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Local convergence for the curve
tracing of the homotopy method
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Abstract. The local convergence of a Newton-method for the tracing of an
implicitly defined smooth curve is analyzed. The domain of attraction is shown
to be larger than in [6]. Moreover finer error bounds on the distances involved
are obtained and quadratic instead of geometrical order of convergence is es-
tablished. A numerical example is also provided where our results compare
favourably with the corresponding ones in [6].
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Resumen. Se analiza la convergencia local de un método de Newton para
trazado de una curva suave definida impĺıcitamente. Se muestra que el dominio
de atracción es más grande que en [6]. Además se obtienen errores mas finos
para las cotas de las distancias involucradas y se establece orden cuadrático en
lugar de lineal para la convergencia. Se da un ejemplo numérico donde nuestro
resultado se compara favorablemente con los resultados correspondientes en [6].

1. Introduction

We are concerned with the following problem: Suppose that a smooth curve
Γ ⊂ Rn+1 is implicitly defined by

F (x, t) = 0 , (1.1)

where F : Rn × R → Rn is a C2 function. We intend to numerically trace
curve Γ from the point (x0, t0) to the point (x∗, t∗). We assume the n× (n+1)
Jacobian matrix DF (x, t) has full rank at every point in Γ. A survey of such
techniques can be found in [1], [8] and the references there.

We will use the following algorithmic form:
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(a) Let yi = (xi, ti) ∈ Rn+1 be an approximation for Γ. Use the predictor

z0 = yi + hiτi (1.2)

for the next approximating point, where hi is an appropriate step length
and τi is the tangent vector of Γ at yi;

(b) Starting from z0, take a sequence of Newton iterations by requiring zk

to lie on the hyperplane normal to a certain vector (usually the tangent
vector τi);

(c) Set yi+1 = z where z is the point of convergence for the sequence {zk}.
We need some preliminaries:
A point (x, t) in Rn+1 will be denoted by y. Let σ be the arc length, along

the curve Γ, then an initial value problem is implicitly defined by

DF (y) · ẏ = 0; y (0) = y0, (1.3)

where · = d
dσ . It is known that vector field ẏ is locally Lipschitzian [8].

We assume DF (y) is full rank along the solution curve, then equation

DF (y) y′ = −F (y) (1.4)

can be reduced to
y′ = −DF+ (y)F (y) (1.5)

where DF+ (y) = DFT (y)
[
DF (y) DFT (y)

]−1 is the Moore-Penrose gene-
ralized inverse of DF (y) . By the result

rang
(
DF+

)
= rang

(
DFT

)
= ker (DF )⊥ (1.6)

and equation
F (y (τ)) = e−τF (y (0)) (1.7)

we conclude a solution y (τ) of (1.5) is such that the magnitude of F (y) is
reduced and also remains perpendicular to the 1−dimensional kernel space of
F (y).

Consider the Euler step of (1.5). This corresponds to the Newton method
in the form

yk+1 = yk −DF+ (yk) F (yk) . (1.8)

In the next section we analyze the local convergence of method (1.8).
We state a result whose proof can be found in [6, p. 327]:

Theorem 1.1. Let F : D ⊆ Rn+1 → Rn be a C2 function such that

‖DF (x)−DF (y)‖ ≤ ` ‖x− y‖ , for all x, y ∈ D. (1.9)

Suppose that F (x∗) and DF (x∗) is full rank. Let δ ∈
(
0, 3−√5

2

)
and define

M = min
{

2
3 ‖DF+ (x∗)‖ `

, dist(x∗, ∂D)
}

. (1.10)
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If r ∈ (0, δM = r0) is such that for every x ∈ U (x∗, r) =
{
x ∈ Rn+1 :

‖x− x∗‖ ≤ r
}

we have

‖F (x)‖ ≤ δ`M2

2
, (1.11)

then for any x0 ∈ U(x∗, r) ⊆ D, method (1.8) is well defined and converges
geometrically to a point in Γ ∩ U (x∗,M) .

Remark 1.1. Under the hypotheses of Theorem 1.1 method (1.8) converges
only geometrically and condition (1.1) should hold. To do so we first introduce
the center Lipschitz condition

‖DF (x)−DF (x∗)‖ ≤ `0 ‖x− x∗‖ , for all x ∈ D. (1.12)

We note that in general
`0 ≤ ` (1.13)

holds and `
`0

can be arbitrarily large. In practice the computation of ` requires
that of `0.

Then we can show the following improvement over Theorem 1.1.

Theorem 1.2. Suppose hypotheses of Theorem 1.1 and (1.12) hold but M is
defined as

M0 = min
{

2
(2`0 + `) ‖DF+ (x∗)‖ , dist (x∗, ∂D)

}
, (1.14)

then the conclusions of Theorem 1.1 hold with M0 replacing M.

Proof. For any x ∈ U (x∗,M0), we get using Lemma 3.1 in [6, p. 326] and
(1.12):

‖DF (x)−DF (x∗)‖
∥∥DF+ (x∗)

∥∥ ≤ `0 ‖x− x∗‖
∥∥DF+ (x∗)

∥∥ <
2
3

< 1 .

(1.15)
The rest of the proof follows exactly as in Theorem 1 in [6, p. 326] (with M0

replacing M). That completes the proof of the theorem. ¤X

Remark 1.2. If equality holds in (1.13) then Theorem 1.2 reduces to Theorem
1.1. Otherwise

M < M0 (1.16)
holds and the bounds on the distances ‖yn+1 − yn‖, ‖yn+1 − x∗‖ (n ≥ 0) are
finer in Theorem 1.2. This improvement allows a wider choice of initial guesses
x0. Such an observation is important in computational mathematics. By com-
paring (1.10) and (1.14) we see that M0 can be (at most) three times larger
than M (if `0 = `).

In order to show that it is possible to achieve quadratic convergence and drop
strong condition (1.11) we use a modification of our Theorem 2 in [3] (where we
have replaced F ′ (x)−1 by DF (x)+ and use Lemma 3.1 in [6] instead of Banach
Lemma on invertible operators in the proof of Theorem 2 in [3] to obtain the
proof of Theorem 1.3 that follows:
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Theorem 1.3. Assume conditions of Theorem 1.2 hold excluding (1.11). If

U1 (x∗, r1) ⊆ D , (1.17)

where

r1 =
1

`0

∥∥∥DF (x∗)+
∥∥∥

, (1.18)

then for all x0 ∈ U2 (x∗, r2) , where

r2 =
2 + γ −

√
γ2 + 2γ

(2 + γ) `0

∥∥∥DF (x∗)+
∥∥∥

, for γ ≥ 2, ` =
γ

2
`0 , (1.19)

the following hold:
Newton-Kantorovich hypothesis

h = 2`
∥∥∥DF (x0)

+
∥∥∥

∥∥∥DF (x0)
+

F (x0)
∥∥∥ ≤ 1 (1.20)

holds as strict inequality, and consequently the Newton-Kantorovich theorem
guarantees method (1.8) is well-defined and converges quadratically to a point
in Γ ∩ U (x∗, r1).

Remark 1.3. Even if equality holds in (1.13) we can set γ = 2 and r2 can be
written as

r2 =
2−√2

2`0

∥∥∥DF (x∗)+
∥∥∥

, (1.21)

which is larger than r0 since

δ <
2−√2

2
. (1.22)

If strict inequality holds in (1.13) then r2 is enlarged even further (see also
Example 1.4 as follows).

Convergence radius r2 can be extended even further by using Theorem 3 in
[3] based on an even weaker hypotheses than (1.20) found by us in Section 1.2:

h0 = (` + `0)
∥∥∥DF (x0)

+
∥∥∥

∥∥∥DF (x0)
+

F (x0)
∥∥∥ ≤ 1. (1.23)

However we do not pursue this here, leaving it for the motivated reader.
Instead we provide an example where strict inequality holds in (1.13).

Example 1.4. Let D = U (0, 1) and define function F on the real line by

F (x) = ex − 1 . (1.24)
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For simplicity we take x0 = x∗. We obtain

` = e ,

`0 = e− 1 ,∥∥∥DF (x∗)+
∥∥∥ = 1 ,

γ = 3.163953415 ,

δ = .381966011 ,

M = .245252961 ,

M0 = .324947231 ,

r0 = δM = .093678295 ,

r̄0 = δM0 = .124118798 ,

r1 = .581976707 ,

r2 = .126433594 .

Therefore we conclude
M < M0 < r1

and
r0 < r̄0 < r2,

which demonstrate the superiority of our results over the ones in [6].
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