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Local convergence for the curve
tracing of the homotopy method
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ABsTRACT. The local convergence of a Newton-method for the tracing of an
implicitly defined smooth curve is analyzed. The domain of attraction is shown
to be larger than in [6]. Moreover finer error bounds on the distances involved
are obtained and quadratic instead of geometrical order of convergence is es-
tablished. A numerical example is also provided where our results compare
favourably with the corresponding ones in [6].
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RESUMEN. Se analiza la convergencia local de un método de Newton para
trazado de una curva suave definida implicitamente. Se muestra que el dominio
de atraccién es més grande que en [6]. Ademds se obtienen errores mas finos
para las cotas de las distancias involucradas y se establece orden cuadratico en
lugar de lineal para la convergencia. Se da un ejemplo numérico donde nuestro
resultado se compara favorablemente con los resultados correspondientes en [6].

1. Introduction

We are concerned with the following problem: Suppose that a smooth curve
I' ¢ R**! is implicitly defined by

F(z,t) =0, (1.1)

where F : R® x R — R" is a C? function. We intend to numerically trace
curve I' from the point (xo,t9) to the point (x*,¢*). We assume the n x (n+1)
Jacobian matrix DF'(z,t) has full rank at every point in I". A survey of such
techniques can be found in [1], [8] and the references there.
We will use the following algorithmic form:
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(a) Let y; = (z4,t;) € R™*! be an approximation for I'. Use the predictor
2o = Yi + h;T; (12)

for the next approximating point, where h; is an appropriate step length
and 7; is the tangent vector of I' at y;;

(b) Starting from zg, take a sequence of Newton iterations by requiring zj
to lie on the hyperplane normal to a certain vector (usually the tangent
vector 7;);

(¢c) Set y;+1 = z where z is the point of convergence for the sequence {z}.

We need some preliminaries:
A point (z,t) in R"*! will be denoted by y. Let o be the arc length, along
the curve I', then an initial value problem is implicitly defined by

DF(y)-y=0;  y(0)=uyo, (1.3)
where - = %. It is known that vector field ¢ is locally Lipschitzian [§].
We assume DF (y) is full rank along the solution curve, then equation
DF (y)y' = —F(y) (1.4)
can be reduced to
y'=—DF" (y) F (y) (1.5)

where DF T (y) = DFT (y) [DF (y) DFT (y)}_1 is the Moore-Penrose gene-
ralized inverse of DF (y). By the result

rang (DF*1) = rang (DFT) = ker (DF)l (1.6)
and equation
F(y(r) =e"F(y(0) (L.7)

we conclude a solution y (7) of (1.5) is such that the magnitude of F (y) is
reduced and also remains perpendicular to the 1—dimensional kernel space of

F(y).
Consider the Euler step of (1.5). This corresponds to the Newton method
in the form

Yer1 =Y — DFT (y) F (yi) - (1.8)

In the next section we analyze the local convergence of method (1.8).
We state a result whose proof can be found in [6, p. 327]:

Theorem 1.1. Let F : D C R*™! — R"™ be a C? function such that
IDF(2)— DF ()| < Cllz—yll,  forallmyeD.  (19)

Suppose that F (z*) and DF (z*) is full rank. Let ¢ € (0, 3_2\/5) and define

2

M =min{d ———0n——
mm{3|DF+ @)

dist(z™, aD)} . (1.10)
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If 1 € (0,6M =rg) is such that for every x € U(z*,r) = {& € R"™ :
|z —2*|| < r} we have
SCM?
I1# @) < 25, (111)

then for any xo € U(z*,r) C D, method (1.8) is well defined and converges
geometrically to a point in T NU (z*, M) .

Remark 1.1. Under the hypotheses of Theorem 1.1 method (1.8) converges
only geometrically and condition (1.1) should hold. To do so we first introduce
the center Lipschitz condition

IDF (x) — DF ()| < &p ||z — ¥, for all z € D. (1.12)

We note that in general
by < /¥ (1.13)
holds and ei can be arbitrarily large. In practice the computation of £ requires
0
that of /.
Then we can show the following improvement over Theorem 1.1.

Theorem 1.2. Suppose hypotheses of Theorem 1.1 and (1.12) hold but M is
defined as

2
(200 + O) [[DFF (z*)]”
then the conclusions of Theorem 1.1 hold with My replacing M.

My = min{ dist (;v*,aD)} ) (1.14)

Proof. For any z € U (x*, M), we get using Lemma 3.1 in [6, p. 326] and
(1.12):

|DF () ~ DF @) | DF* )] < o lle — a* | [DF* )| < 2 <1.

(1.15)
The rest of the proof follows exactly as in Theorem 1 in [6, p. 326] (with M),
replacing M). That completes the proof of the theorem. o

Remark 1.2. If equality holds in (1.13) then Theorem 1.2 reduces to Theorem
1.1. Otherwise

M < My (1.16)
holds and the bounds on the distances ||yn+1 — Unll, l|yn+1 — x*|| (n > 0) are
finer in Theorem 1.2. This improvement allows a wider choice of initial guesses
xg. Such an observation is important in computational mathematics. By com-
paring (1.10) and (1.14) we see that My can be (at most) three times larger
than M (if £y = £).

In order to show that it is possible to achieve quadratic convergence and drop
strong condition (1.11) we use a modification of our Theorem 2 in [3] (where we
have replaced F' (z)~" by DF (x)" and use Lemma 3.1 in [6] instead of Banach
Lemma on invertible operators in the proof of Theorem 2 in [3] to obtain the
proof of Theorem 1.3 that follows:
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Theorem 1.3. Assume conditions of Theorem 1.2 hold excluding (1.11). If
U1 (l‘*,’f‘l) QD, (1.17)

where
1

" ore]

: (1.18)

then for all xy € Us (x*,72) , where

247 -7+ 2y

ro = T fory>2,40= %Eo, (1.19)
(2+7) b |DF @)*
the following hold:
Newton-Kantorovich hypothesis
h=20 HDF (xo)+H HDF (x0)" F (mO)H <1 (1.20)

holds as strict inequality, and consequently the Newton-Kantorovich theorem

guarantees method (1.8) is well-defined and converges quadratically to a point
inTNU (z*, 7).

Remark 1.3. Even if equality holds in (1.13) we can set v = 2 and ro can be
written as

_ 2=V
2, HDF (x*)+H 7

T2

(1.21)

which is larger than ro since

9 _
2

IS

0 <

(1.22)

If strict inequality holds in (1.13) then ro is enlarged even further (see also
Ezample 1.4 as follows).

Convergence radius ro can be extended even further by using Theorem & in
[3] based on an even weaker hypotheses than (1.20) found by us in Section 1.2:

ho = (£ + £o) HDF (m0)+H HDF (z0)* F(xO)H <1. (1.23)

However we do not pursue this here, leaving it for the motivated reader.
Instead we provide an example where strict inequality holds in (1.13).

Example 1.4. Let D =U (0,1) and define function F' on the real line by

F(x)=¢€"—1. (1.24)
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For simplicity we take xo = x*. We obtain

{=e,
50:6’—17
”DF(I*)+“:1,

v = 3.163953415 ,

§ = .381966011,

M = 245252961 ,

My = .324947231 ,
7o = 6M = .093678295 ,
o = 0My = 124118798 ,

r1 = .581976707,

7o = .126433594 .

Therefore we conclude

M < My < r
and

ro < To < Ta,

which demonstrate the superiority of our results over the ones in [6].
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