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AssTracT. We provide a finer local convergence analysis than before [6]-[9] of a
certain superquadratic method for solving generalized equations under Holder
continuity conditions.
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REsuMEN. Nosotros hacemos un anélisis de convergencia local més fino que el
proporcionado antes de [6]—[9] de cierto método supercuadrético para resolver
ecuaciones generalizadas bajo ciertas condiciones de continuidad de Hélder.

1. Introduction

In this study we are concerned with the problem of approximating a solution
z* of the generalized equation of the form

0 € F(z) + G(x), (1.1)

where F' is a twice Fréchet differentiable operator defined on a Banach space
X with values in a Banach space Y, and G is a set-valued map from X to the
subsets of Y.

Local results providing sufficient conditions for the existence of * have been
provided by several authors using various iterative methods and hypotheses [2]-
[9], [11]. Here in particular, we use the method

0€ F(zp) + VF(zp)(n+1 — Tn) + %VQF(xn)(xn_H —2,)? + G(rpy1) (1.2)

to generate a sequence approximating x*.
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In the paper by Geoffroy and Pietrus [9] local convergence results were pro-
vided for method (1.2) using Hélder continuity conditions on V2F. Here we
are motivated by this paper, our paper [1], and optimization considerations.

In particular using the same hypotheses but more precise error bounds we
provide a larger convergence radius and finer error bounds on the distances
i — ]| (n > 0).

Some numerical examples are provided to justify our theoretical results. The
same examples are used to compare favorably our results with the correspond-
ing ones in [9].

The paper is organized as follows: In Section 2 we have collected a number of
necessary results [6], [9], [10] needed in our local convergence analysis appearing
in Section 3.

2. Preliminaries

We need a definition about the Aubin continuity [5]-[7]:

Definition 2.1. A set-valued map I': X — Y is said to be M-pseudo-Lip-
schitz around (xo,y0) € graph F = {(z,y) € X xY |y € T'(x)} if there exist
neighborhoods V' of xg and U of yog such that
sup dist (y,I'(v)) < M||u—v|| for all z,y € V. (2.1)
yel'(u)NU

The Aubin continuity of I is equivalent to the openess with linear rate of I'"!
and the metric regularity of I'"!.

Let A and C be two subsets of X. Then the excess e from the set A to the
set C' is given by

e(C, A) = sup dist(z, A). (2.2)

zeC

Estimate (2.1) using (2.2) can be written
c(T(uw)NU,TW)) < M|lu—2v| forall u,v€V. (2.3)

We also need a lemma about fixed points [10]:

Lemma 2.2. Let (X, p) be a Banach space, let T' be a map from X into the
closed subsets of X, let p € X and let v and X be such that 0 < A\ < 1, and

dist (p, T'(p)) < r(1 = A), (2.4)
e(T(w)NU(p,r), T(v)) < Ap(u,v), for allu,v e U(p,r) (2.5)

where
Ulp,r)={z e X |z —p|| <r}. (2.6)

Then T has a fixved point in U(p,r). Moreover if T is single-valued, then x is
the unique fized point of T in U(p,r).

Let z* be a solution of (1.1). We assume:

(A1) F is Fréchet-differentiable on some neighborhood V' of z*;

(A2) V2F is bounded by L on V and ||V2F(z*)| < Lo;
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(A3) V2F is a-Hélder on V' with constant K, i.e.

IV2F(x) — V2F(y)]| < K|l — y|* forall 2,y € V, (2.7)
where K satisfies
K>5a+D)(a+2)I, L= LO;L; (2.8)
(A4) V2F is a-center-Holder on V at z* with constant Ko, i.e.
|V2F(z) — V2F(z")|| < Ko|jlz — 2*||* forall z € V; (2.9)
(A5) The application
F(x*) 4+ VF(z*)(- — 2*) + %VQF(SU*)(' —2")? +G() B (2.10)

is M-pseudo-Lipschitz around (0,z*) and G has closed graph.

We can now compare our hypotheses with the corresponding ones in [9]:

Remark 2.3. In general

Ko <K, Ly<IL, (2.11)
hold in general and - can be arbitrarily large [1], [2]. If Ko = K our hy-
potheses reduce to the ones in [9]. Otherwise our hypotheses can be used to
improve the results in [9] as stated in the Introduction. Note that in practice
the computation of K requires that of Ky. That is the computational cost of

our hypotheses (A1)—(A5) is the same as the corresponding one in [9] using
(A1)-(A3) and (A5).

3. Local convergence analysis of method (1.2)

We will follow the proof routine in [9] but we will also stretch the differences
where the really needed condition (2.9) is used instead of the stronger (2.7)
used in [9].

We state the main local convergence result for method (1.2):

Theorem 3.1. Let z* be a solution of (1.1). Under hypotheses (A1)—(A5) and

for
MK
c> ———— 3.1
(a+1)(a+1) (3.1)
there exists 0 > 0 such that for every starting guess xo € U(x*,0) there exists

a sequence {x,} (n > 0) generated by method (1.2) satisfying
lwns1 = 2% < cllan — 2*[*F* (n > 0). (3.2)

In order for us to prove this theorem we first need some notations. Let us
define the set-valued map @) from X to the subsets of Y by

Q(z) =F(z")+ VF(z")(x —2*) + %V2F(x*)(x — ")+ G(x). (3.3)
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Zn(z) =F(z*)+ VF(z")(z — z¥) + %VQF(.T*)(QL‘ —z*)?
— F(2) — V(@) (z — 20) — %VQF(xn)(x et (34)
and define T,,: X — Y by

Clearly 7 is a fixed point of Tj if and only if:
F(z*)+ VF(x*)(x1 — 2) + %VQF(I*)(xl —z*) — F(xp)
— VF(xo)(x1 —x0) — %VzF(xo)(zl —120)? € Q(x1), (3.6)
or equivalently
0 € F(xg) + VF(zo)(z1 — x0) + %V2F(x0)(x1 —20)* + G(x1). (3.7)
We need the proposition:
Proposition 3.2. Under the hypotheses of Theorem 3.1, there exists § > 0

such that for all xg € U(x*,d) (xg # x*), the map Ty has a fized point x1 in
U(z*,9).

Proof. By (A5) there exist positive numbers a and b such that

e(Q7 () NU(z*,a),Q  (y2)) < M|lyr — 2|, for all y1,y, € U(0,b). (3.8)
Choose 6 > 0 such that
§ < 50, (39)

where

o ba+1)(a+2)]7 (a+1)(a+2) 1 1
5O—mln{a,[ Ko + K22+a ) MK 2 1+\.1/E : (3.10)

We shall show condition (2.4) and (2.5) of Lemma 2.2 hold true for p = z*, T
being Ty and r and A parameters to be determined.
We first have

dist (2*, To(2*)) < e (Q™1(0) N U (2*, ), Tp(z*)) . (3.11)
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Using (2.7), (3.4), and (3.9) we obtain in turn:

1206 = [Fle) = Flaw) — VFla0)a” = a0) = 372 Faoa® — au|

1
- §V2F(xo)(x* - wO)QH

/0 (1 — )V2F (o + t(z" — 20))(@" — 0)2dt

[E )

1
< K‘/ (1 —t)tdt
0

K * a
= m”az — x0|?T* < b. (3.12)

It follows from (3.8):

e(Q7H(0) NU(2",4), To(x")) = e(Q™1(0) NU (2", ), Q™ [To(z")])
MK

< ml\wo — P (3.13)
and by (3.11)
dist(z*, T (2*)) < %Hx* — ot (3.14)
Moreover by (3.9)
dist(z”, To(z")) < ¢ [1 - %} 2" — zo|2+, (3.15)

since,

MK§ MK
c {1 - ] . (3.16)
(a+1)(a+2) (a+1)(a+2)
Note that by the choice of ¢
MK§S

— < 1. 3.17

(a+1)(a+2) (3.17)
By setting p = 2*, A = ((HMU% and r = rg = c[|zg —2*||*T* we deduce (2.4).
We shall show (2.5). We have 79 < § < a, since § < =~ for ||zg — 2*|| < 4.

1+%
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In view of (2.7), (2.9) and (3.4) we can obtain in turn

IZ0(a)l < |[Fa®) = F(@) + VF@)(o - 27) + 502G @ = a7

+ || F@) = Fao) - VR0 @ - a0) - 570 - 02

< el gl o
= (o + 1[)((004 +2) o — "=
; m<ux—x*\|+||xo—x*||>”“
(Ko + K - 279)%1 b, (3.18)

(a+1)(a+2) -
and Zy(z) € U(0,b). That is for all u,v € U(x*,7) we have
e(TO(u) NU(z*, 1), To(v))

< e(To(w) N UG, 8), To(v)) < M| Zo(u) — Zo(0)]

< MHVF(:E*)(U —v) = VF(zo)(u—v)+ %VQF(:E*)(U —v+v—u)?
- %V2F(x*)(v —x*)? + %VzF(mo)(v —20)?

— %VQF(zO)(u — v+ v —x)?

< 5MI6||u — v, (3.19)

which shows (2.5). It follows by Lemma 2.2 z, € U(z*,r) is a fixed point of
To.

That completes the proof of Proposition 3.2. o
Proof of Theorem 3.1. We have x1 € U(x*,rg). That is

lzr —2*|| < 7o = ¢z — z*||*T. (3.20)

We continue using induction on n > 0. Set p = z*, A = % and

Tn = ||z, — 2*]|?T% to obtain again from the application of Proposition 3.2 to
T,, the existence of a fixed point x,,41 of T, in U(z*,r,), which implies (3.2).
That completes the proof of Theorem 3.1.

Corollary 3.3. Let x* be a simple solution of (1.1). Under assumptions
(A1)—(Ab) for
MK

c> CESCE) = (3.21)

there exists & > 0 such that any sequence {x,} generated by (1.2) with x,, €
U(x*, ) satisfies (3.2).
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Proof. Let § > 0 be a number satisfying (3.9) and
5 <6, (3.22)

where,

51min{ ! (a+1)(a+2)C—MK}

3ML’ 3(a+1)(a+2)cML
We assume without loss of generality that z* is a unique solution of (1.1) in a

certain neighborhood of z*, since «* is a simple zero of (1.1). Let us choose it
to be U(z*,4). Set z* = Q~1(0) N U(z*,4). By Theorem 3.1

Tt = Q7 Zn(Tns1)]-
In view of (2.2), (2.3), (2.7) and (2.8) we obtain in turn:
dist(ns1,@(0)) = lzmss — 2]
< e(Q7 [ Zn(zns1)]NU(2",6),Q7H0)) < M| Zn(2nt1)l|

1
< MHF(JU*) + VF(z*)(pe1 — o) + §V2F(x*)(xn+1 —z%)?

(3.23)

— F(zp) — VF(zp)(Tps1 — xn) — %VQF(:En)(an - xn)2H

IN

1
MHF(:E*) + VFE(z*)(zpy1 —2") + §V2F(x*)(xn+1 —z%)?
— F(zp) — VF(z,)(@pt1 — a2 + 2" — )

1
— §V2F(:cn)(xn+1 —* +at—x,)?

K, 9 — ]
M| ——% |la* — 2, |2t + 3L || wnss — 2|, (3.24
< M| gl — e — =[] (320
or
[#n1 — 2% < = [|lzn — [T
(a+1)(a+2)(1 —3MLY)
< |y — )T
That completes the proof of Corollary 3.3. o

Remark 3.4. If Ly = L and Ky = K, then our results are reduced to the
corresponding ones in [9]. Otherwise they constitute an improvement. Indeed,
let us denote by 0y, 61 parameters obtained from 8y and §; respectively by
replacing Ky and Ly by K and L respectively. Then, we get

b0 < 4o (3.25)

and
01 < d1. (3.26)
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That is we can obtain a larger convergence radius for method (1.2), which
implies that a wider choice of initial choices xy becomes available, and finer
error bounds on the distances ||z, — 2*|| (n > 0). These observations are
important in computational mathematics [1], [2], [6].

Remark 3.5. The local results obtained here can be used to solve equations
where F satisfies the autonomous differential equation [1], [2]

F'(z) = P(F(x)), (3.27)
where P: Y — X is a known continuous operator. Since F'(z*) = P(F(z*)) =
P(0), we can apply our results without actually knowing the solution z* of
equation (1.1).

We complete this study with two numerical examples where we show that
strict inequality can hold in (2.11).

Example 3.6. Let X =Y =R, 2* =0, and define F on U(0,1) by
F(z) =e€® —z. (3.28)
It can easily be seen that
a=1 Lp=1, L=K=e¢ and Ky=e¢—1. (3.29)

Example 3.7. Let X =Y =R, 2* = §, U(z*,r) C D = [.81,6.25], and define
function F on D by

4 s 1,
F(z) = = 5" (3.30)
We obtain
1 1 1
a=g, Ly=g L=V625-1, Ko=7 and K=1. (3.31)
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