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The analytic fixed point function II
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ABsTRACT. Let ¢ be analytic in the unit disk D and let (D) C D, ¢(0) # 0.
Then w = z/¢(z) has an analytic inverse z = f(w) for w € D, the fixed
point function. This paper studies the case that (1) = ¢'(1) = 1 with a
growth condition for ¢”(x) and determines the asymptotic behaviour of various
combinations of the coefficients of ¢ connected with f. The results can be
interpreted in various contexts of probability theory.
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RESUMEN. Sea ¢ analitica en el disco unitario Dy ¢ (D) C D, ¢(0) # 0. Entonces
w = z/¢(z) tiene una inversa analitica z = f(w) paraw € D, la funcién de punto
fijo. Este articulo estudia el caso en que ¢(1) = ¢’(1) = 1 con una condicién
de crecimiento para ¢”(x) y determina el comportamiento asintético de varias
combinaciones de los coeficientes de ¢ conectados con f. Los resultados se
pueden interpretar en varios contextos de la teoria de la probabilidad.

1. Introduction

Let the function ¢ be analytic in the unit disk D and (D) C D, ¢(0) # 0. In
[MePo05, Sec. 3] it was shown that there is a unique function f that maps D
conformally onto a starlike domain F' in D and satisfies f(0) = 0,

wep(f(w) = f(w) for w € D. (1.1)

*Supported by COLCIENCIAS.
fSupported by Deutsche Forschungsgemeinschaft (DFG).

39



40 D. MEJIA & C. POMMERENKE

Thus z = f(w) is the inverse function of w = z/p(z). We call f the fized point
function of ¢ because f(w) is the unique fixed point of wep in D.

The fixed point function f has a continuous and injective extension to D,
see [MePo05, Th. 3.2]. Furthermore [MePo05, Th. 2.2] we have

IDNIF ={C e Q)] = 1, [/ (O)] < 1} (1.2)

where ¢(¢) and ¢’(¢) are angular limits [Po92, Sect. 4.3]. It follows from (1.1)
by differentiation that

W) ! !
fw)  1-we'(f(w) 1-2¢'(2)/0(2)
for z = f(w), w € D.

We shall restrict ourselves to the case that ¢(1) = 1 and ¢'(1) < 1; since
©(D) C D the Julia-Wolff lemma [P092, Prop. 4.13] shows that ¢(1) = 1 implies
that the angular derivative ¢’'(1) is positive real or infinite. The case ¢’(1) < 1
will be considered only in the last section.

In Section 4 we study the condition

o(x) :m—l—b(l—x)ﬁ—l—o((l—x)ﬁ) as v — 1— (1.4)
where 1 < <2 and 0 < b < oo. Then ¢”(1) is finite if and only if 5 = 2. Our
main result is Theorem 4.3 about coefficients.

The results about the coefficients can be interpreted as results about proba-

bilities. Let X denote a random variable with values in INy and the distribution
ay =P(X =k) for k=0,1,... . Then

(1.3)

p(z) =Y arz*  (2€D) (1.5)
k=0

is the generating function of X and satisfies (1) = 1 and (D) C D. We
assume that p(0) = P(X =0) > 0.

Let S, be the sum of n independent random variables all distributed like
X. The Birmann-Lagrange formula (Theorem 2.1) shows that the fixed point
function f has a special affinity to probabilities of the form P(S,, =n — k).

The study of .S, is a classical chapter of probability theory, see e.g. the book
of V.V. Petrov [Pe75]. Most of our results on probability are known, at least,
in the case # = 2 of finite variance.

2. The Biirmann-Lagrange formula

Let ¢ : D — D be analytic with ¢(0) # 0 and let z = f(w) be the inverse
function of w = z/¢(2). We define a,, 1, for n € Z and k € INy by

p(2)" = any2*. (2.1)
k=0

Now we present the Biirmann-Lagrange formula [PoSz25, p. 125] in a somewhat
different form and also for functions v with a pole at 0.
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The formulas still hold near w = 0 if we only assume that ¢ is analytic near
z =0 and p(0) # 0.

Theorem 2.1. Let m >0, 0< p <1 and

P(z) = Z by 25 for 0 < |z| < p. (2.2)

k=—m

If 0<|w| < p then

w f'(w) Y(f(w)) = Z ( Z br—1 an,nk) w", (2.3)

n=—m-+1 k=—m+1

B(f(w) =bo— D boyai+ > ( > ﬁb) W' (24)
k=1

n=—m \k=—m
wheren = 0 is omitted in the last outer sum and where z ¢'(2)/p(2) =Y a} 2*.

Proof. Since |f(w)| < |w| by the Schwarz lemma and since f is univalent in
D, we have 0 < [f(w)] < p for 0 < |w| < p so that ¢ o f is analytic in
{0 < |w| < p}.

Let 0 < r < pand C = {|Jw| = r}. Let n € Z. The coefficient of w™ of the
function w f'(w) ¥ (f(w)) is

L[ o(fw) 1 b(2) p(2)"
C

211 2"
()

where we have substituted w = z/p(z) with z = f(w). This is the coefficient
of 2"~1 of the function

b)) = > b1
k=—m+1 j=0

which is equal to the inner sum in (2.3).
Next we apply (2.3) to ¢’. We obtain

%w(f(w))z > ( > kbkan,nk> w' L.

n=—m \k=—m+1

Integrating we obtain (2.4) except for a constant. The coefficient of w? is

i | =g [ 2 (12255 e
c F(€)

because of (1.3), which gives the value in (2.4). ™
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In particular we obtain

wf'(w) fw) ' =" ap g forkeZ, (2.5)
n==k
f(w)k = i E anpnpw® for ke IN. (2.6)
n==k n ’

3. Some auxiliary estimates

A Stolz angle at 1 is an open triangle A symmetric to IR that satisfies ANOD =
{1}. We say that a function has an angular limit at 1 if this limit exists for
z — 1 in every Stolz angle A.

Proposition 3.1. Let g be analytic in D and

g(2) ~b(1 — 2)? as z — 1 angularly. (3.1)
where b #£ 0 and 3 # 0. Then
q(2) ~ =Bb(1 —2)"t as z — 1 angularly. (3.2)

Proof. By (3.1) the function (1 — 2)7? g(z) has the angular limit b # oo at 1.
It follows [P092, Prop. 4.8] that

(1= 2P g (2) + AL — 2) P g(z) = (1 — 2) L [(1— 2) " g(2)]

dz
has the angular limit 0 at 1. Hence (3.2) follows from (3.1). vf
Proposition 3.2. Let g be analytic in D and
(1-2)%¢g(x) = 0asz— 1—, (3.3)
|1 —2|*|g(2)] <c< oo forzeD (3.4)

where 1 < a < oo. Then
/ lg(re™)|dt =0 ((1—7)'"*) asr —1—. (3.5)

Proof. We establish (3.5) for 0 < ¢ < wr. The analytic function (1 — 2)* g(z) is
bounded because of (3.4) and therefore has the angular limit 0 at 1 because of
(3.3), see [P092, Th.4.3].
Given ¢ € (0,1) there exists rg € (% , 1) such that
11— re|*|g(re)| <eforrg <r<1,|t| <5=(1—71)/e.

For ro < r < 1 we therefore have

o 5
) 1— it|2—a
/ lg(re™t)| dt < / P=ret 2 (3.6)
0 0

|1 — reit|?
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If1<a<2thisis
; d
t
—2\(2—a)/2 22—« a—1 11—«
S@(l"‘@ )( )/ (1—7“) /m<4ﬂ'€ (1—7‘) .
0
If 2 < & < oo the last expression in (3.6) is
; d
t
2—a -«
0

Since |1 — reft| > 2rt/m we obtain from (3.4) that

= ° (e} a_a—1
/|g(re”)|dt§/ Ctz dt="°__(1-p)t-e
§ 5

a—1

because § = (1 —r)/e. These estimates prove (3.5). vf

It is well known that, for @ > 0,

o () et

The following theorem is the key to the later results.

(n — o). (3.7)

Theorem 3.3. Let 1 < o < 00 and let

h(z) = Z cn 2" (3.8)
n=0
be analytic in D. We suppose that
(1—2)*'hxr) wacCasz—1, (3.9)
sup |1 —2|* W (2)| < o0. (3.10)
z€D
Then

Cn ~ ——— "2 gsn — 0o (3.11)

" T(a—1) ' '

Proof. Tt follows from (3.9) and (3.10) that
Co C1
h(z)] < ———
el s e =

Let z € D and |1 — 2| < 1; the case |1 — z| > 1 is simpler. Let C be the circular
arc {( €D :|1—(| =|1—%|} and let x € (0,1) be the point where C intersects
IR. Integrating over C' we obtain

0<z<l), MO < (¢ eD).

z

n(z) = b < [ Wo)lde) < 5 11—

x

C1
1 -z’
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and since 1 —z = |1 — z| we conclude that
11— 2|*"Hh(z)| < cp for z € D. (3.12)

It follows by (3.9) that (1 — 2)*~1h(z) has the angular limit a; see e.g. [P092,
Th.4.3]. Therefore we conclude from Proposition 3.1 that (1 — z)*h/(z) —

(e —1)a as ¢ — 1 — . Hence we can apply Proposition 3.2 to the function
/ (O[ — l)a . -« n n
o) =2~ (e = 3 (ren = @=na () 1) 5 Gas)

the condition (3.4) is satisfied due to (3.10). We conclude from (3.5) with
r =1 —n~! that the coefficients of g are o(n®~!) so that (3.11) follows from
(3.13) and (3.7).

4. A fractional derivative condition

In this section we consider the following condition and its consequences.
(A) The function ¢ : D — D is analytic and satisfies ¢(0) # 0 and

ox)—z ~ b(l—x)%asaz — 1— (4.1)

where 0 < b < oo and 1 < 8 < 2. Note that we only require radial and not
unrestricted approach to z = 1.

Proposition 4.1. If condition (A) holds then o(1) = ¢'(1) = 1 as angular
limits and, as z — 1 angularly,

©o(z) —z ~ b(l — 2)?, (4.2)
1—¢'(z) ~ Bb(1—2)"", (4.3)
¢ (z) ~ B(B—1)b(1L—2)"2 (4.4)

Proof. We see from (4.1) that (1 — ¢(x))/(1 — ) — 1. Hence ¢ has the
angular derivative 1 at 1 so that ¢’(1) = 1 [P092, Prop. 4.7] and it follows from
the Julia-Wolff lemma [P092, Th. 4.13] that
L+op(z) 14z
I—pz) 1-z
where Rep(z) > 0 and thus |argp(z)| < 5 . Hence

+ p(2) (z e D)

plz) — 2 p(2)(1 = ¥(2))
h(z) =log ———= =log ——T——
(2) =log (T——35 =log S5
satisfies |Im h(z)| < (5+2) 7/2 and is therefore a Bloch function [P092, Sect. 4.2].
Since h(x) — logb as x — 1 by (4.1), it follows that h has the angular limit
at 1. This is the assertion (4.2), and we obtain (4.3) and (4.4) by applying
Proposition 3.1 twice. o]

Let f be again the fixed point function of ¢, see (1.1).
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Theorem 4.2. Under the assumption (A) the domain F = f(D) has tangents
of angles + % at 1 and

1— f(w) ~ b~ Y81 —w)t/B, (4.5)
Fl(w) ~ (B) 71— fw)' P ~ BT (1 —w)T Y, (4.6)
fl(w) ~ (B=1)872b7F (1 —w)? 2 (4.7)

as w— 1, w €D, thus for unrestricted approach.
Proof. (a) Let A be a Stolz angle in 1 of opening a > 7/8 and let ¢ > 0. If
z=1-pe” with [J| < I then, by (4.2),
o(2)? = |2 +b(1 = 2)7 + o(p”)|?
= |2)? + 2bRe[(1 — 2)°] + o(p”)

as p — 0 and thus

lp(2)]? = [2I” = p”(2bcos(B80) + o(1)).

This is positive for §|9| < § — ¢ and negative for 39| > T + ¢ for small p.
Hence the domain F' = {z € D : |p(z)| > |z|} has tangents of angles +m/(20)
at 1. In particular, F' lies within some Stolz angle near 1.

(b) We obtain from Proposition 4.1 that 1 — z¢/(2)/p(2) ~ Bb(1 — 2)#~1
as z — 1 angularly. Since f(D) lies in a Stolz angle by part (a), we conclude
from (1.3) with z = f(w) that

) = 00

0Ob
as w — 1, w € D and therefore

(1= fw))'™? (4.8)

5-1 1+0(1)

o (= fw) e

(1~ f(w)”

B /1(1 —fw))

=0 +o(1)(1-w).

Hence (4.5) holds, and (4.6) follows from (4.8).
By a short calculation we obtain from (1.3) that

w? f'(w)* frlw? , f'(w)

) = T e () 2 T —a (49)
Hence we see from (4.4) and (4.6) that
" (w) ~ (B0) 731 = f(w)) BB — 1) b(1 = f ()"~
which implies (4.7) in view of (4.5). o

Let ay, 1, be the coefficients of ()", see (2.1). We come to our main theorem.
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Theorem 4.3. Suppose that condition (A) holds and that f(D) C DU{1}. Let

P(z) =

1_Z Zbkz ,y>0 (4.10)

where x is analytic in D and has a finite angular limit x(1) # 0. Then

- ML a5t
> bkt ok ~ R et (4.11)

Proof. (a) We apply Theorem 3.3 with o = 24+ 221 > 1 and

h(w) = wi(f(w)) f'(w) = Z Cpw" (4.12)

We have x(f(w)) — x(1) because f(1) =1 and F' = f(D) lies in a Stolz angle
by Theorem 4.2. Hence we obtain from (4.5), (4.6) and (4.10) that
1

(1= w)* h(w) ~ x(1) A —w) 7 b A —w) 5 (1 w)’

which converges to x(1) 5~ b(7~1/8 as w — 1. We shall verify (3.10) in part
(b). Then it follows from (3.11) that

]

-1

en ~ en0™ /B asn — oo (4.13)

where ¢ is the factor in (4.11), and (4.11) now is a consequence of (2.3) (with
m = 0) in the Biirmann-Lagrange formula.

(b) Since the angular limit x(1) exists, we have (1 — z) x'(z) — 0 [P092,
Prop. 4.8] and thus, by (4.10),

, 2)+(1—2)X'(z 1
as z — 1, z € F'= f(D). Hence we obtain from Theorem 4.2 that
K (w) = Y(f(w) f'(w) +wy' (f(w)) f'(w)? +wi(f(w)) f(w)
=0 (1= f) ) 10 (1= )il )

:O(|1—w|(1’7)/ﬁ’2) =0 (11— w|™) (4.15)

asw — 1, w € D. Tt follows that |1—w|*|h’(w)] is bounded for w € D, |w—1| <
0 for some 6 > 0.

Furthermore f is continuous and injective in D. Since f(1) = 1 it follows
that |1 — f(w)| is bounded away from 0 in U = {w € D : |w — 1] > 6}. By
assumption we have f(D) C DU{1} and it follows from [MePo05, Th. 2.2] that
f is analytic in U. Moreover ¢’'(f(w)) is bounded in U. Hence we see from
(4.15) that |1 — w|* |A'(w)] is bounded also in U. o
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5. Applications to probability theory

Now we assume that ¢ has the form
)= a2, a>0 (k=0,1,..) (5.1)

and satisfies p(0) # 0, ¢(1) = 1 and ¢’(1) = 1. Thus ¢ is the generating
function of a random variable X with values in INy and expectation E(X) =
¢'(1) = 1. Let

Spn=X1+...+ X, (n=0,1,...)
where the X, are independent random variables with P(X, = k) = ay, for all
v and k. Since the X, are independent, the power ¢(2)™ has the coefficients
P(S,, = k) and thus, by (2.1)

an, i = P(S, = k) for n,k € INg. (5.2)

Proposition 5.1. Let ¢ be given by (5.1) with ¢(1) = ¢’'(1) = 1 and suppose
that

Z k% aj ~ cm?P (m — o) (5.3)
where 1 < <2 and 0 < ¢ < co. Then condition (A) of Section 4 is satisfied
with

cI'(3—-71)
b=———>-. 5.4
561 o4

An explicit example is given [MePo05, Ex. 6.2] by
p(z)=2+28) (1-2)" + 1 (1-2)%.

Proof. The case # = 2 is easy. Therefore we assume that 1 < 8 < 2. It follows
from (5.3) and (3.7) that

m

m

k(k — Dag ~ ¢D(3 — B) (~1)™ <5 _ 3>

k=1

and therefore, as x — 1,

- - "2 cT'(3 -
o Z<Z ‘““’k) -

m=2 \k=1

Now we multiply by 1 — z and integrate twice using ¢'(1) = 1 and (1) = 1.
We obtain (4.1) with b given by (5.4). v

The generating function ¢ is called aperiodic if there does not exist ¢ > 1
such that a = 0 for k¥ # 0 mod ¢q. If ¢ is aperiodic then |p(z)| < 1 for
z €D, z# 1, see e.g. [MePo05, Sect.7]. Thus the condition f(D) C DU {1}
of Theorem 4.3 is satisfied. Hence we obtain from Theorem 4.3:
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Theorem 5.2. Let the generating function ¢ be aperiodic and let condition
(A) of Section 4 be satisfied. Let v > 0 and

x(z -
=G ! Z))W => st (5.5)
k=0
where x is analytic in D and x(1) # 0. Then

- _ x()b ” 5
kZ:lbk,lP(Sn—n—k)Nﬁr(1+(’y_1)/ﬂ)n asn — 0o. (5.6)

If the variance o2 of X is finite then we see from (4.4) that 3 = 2 and
b= 02/2. Hence (5.6) becomes

x(o?™h gt
THET((147)/2)

> b1 P(Sp=n—k) ~ = (5.7)
k=1

Now we give some specific applications where we always assume that condition
(A) holds and that ¢ is aperiodic.

5.1. The limit behaviour of S,. Let Z be any random variable with values in
INy that is independent of the sums S,,. We apply Theorem 5.2 with v = 0 and
X the generating function of Z. Then (1) =1 and the sum in (4.11) becomes

Y P(Z=k-1)P(S,=n—k).
k=1

n

Since the Z and S,, are independent we obtain

p—1/8 1
)n " asn — oo. (5.8)

pr(L-1/p

5.2. Asymmetry near the equilibrium. Since E(S,) = n the equilibrium is
reached if S,, = n. Now we apply Theorem 5.2 with v =1 and x(z) = 1. We
obtain

P(S,+Z=mn)

n

]P’(Sn<n):ZP(S’n:n—k)—>%asn—>oo.

k=1

This value is > % if 8 < 2. This does not contradict the law of large numbers
because this law only says that S,,/n — 1 but does not say anything about
P(S,/n < 1).

We introduce random variables T;, with values in {1,...,n} by T,, =n— 5,
for S, <n and P(T,, = k) =P(S, =n—k | S, <n). It follows from Theorem
5.2 with ¥(z) = (1 — 2)72 and ¥(z) = 2(1 — 2)~3 that

pl/8 1 2p2/8 p2/8 ) n%

50 ~ s Y~ (rarm - ra s




THE ANALYTIC FIXED POINT FUNCTION II 49

5.3. The first return to equilibrium. Now we introduce a random variable N
with values in IN by

N=n& S,=n, S, #v (1<v<n).

Thus N is when S,, reaches its equilibrium for the first time.
Now (S, = n) is a recurrent event [Fe68, p.311] and we see from (1.3) and
from (2.5) with k£ = 0 that

> - 1
2 B =me” =y oy

Hence it follows [Fe68, p.311] that
o0
w'(f(w)) = Z P(N =n)w™. (5.9)
n=1

Since ¢'(1) = 1 and thus f(1) = 1, we see that the random variable N is not
defective.

Now we argue as in the proof of Theorem 4.3 with ¢ = ¢”. It follows from
(5.9) that

oo

hw) = w " (f(w)) f(w) = Z nP(N=n+1)w"; (5.10)
n=0
this notation agrees with (4.12). We consider o = 1 + % > 1. It follows from
Proposition 4.1 and Theorem 4.2 that, as w — 1—,

(1= w)* hw) ~ (1—w)B(3—1)b(1— f(w))*2f (w)

~ (B-1)bh.

With some effort the condition (3.10) is verified as in part (b) of the proof of
Theorem 4.3. Hence we obtain from (5.10) and Theorem 3.3 that

nP(N =n+1) ~ (8 —1)b5T(1/8) " nit

and therefore

1 1
P(N =n) ~ wnﬁ Casn— oo,
I(1/5)
If o is finite then § = 2 and we obtain P(N =n) ~ \/% n=3/2.

5.4. The total progeny in a branching process. We consider a Galton-Watson
branching process [Fe68] [AtNe72]. Let Zj, denote the number of individuals in
the k-th generation where Zy = ¢ is given; in general it is assumed that Zy = 1.
These individuals reproduce independently and the number of children of each
individual is distributed like X. Then

Y:iZkgoo
k=0
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is the total progeny, that is the total number of all individuals over all genera-
tions; see e.g. [Fe68, p. 298] [KaNa94]. It was shown in [MePo05, Sect. 6] that
the fixed point function f of ¢ is the generating function of Y if Zy = 1. Since
we now start with ¢ individuals reproducing independently, we have

o0

flw)? = Z P(Y =n)w™.

n=q

Hence we obtain from (2.6) and (5.8) that

P(Y =n) = LP(s WU Ll b (5.11)
=n)=— n="n— ~ n . .

n v BT -1/8)
If 0 < 0o we have P(Y =n) ~ Qqﬁan_?’/Q.

6. The case ¢’'(1) <1
Let ¢ again be analytic in D and ¢(D) C D, ¢(0) # 0 and ¢(1) = 1. Now we
assume that
P)—mp<lasz—1, zeD. (6.1)
The fixed point function f satisfies f(1) =1 and now

1—1p 1—w 1—p
by (1.3). Hence f(D) is tangential to 0D at 1 [P0o92, p.80]. This is the reason

why we have to allow unrestricted approach in (6.1). The situation is more
complicated than for ¢’(1) = 1 and we only prove one result.

asw— 1, weD (6.2)

Theorem 6.1. Suppose that 1 < < 2,c€C, c#0 and
¢"(2) ~ e(1-2)77% 9" (2) = O (|1 - 2°7%) (6.3)

asz—1,z€D. If f(D) CDU{1} then, for every k € Z,

c(l—p) 71

Apop—tk ~ ———————— N asn — 00. 6.4
SR Y CR) (04
Proof. We have a =3 — 3 > 1 because 3 < 2. We apply Theorem 3.3 to
d _ > e
hw) = o () f@) 1) =3 (=1 annsw"™  (65)
n==k

see (2.5). We restrict ourselves to the case k = 1 to simplify some technical
details.
It follows from (4.9), (6.2) and (6.3) that

h(w)=f"(w) ~c(1—p) P11 -w)f2asw—1,weDb. (6.6)
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Now we differentiate (4.9) and obtain from (6.3) that

h'(w) = " (w) = O(f"(w) ¢" (f (w))) + O™ (f (w))
=0(1—w ") +0 (1 —w/’?) =0 (1 —w|™®)

because 8 > 1. As in part (b) of the proof of Theorem 4.3, we see that (3.10)
holds. Hence it follows from (3.11), (6.5) and (6.6) that
1—p)= A1
(n—1)ann-1 ~ 70( 2 n'=asn — oo

I'2-p)
which implies (6.4) for k = 1. of

Now let ¢ be an aperiodic probability generating function with E(X) < 1
that satisfies (6.3) with 1 < 8 < 2. Then it follows from (6.4) that

P(S,=n—¢q) ~cin? (n—00), c; #0 (6.7)

and we obtain from (5.11) that the total progeny Y in a branching process
satisfies P(Y =n) ~ coan P71 e #0 .

The relation is not always (or never ?) true if § = 2, that is for finite
variance. Consider for instance the case that ¢ is analytic in {|z| < R} with
R > 1. Then large deviation theory shows that

P(S,=n—1)=0(p") (n— oo) for some p < 1

which is very much smaller than (6.7). See e.g. [G&77] and see [MePo05, Sect. 7]
for details.
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