bounded because of (3.4) and therefore has the angular limit 0 at 1 because of
(3.3), see [Po92, Th. 4.3].

Given ε ∈ (0, 1) there exists r0 ∈
(

1
2 , 1

)
such that

|1− reit|α |g(reit)| < ε for r0 < r < 1, |t| ≤ δ = (1− r)/ε .

For r0 < r < 1 we therefore have
δ∫

0

|g(reit)| dt < ε

δ∫

0

|1− reit|2−α

|1− reit|2 dt . (3.6)
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If 1 < α ≤ 2 this is

≤ ε(1 + ε−2)(2−α)/2 (1− r)2−α

δ∫

0

dt

|1− reit|2 < 4πεα−1(1− r)1−α .

If 2 ≤ α < ∞ the last expression in (3.6) is

≤ ε(1− r)(2−α)

δ∫

0

dt

|1− reit|2 ≤ 2πε(1− r)1−α .

Since |1− reit| ≥ 2rt/π we obtain from (3.4) that
π∫

δ

|g(reit)| dt ≤
∞∫

δ

c πα

tα
dt =

c παεα−1

α− 1
(1− r)1−α

because δ = (1− r)/ε. These estimates prove (3.5). ¤X

It is well known that, for α > 0,

(−1)n

(−α

n

)
=

α(α + 1) · · · (α + n− 1)
n!

∼ nα−1

Γ(α)
(n →∞) . (3.7)

The following theorem is the key to the later results.

Theorem 3.3. Let 1 < α < ∞ and let

h(z) =
∞∑

n=0

cn zn (3.8)

be analytic in D. We suppose that

(1− x)α−1 h(x) → a ∈ C as x → 1 , (3.9)

sup
z∈D

|1− z|α |h′(z)| < ∞ . (3.10)

Then
cn ∼ a

Γ(α− 1)
nα−2 as n →∞ . (3.11)

Proof. It follows from (3.9) and (3.10) that

|h(x)| ≤ c0

(1− x)α−1
(0 ≤ x ≤ 1), |h′(ζ)| ≤ c1

|1− ζ|α (ζ ∈ D) .

Let z ∈ D and |1− z| < 1; the case |1− z| ≥ 1 is simpler. Let C be the circular
arc {ζ ∈ D : |1− ζ| = |1− z|} and let x ∈ (0, 1) be the point where C intersects
IR. Integrating over C we obtain

|h(z)− h(x)| ≤
z∫

x

|h′(ζ)||dζ| ≤ π

2
|1− z| c1

|1− z|α ,
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and since 1− x = |1− z| we conclude that

|1− z|α−1|h(z)| ≤ c2 for z ∈ D . (3.12)

It follows by (3.9) that (1− z)α−1h(z) has the angular limit a; see e.g. [Po92,
Th. 4.3] . Therefore we conclude from Proposition 3.1 that (1 − x)α h′(x) →
(α− 1)a as x → 1− . Hence we can apply Proposition 3.2 to the function

g(z) = z h′(z)− (α− 1)a
(1− z)α

=
∞∑

n=0

(
n cn − (α− 1) a

(−α

n

)
(−1)n

)
zn ; (3.13)

the condition (3.4) is satisfied due to (3.10). We conclude from (3.5) with
r = 1 − n−1 that the coefficients of g are o(nα−1) so that (3.11) follows from
(3.13) and (3.7). ¤X

4. A fractional derivative condition

In this section we consider the following condition and its consequences.
(A) The function ϕ : D→ D is analytic and satisfies ϕ(0) 6= 0 and

ϕ(x)− x ∼ b(1− x)β as x → 1− (4.1)

where 0 < b < ∞ and 1 < β ≤ 2. Note that we only require radial and not
unrestricted approach to z = 1.

Proposition 4.1. If condition (A) holds then ϕ(1) = ϕ′(1) = 1 as angular
limits and, as z → 1 angularly,

ϕ(z)− z ∼ b(1− z)β , (4.2)

1− ϕ′(z) ∼ β b(1− z)β−1, (4.3)

ϕ′′(z) ∼ β(β − 1) b(1− z)β−2. (4.4)

Proof. We see from (4.1) that (1 − ϕ(x))/(1 − x) → 1 . Hence ϕ has the
angular derivative 1 at 1 so that ϕ′(1) = 1 [Po92, Prop. 4.7] and it follows from
the Julia-Wolff lemma [Po92, Th. 4.13] that

1 + ϕ(z)
1− ϕ(z)

=
1 + z

1− z
+ p(z) (z ∈ D)

where Re p(z) > 0 and thus | arg p(z)| < π
2 . Hence

h(z) = log
ϕ(z)− z

(1− z)β
= log

p(z)(1− ϕ(z))
2(1− z)β−1

satisfies |Imh(z)| < (β+2) π/2 and is therefore a Bloch function [Po92, Sect. 4.2].
Since h(x) → log b as x → 1 by (4.1), it follows that h has the angular limit
at 1. This is the assertion (4.2), and we obtain (4.3) and (4.4) by applying
Proposition 3.1 twice. ¤X

Let f be again the fixed point function of ϕ, see (1.1).
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Theorem 4.2. Under the assumption (A) the domain F = f(D) has tangents
of angles ± π

2β at 1 and

1− f(w) ∼ b−1/β(1− w)1/β , (4.5)

f ′(w) ∼ (βb)−1(1− f(w))1−β ∼ β−1 b−
1
β (1− w)

1
β−1, (4.6)

f ′′(w) ∼ (β − 1)β−2 b−
1
β (1− w)

1
β−2 (4.7)

as w → 1, w ∈ D, thus for unrestricted approach.

Proof. (a) Let 4 be a Stolz angle in 1 of opening α > π/β and let ε > 0. If
z = 1− ρ eiϑ with |ϑ| < π

2 then, by (4.2),

|ϕ(z)|2 = |z + b(1− z)β + o(ρβ)|2
= |z|2 + 2b Re [(1− z)β ] + o(ρβ)

as ρ → 0 and thus

|ϕ(z)|2 − |z|2 = ρβ(2b cos(βϑ) + o(1)) .

This is positive for β|ϑ| < π
2 − ε and negative for β|ϑ| > π

2 + ε for small ρ.
Hence the domain F = {z ∈ D : |ϕ(z)| > |z|} has tangents of angles ±π/(2β)
at 1. In particular, F lies within some Stolz angle near 1.

(b) We obtain from Proposition 4.1 that 1 − z ϕ′(z)/ϕ(z) ∼ βb(1 − z)β−1

as z → 1 angularly. Since f(D) lies in a Stolz angle by part (a), we conclude
from (1.3) with z = f(w) that

f ′(w) =
1 + o(1)

βb
(1− f(w))1−β (4.8)

as w → 1, w ∈ D and therefore

(1− f(w))β = β

1∫

w

(1− f(ω))β−1 1 + o(1)
βb

(1− f(ω))1−βdω

= (b−1 + o(1)) (1− w) .

Hence (4.5) holds, and (4.6) follows from (4.8).
By a short calculation we obtain from (1.3) that

f ′′(w) =
w2 f ′(w)3

f(w)
ϕ′′(f(w)) + 2

f ′(w)2

f(w)
− 2

f ′(w)
w

. (4.9)

Hence we see from (4.4) and (4.6) that

f ′′(w) ∼ (βb)−3(1− f(w))3−3ββ(β − 1) b(1− f(w))β−2

which implies (4.7) in view of (4.5). ¤X

Let an,k be the coefficients of ϕ(z)n, see (2.1). We come to our main theorem.
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Theorem 4.3. Suppose that condition (A) holds and that f(D) ⊂ D∪{1}. Let

ψ(z) =
χ(z)

(1− z)γ
=

∞∑

k=0

bk zk , γ ≥ 0 (4.10)

where χ is analytic in D and has a finite angular limit χ(1) 6= 0. Then

n∑

k=1

bk−1 an,n−k ∼ χ(1) b
γ−1

β

β Γ(1 + (γ − 1)/β)
n

γ−1
β as n →∞ . (4.11)

Proof. (a) We apply Theorem 3.3 with α = 2 + γ−1
β > 1 and

h(w) = wψ(f(w)) f ′(w) =
∞∑

n=0

cn wn . (4.12)

We have χ(f(w)) → χ(1) because f(1) = 1 and F = f(D) lies in a Stolz angle
by Theorem 4.2. Hence we obtain from (4.5), (4.6) and (4.10) that

(1− w)α−1h(w) ∼ χ(1) (1− w)
1+ γ−1

β
b

γ
β (1− w)

− γ
β
β−1 b

− 1
β (1− w)

1
β
−1

which converges to χ(1) β−1 b(γ−1)/β as w → 1. We shall verify (3.10) in part
(b). Then it follows from (3.11) that

cn ∼ c n(γ−1)/β as n →∞ (4.13)

where c is the factor in (4.11), and (4.11) now is a consequence of (2.3) (with
m = 0) in the Bürmann-Lagrange formula.

(b) Since the angular limit χ(1) exists, we have (1 − z)χ′(z) → 0 [Po92,
Prop. 4.8] and thus, by (4.10),

ψ′(z) =
γ χ(z) + (1− z)χ′(z)

(1− z)γ+1
= O

(
1

|1− z|γ+1

)
(4.14)

as z → 1, z ∈ F = f(D). Hence we obtain from Theorem 4.2 that

h′(w) = ψ(f(w))f ′(w) + wψ′(f(w)) f ′(w)2 + wψ(f(w)) f ′′(w)

= O
(|1− f(w)|−γ−1+2−2β

)
+ O

(
|1− f(w)|−γ |1− w|

1
β
−2

)

= O
(
|1− w|(1−γ)/β−2

)
= O

(|1− w|−α
)

(4.15)

as w → 1, w ∈ D. It follows that |1−w|α|h′(w)| is bounded for w ∈ D, |w−1| ≤
δ for some δ > 0.

Furthermore f is continuous and injective in D. Since f(1) = 1 it follows
that |1 − f(w)| is bounded away from 0 in U = {w ∈ D : |w − 1| > δ}. By
assumption we have f(D) ⊂ D∪{1} and it follows from [MePo05, Th. 2.2] that
f is analytic in U . Moreover ψ′(f(w)) is bounded in U . Hence we see from
(4.15) that |1− w|α |h′(w)| is bounded also in U . ¤X



THE ANALYTIC FIXED POINT FUNCTION II 47

5. Applications to probability theory

Now we assume that ϕ has the form

ϕ(z) =
∞∑

k=0

ak zk, ak ≥ 0 (k = 0, 1, . . .) (5.1)

and satisfies ϕ(0) 6= 0, ϕ(1) = 1 and ϕ′(1) = 1. Thus ϕ is the generating
function of a random variable X with values in IN0 and expectation E(X) =
ϕ′(1) = 1. Let

Sn = X1 + . . . + Xn (n = 0, 1, . . .)

where the Xν are independent random variables with P(Xν = k) = ak for all
ν and k. Since the Xν are independent, the power ϕ(z)n has the coefficients
P(Sn = k) and thus, by (2.1)

an,k = P(Sn = k) for n, k ∈ IN0 . (5.2)

Proposition 5.1. Let ϕ be given by (5.1) with ϕ(1) = ϕ′(1) = 1 and suppose
that

m∑

k=1

k2 ak ∼ cm2−β (m →∞) (5.3)

where 1 < β ≤ 2 and 0 < c < ∞. Then condition (A) of Section 4 is satisfied
with

b =
c Γ(3− β)
β(β − 1)

. (5.4)

An explicit example is given [MePo05, Ex. 6.2] by

ϕ(z) = z + (2β)−1 (1− z)β + 1
4 (1− z)2 .

Proof. The case β = 2 is easy. Therefore we assume that 1 < β < 2. It follows
from (5.3) and (3.7) that

m∑

k=1

k(k − 1)ak ∼ c Γ(3− β) (−1)m

(
β − 3

m

)

and therefore, as x → 1,

ϕ′′(x)
1− x

=
∞∑

m=2

(
m∑

k=1

(k − 1)k ak

)
xm−2 ∼ c Γ(3− β)

(1− x)3−β
.

Now we multiply by 1 − x and integrate twice using ϕ′(1) = 1 and ϕ(1) = 1.
We obtain (4.1) with b given by (5.4). ¤X

The generating function ϕ is called aperiodic if there does not exist q > 1
such that ak = 0 for k 6≡ 0 mod q. If ϕ is aperiodic then |ϕ(z)| < 1 for
z ∈ D, z 6= 1, see e.g. [MePo05, Sect. 7]. Thus the condition f(D) ⊂ D ∪ {1}
of Theorem 4.3 is satisfied. Hence we obtain from Theorem 4.3:
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Theorem 5.2. Let the generating function ϕ be aperiodic and let condition
(A) of Section 4 be satisfied. Let γ ≥ 0 and

ψ(z) =
χ(z)

(1− z)γ
=

∞∑

k=0

bk zk (5.5)

where χ is analytic in D and χ(1) 6= 0. Then

n∑

k=1

bk−1 P(Sn = n− k) ∼ χ(1) b
γ−1

β

β Γ(1 + (γ − 1)/β)
n

γ−1
β as n →∞ . (5.6)

If the variance σ2 of X is finite then we see from (4.4) that β = 2 and
b = σ2/2. Hence (5.6) becomes

n∑

k=1

bk−1 P(Sn = n− k) ∼ χ(1) σγ−1

2(γ+1)/2 Γ((1 + γ)/2)
n

γ−1
2 . (5.7)

Now we give some specific applications where we always assume that condition
(A) holds and that ϕ is aperiodic.

5.1. The limit behaviour of Sn. Let Z be any random variable with values in
IN0 that is independent of the sums Sn. We apply Theorem 5.2 with γ = 0 and
χ the generating function of Z. Then χ(1) = 1 and the sum in (4.11) becomes

n∑

k=1

P(Z = k − 1)P(Sn = n− k) .

Since the Z and Sn are independent we obtain

P(Sn + Z = n) ∼ b−1/β

β Γ(1− 1/β)
n
− 1

β as n →∞ . (5.8)

5.2. Asymmetry near the equilibrium. Since E(Sn) = n the equilibrium is
reached if Sn = n. Now we apply Theorem 5.2 with γ = 1 and χ(z) = 1. We
obtain

P(Sn < n) =
n∑

k=1

P(Sn = n− k) → 1
β

as n →∞ .

This value is > 1
2 if β < 2. This does not contradict the law of large numbers

because this law only says that Sn/n → 1 but does not say anything about
P(Sn/n < 1).

We introduce random variables Tn with values in {1, . . . , n} by Tn = n−Sn

for Sn < n and P(Tn = k) = P(Sn = n− k | Sn < n). It follows from Theorem
5.2 with ψ(z) = (1− z)−2 and ψ(z) = 2(1− z)−3 that

E(Tn) ∼ b1/β

Γ(1 + 1/β)
n

1
β
, V(Tn) ∼

(
2b2/β

Γ(1 + 2/β)
− b2/β

Γ(1 + 1/β)2

)
n

2
β

.
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5.3. The first return to equilibrium. Now we introduce a random variable N
with values in IN by

N = n ⇔ Sn = n , Sν 6= ν (1 ≤ ν < n) .

Thus N is when Sn reaches its equilibrium for the first time.
Now (Sn = n) is a recurrent event [Fe68, p. 311] and we see from (1.3) and

from (2.5) with k = 0 that
∞∑

n=1

P(Sn = n) wn =
1

1− w ϕ′(f(w))
.

Hence it follows [Fe68, p. 311] that

w ϕ′(f(w)) =
∞∑

n=1

P(N = n) wn . (5.9)

Since ϕ′(1) = 1 and thus f(1) = 1, we see that the random variable N is not
defective.

Now we argue as in the proof of Theorem 4.3 with ψ = ϕ′′. It follows from
(5.9) that

h(w) = w ϕ′′(f(w)) f ′(w) =
∞∑

n=0

nP(N = n + 1) wn ; (5.10)

this notation agrees with (4.12). We consider α = 1 + 1
β > 1. It follows from

Proposition 4.1 and Theorem 4.2 that, as w → 1−,

(1− w)α−1h(w) ∼ (1− w)
1
β β(β − 1) b(1− f(w))β−2f ′(w)

→ (β − 1) b
1
β .

With some effort the condition (3.10) is verified as in part (b) of the proof of
Theorem 4.3. Hence we obtain from (5.10) and Theorem 3.3 that

nP(N = n + 1) ∼ (β − 1) b
1
β Γ(1/β)−1 n

1
β−1

and therefore

P(N = n) ∼ (1− β) b1/β

Γ(1/β)
n

1
β
−2

as n →∞ .

If σ is finite then β = 2 and we obtain P(N = n) ∼ σ√
2π

n−3/2 .
5.4. The total progeny in a branching process. We consider a Galton-Watson

branching process [Fe68] [AtNe72]. Let Zk denote the number of individuals in
the k-th generation where Z0 = q is given; in general it is assumed that Z0 = 1.
These individuals reproduce independently and the number of children of each
individual is distributed like X. Then

Y =
∞∑

k=0

Zk ≤ ∞
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is the total progeny, that is the total number of all individuals over all genera-
tions; see e.g. [Fe68, p. 298] [KaNa94]. It was shown in [MePo05, Sect. 6] that
the fixed point function f of ϕ is the generating function of Y if Z0 = 1. Since
we now start with q individuals reproducing independently, we have

f(w)q =
∞∑

n=q

P(Y = n) wn .

Hence we obtain from (2.6) and (5.8) that

P(Y = n) =
q

n
P(Sn = n− q) ∼ q b−1/β

β Γ(1− 1/β)
n
− 1

β
−1

. (5.11)

If σ < ∞ we have P(Y = n) ∼ q√
2π σ

n−3/2 .

6. The case ϕ′(1) < 1ϕ′(1) < 1ϕ′(1) < 1

Let ϕ again be analytic in D and ϕ(D) ⊂ D, ϕ(0) 6= 0 and ϕ(1) = 1. Now we
assume that

ϕ′(z) → µ < 1 as z → 1, z ∈ D . (6.1)

The fixed point function f satisfies f(1) = 1 and now

f ′(w) → 1
1− µ

,
1− f(w)

1− w
→ 1

1− µ
as w → 1, w ∈ D (6.2)

by (1.3). Hence f(D) is tangential to ∂D at 1 [Po92, p. 80]. This is the reason
why we have to allow unrestricted approach in (6.1). The situation is more
complicated than for ϕ′(1) = 1 and we only prove one result.

Theorem 6.1. Suppose that 1 < β < 2, c ∈ C, c 6= 0 and

ϕ′′(z) ∼ c(1− z)β−2, ϕ′′′(z) = O
(|1− z|β−3

)
(6.3)

as z → 1, z ∈ D. If f(D) ⊂ D ∪ {1} then, for every k ∈ ZZ,

an,n−k ∼ c(1− µ)−β−1

Γ(2− β)
n−β as n →∞ . (6.4)

Proof. We have α = 3− β > 1 because β < 2. We apply Theorem 3.3 to

h(w) =
d

dw

(
f ′(w) f(w)k−1

)
=

∞∑

n=k

(n− 1) an,n−k wn−2; (6.5)

see (2.5). We restrict ourselves to the case k = 1 to simplify some technical
details.

It follows from (4.9), (6.2) and (6.3) that

h(w) = f ′′(w) ∼ c(1− µ)−β−1 (1− w)β−2 as w → 1, w ∈ D . (6.6)
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Now we differentiate (4.9) and obtain from (6.3) that

h′(w) = f ′′′(w) = O(f ′′(w)ϕ′′(f(w))) + O(ϕ′′′(f(w))

= O
(|1− w|2β−4

)
+ O

(|1− w|β−3
)

= O
(|1− w|−α

)

because β > 1. As in part (b) of the proof of Theorem 4.3, we see that (3.10)
holds. Hence it follows from (3.11), (6.5) and (6.6) that

(n− 1) an,n−1 ∼ c(1− µ)−β−1

Γ(2− β)
n1−β as n →∞

which implies (6.4) for k = 1 . ¤X

Now let ϕ be an aperiodic probability generating function with E(X) < 1
that satisfies (6.3) with 1 < β < 2. Then it follows from (6.4) that

P(Sn = n− q) ∼ c1 n−β (n →∞), c1 6= 0 (6.7)

and we obtain from (5.11) that the total progeny Y in a branching process
satisfies P(Y = n) ∼ c2 n−β−1, c2 6= 0 .

The relation is not always (or never ?) true if β = 2, that is for finite
variance. Consider for instance the case that ϕ is analytic in {|z| < R} with
R > 1. Then large deviation theory shows that

P(Sn = n− 1) = O(ρn) (n →∞) for some ρ < 1

which is very much smaller than (6.7). See e.g. [Gä77] and see [MePo05, Sect. 7]
for details.
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